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Abstract In the past few years, convolutional neural networks (CNNs) have exhibited great
potential in the field of image classification. In this paper, we present a novel strategy named
cross-level to improve the existing networks’ architecture in which different levels of fea-
ture representation in a network are merely connected in series. The basic idea of cross-level
is to establish a convolutional layer between two nonadjacent levels, aiming to extract more
sufficient features with multiple scales at each feature representation level. The proposed
cross-level strategy can be naturally integrated into an existing network without any change
on its original architecture, which makes it very practical and convenient. Four popular
convolutional networks for image classification are employed to illustrate its implementa-
tion in detail. Experimental results on the dataset adopted by the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) verify the effectiveness of the cross-level strategy
on image classification. Furthermore, a new convolutional network with cross-level archi-
tecture is presented to demonstrate the potential of the proposed strategy in future network
design.

Keywords Convolutional neural networks (CNNs) · Image classification · Network
architecture · Feature representation · Deep learning

� Zengfu Wang
zfwang@ustc.edu.cn

1 Department of Automation, University of Science and Technology of China, Hefei 230027,
People’s Republic of China

2 Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People’s Republic
of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-016-3540-x&domain=pdf
mailto:zfwang@ustc.edu.cn


11066 Multimed Tools Appl (2017) 76:11065–11079

1 Introduction

As an important issue in the field of computer vision, image classification has achieved
great progress in the past decade, which is primarily driven by the ever-increasing demand
of image retrieval technique on the internet. Many worldwide competitions on image clas-
sification have been carried out, such as the Pattern Analysis, Statistical Modelling and
Computational Learning, Visual Object Classes (PASCAL VOC) Challenge from 2005 to
2012 and ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) since 2010. In
recent years, a variety of image classification methods have been proposed in the litera-
ture. Conventional image classification methods are usually based on manually designed
feature descriptors, such as Scale-Invariant Feature Transform (SIFT) [26] and Histogram
of Oriented Gradients (HOG) [6]. Generally, these methods consist of three main steps.
First, extract local feature descriptors like SIFT and HOG. Then, Encode the extracted fea-
tures with some linear or non-linear transformations. This step is usually known as feature
selection, which contains some sub-steps such as dictionary learning, feature coding and
spatial pooling. Some popular approaches used for feature selection include Bag of Words
(BoW) [27, 30], Spatial Pyramid Matching (SPM) [17], Locality-constrained Linear Cod-
ing (LLC) [34], Sparse coding Spatial Pyramid Matching (ScSPM) [35], Nearest Neighbor
Basis Vectors Spatial Pyramid Matching (NNBVSPM) [25], etc. Finally, employ some clas-
sifiers like Support Vector Machine (SVM) [5] and Adaptive Boosting (AdaBoost) [9] to
classify input images. This category of methods can work well when the scale of dataset
is not very large, such as Scene-15 [17] and Caltech-101 [22]. However, these methods
usually obtain unsatisfactory performance when the dataset (e.g., ImageNet [14]) has a
large number of categories and each category contains too many images varying greatly
in terms of camera viewpoint, object pose, illumination and occlusion. The performance
of visual object recognition has achieved a dramatic improvement since convolutional neu-
ral networks (CNNs) [18–20] were first introduced into image classification by Krizhevsky
et al. [16] in 2012. In the last three years, various CNN-based classification approaches
have been presented [10, 23, 33, 36], and the latest method [11] can even surpass the
human-level performance.

As one of the most representative deep learning models, CNN is designed for hierar-
chical data/feature representation mechanism from lower level to higher level. Specifically,
CNN is a trainable multi-stage architecture and each stage consists of a certain number of
feature maps. The feature maps at each stage indicate a level of feature representation. The
feature maps at a certain stage are obtained from the maps at its previous stage through
several operations such as linear convolution, non-linear activation and spatial pooling. In
this paper, to make the following descriptions clearer, we use the term layer to specially
denote a certain operation between two adjacent levels of feature maps, and the term level to
indicate the data representation stage which is characterized by a set of feature maps. A typ-
ical CNN architecture for visual recognition is shown in Fig. 1. Different from traditional
three-phase (feature extraction, feature selection and classification) recognition workflow,
it can be seen that the CNN-based framework is an end-to-end system since the input is a
three-channel color image and the output is a label vector that can be directly used for clas-
sification task. In Fig. 1, there are three convolutional layers, two max-pooling layers and
two fully-connected layers between the two ends. The convolutional layers here include 3D
linear convolution and pointwise non-linear activation such as tanh(x) and max(0, x). The
non-linear activation layer using the latter one is known as Rectified linear units (ReLUs).
In this work, since a convolutional layer in a CNN is usually followed by a non-linear layer
like ReLU, the non-linear layer will not be explicitly mentioned later. The max-pooling
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Fig. 1 A typical Convolutional neural network architecture visual recognition

layer aims to reduce data dimension by sub-sampling. The fully-connected layers usually
exist at the output end, which can be viewed as the classification part in the whole system.

Historically, convolutional network was first applied to visual object recognition by
LeCun et al. [18], in which the problem of handwritten digit recognition was well tackled
by a network containing two convolutional layers and two fully-connected layers. How-
ever, this method did not obtain enough attentions in generalized visual recognition for a
long time, until the rise of deep learning theory [1, 12] as well as the huge improvement on
the computation capacity of hardware. Starting with the AlexNet [16], many representative
CNN architectures such as Network in Network (NIN) [23], VGG-Net [29] and GoogLeNet
[33] have been proposed in the literature. The existing CNNs share similar architectures,
namely, convolutional layers for feature extraction and spatial pooling layers like max-
pooling for dimension reduction. Different levels of representation in a network are merely
connected in series. In other words, each layer only locates between two adjacent levels, and
there is no layer or direct connection between two nonadjacent levels. Figure 2a shows the
core structure of existing CNNs. However, the connection mechanism of visual neurons is
generally believed to be very complex from the perspective of visual neuroscience [7, 31].

In this paper, we mainly argue that the existing serial connection approach can be
improved by adding a direct connection between two nonadjacent levels. Specifically, a
convolutional layer is established between two nonadjacent levels to realize this idea. This
strategy is logically named cross-level, and it can be naturally integrated into an existing
convolutional network without any change on its original architecture. The illustration of
cross-level strategy is shown in Fig. 2b. The primary motivation of this strategy is to extract
more sufficient features with multiple scales at each feature representation level to pursue
a better performance on image classification. Therefore, this work can be grouped into the

(a) (b)

Fig. 2 Comparison of (a) Conventional structure of CNN and (b) the improved structure with cross-level
strategy. Note that a block denotes a level of representation and an arrow denotes some operational layers
between two levels
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strategy-based contributions in the field of deep learning, which aim at providing universal
approaches to enhance the performance of existing networks by modifying their architec-
tures. Some strategy-based works include dropout [13], deeply-supervised nets (DSN) [21],
etc. A preliminary version of this work appeared in our conference paper [24], where some
backgrounds are not well introduced and the experiments conducted are quiet limited. This
article will provide a more exhaustive presentation of this work. In particular, more exper-
imental results are exhibited to further verify the effectiveness of the proposed cross-level
strategy.

The rest of this paper is organized as follows. In Section 2, some basic knowledge about
CNN and four popular CNN architectures for image classification are reviewed. The imple-
mentation details of the cross-level strategy are presented in Section 3. The experimental
results are given in Section 4. Finally, Section 5 concludes the paper and puts forward some
future work.

2 Related work

2.1 Convolutional neural network

In [19], LeCun pointed out that three architectural ideas of convolutional neural networks
are: local receptive fields, shared weights and sub-sampling. The idea of local receptive
fields means connecting units to local regions on the input, i.e., local convolutional oper-
ation is required. Moreover, the weights of a convolutional kernel is spatially invariant,
which means that the feature maps is convoluted by one kernel. These two ideas signifi-
cantly reduce the number of free parameters in the network, ensuring that a deep network is
trainable. The sub-sampling operation is now known as pooling, which is mainly used for
dimension reduction. Therefore, in a CNN architecture, convolution and pooling are two
basic operations. Let xi and yj denote the i-th input feature map and j -th output feature
map of a convolutional layer, respectively. The convolution operation is formulated as

yj = max(0, bj +
∑

i

kij ∗ xi), (1)

where kij is the convolutional kernel between xi and yj , and bj is the bias of yj . The symbol
∗ denotes convolution operation. The ReLU nonlinearity is used here. Actually, supposing
that the numbers of input and out feature maps are M and N , there are N 3D kernel of size
d ×d ×M used within this convolutional layer, where d ×d is the kernel’s spatial size. The
max-pooling operation is expressed as

yi
r,c = max

0≤m,n<s
{xi

r·s+m,c·s+n}, (2)

where yi
r,c is the neuron (r, c) in the i-th output map of a max-pooling layer. It is obtained

by choosing the maximal value over an s × s non-overlapping local region in the i-th input
map xi .

2.2 CNNs for image classification

In this subsection, we briefly review four representative convolutional neural networks
presented for image classification in the last three years, which are the AlexNet [16],
Network-in-Network (NIN) [23], VGG-Net [29] and GoogLeNet [33].
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(a) (b)

(c) (d)

Fig. 3 Core structures of four popular CNNs. a AlexNet. b NIN. c VGG. d GoogLeNet

The AlexNet [16] proposed in 2012 can be viewed as a milestone in the field of image
classification. It is the first time that CNN was employed for generalized image classifi-
cation. The classification method based on AlexNet is the winner of ILSVRC 2012 with
a significant breakthrough with respect to the previous approaches. The AlexNet reported
in [16] contains five convolutional layers and three fully-connected layers. There is a local
response normalization (LRN) layer that follows the first as well as the second convolu-
tional layer. There are three max-pooling layers in AlexNet. The first two follow the two
LRN layers, respectively. The last max-pooling layer follows the fifth convolutional layer.
The core structure of AlexNet locates between the second and third max-pooling layers,
which contains three convolutional layers each with 3 × 3 convolution kernel. Four levels
of feature maps of spatial size 13 × 13 are connected by these three convolutional layers.
The authors reported in [16] that the removal of any of these layers leads to a loss of about
2 % in terms of top-1 performance. The core structure of AlexNet is shown in Fig. 3a.

Lin et al. [23] proposed NIN to obtain a better representation of local patches by adding
a multi-layer perceptron after a convolutional layer. In their method, they use a three-layer
perceptron, and it is essentially equivalent to add two 1×1 convolutional layers after a 3×3
or 5× 5 convolutional layer. Thus, the core structure or unit of NIN has three convolutional
layers in series, as shown in Fig. 3b. The network applied in [23] has four such units and
there is a max-pooling layer between every two units. Furthermore, after the last three-
layer convolution unit, instead of employing traditional fully-connected layers, the authors
generate one feature map for each class and use the global average pooling scheme to obtain
the resulting vector, which can reduce the number of parameters to a great extent and prevent
overfitting for neural networks.

Simonyan and Zisserman [29] from the Visual Geometry Group at University of Oxford
proposed several deep convolutional networks ranging from 11 to 19 weight layers. They
named their networks VGG based on their research group’s name. Each proposed VGG
network has five max-pooling layers. Between two adjacent max-pooling layers, these net-
works usually contain two or three 3 × 3 convolutional layers, which constructs a core unit
of the VGG-Net. For example, the VGG-11 net contains three such units which consists of
two 3× 3 convolutional layers. Figure 3c shows the core unit of the VGG-Net. The number
of feature maps gradually increases with the increasing of feature representation level. After
the last max-pooling layer, all the VGG networks contain three fully-connected layers with
4096, 4096 and 1000 neurons, respectively. Thus, the model size (number of parameters) of
VGG-NET is quiet large even for the VGG-11 network.
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GoogLeNet, a 22-layer deep convolutional network proposed by Szegedy et al. [33],
is the winner of ILSVRC 2014 classification competition. Since increasing the depth of
a network directly needs a sharp increasing requirement of computational resources and
tends to cause severe overfitting, the GoogLeNet is designed to make a balance between the
network size and computational budget. The core structure adopted in GoogLeNet is called
Inception. Figure 2c shows two serial Inceptions. In each Inception, the feature maps at the
output level are obtained from four branches, namely, a 1 × 1 convolutional layer, a 3 × 3
convolutional layer with a 1 × 1 layer for parameter reduction, a 5 × 5 convolutional layer
with a 1 × 1 layer for parameter reduction, and a max-pooling layer followed by a 1 × 1
layer to limit the number of output feature maps for parameter reduction at the next level. It
is worthwhile to note that the intermediate feature maps generated in the last three branches
do not construct a level of representation since those three 1 × 1 layers are essentially
designed for parameter reduction. Therefore, there are only three levels of representation
in Fig. 3d. In GoogLeNet, there are totally nine Inceptions which are separated into three
parts. The first part and last part both have two Inceptions just like the illustration given in
Fig. 3d. The middle part has five Inceptions in series. Moreover, there is no max-pooling
layer within each of the three parts, so all the feature maps within each part have the same
spatial size. In GoogLeNet, there exists a max-pooling layer between every two parts for
dimension reduction of feature maps.

3 Cross-level

In this section, we mainly describe the implementation details of the cross-level strategy
via the above four convolutional networks, namely, the AlexNet [16], Network-in-Network
(NIN) [23], VGG-Net [29] and GoogLeNet [33]. Figure 4 shows the improved structure
of each network after applying the cross-level strategy. The basic idea of cross-level is to

(a)

(c) (d)

(b)

Fig. 4 The improved structure of four networks after applying the cross-level strategy. a AlexNet. b NIN. c
VGG. d GoogLeNet
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establish a convolutional layer between two nonadjacent levels. Naturally, the added convo-
lutional layer can be called cross layer. Thus, the feature maps at the output level come from
two aspects: the layers in the original structure and the cross layer. In our approach, consid-
ering the cost of computational resource, the size of convolution kernel in each cross layer
is fixed to 1 × 1, and the number of feature maps generated by a cross layer is universally
set as half number of the original maps at that level.

As shown in Fig. 4a, for the AlexNet, two 1 × 1 convolutional layers are established
from the first and second levels to the third and fourth levels, respectively. Notice that the
core structure shown in Fig. 3a appears only once in the AlexNet, all the other parts of the
network are not changed. The situation of NIN is similar to that of AlexNet, as shown in
Fig. 4b. The only difference is that there are several core structures/units (see Fig. 3b) in
the NIN architecture. For each unit except the first and last one, two 1 × 1 convolutional
layers are added on the original structure. Thus, when there are four units [23], only four
1 × 1 layers are created on the second and third units, while the other parts in NIN remain
unchanged. The improved structure of VGG-Net is shown in Fig. 4c, which is similar to the
situation of AlexNet shown in Fig. 4a. In particular, when there are three 3×3 convolutional
layers in each unit such as the VGG-16 network, the situation is exactly the same as the
AlexNet. For the VGG-11 network, we add two 1 × 1 cross layers for its third and fourth
units. Finally, Fig. 4d shows the modified structure of GoogLeNet with cross-level strategy,
which connects the input level of the former Inception and the output level of the latter
one with a 1 × 1 convolutional layer. As mentioned before, the GoogLeNet also contains a
structure of five consecutive Inceptions. The cross-level strategy deals with this situation just
using the same approach in AlexNet (see Fig. 4a) and NIN (see Fig. 4b). Accordingly, there
are totally six 1 × 1 convolutional layers added on the original GoogLeNet after applying
the cross-level strategy.

From the above four examples, it can be seen that the presented cross-level strategy can
be easily applied to an existing convolutional network without changing its original archi-
tecture, and the depth of the modified network also remains the same. The only requirement
is that all the feature maps within the two levels connected by a cross layer should have
the same spatial size. That is to say, there must be no inside spatial pooling layers (e.g.,
max-pooling) with a stride larger than one.

It is worthwhile to notice that some existing CNN architectures have partly applied some
strategies which are similar to the proposed cross-level strategy. Fan et al. [8] introduced
a convolutional network with multiple paths for human tracking. In their method, the net-
work between the first convolutional and the output layer is split into two branches, namely,
global branch and local branch. The global branch is the same as traditional CNN archi-
tecture, which consists of several convolutional layers and pooling layers. The purpose of
global branch is to enlarge the receptive field to address global structures. The local branch
only has a convolutional layer, which aims to extract more details about local structures.
Sermanet and LeCun [28] employed a similar multi-scale CNN architecture for traffic sign
recognition. In [32], Sun et al. proposed a face verification method based on a convolutional
network, in which the last hidden layer is connected with both the third and fourth convolu-
tional layers. The main purpose of this design is to avoid the loss of useful information, since
the fourth layer contains too few neurons. The networks used in the publications referred
above are generally known as multi-scale CNNs. Although these networks have bypassing
connections, there exist clear difference between them and the networks applying the pro-
posed cross-level strategy. In the above multi-scale CNNs, bypassing connections are only
linked to the output layer. Moreover, the main motivation using multi-scale CNNs is for
specific object recognition such as human and face, in which features with different scales
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are all required in the output layer. However, the target of the proposed cross-level strategy
is generalized object classification [16, 23, 33], and the basic motivation of this strategy is
to extract more features with different scales at each feature representation level, not just
the output one. Therefore, the usage of the proposed cross-level strategy for convolutional
network design is more flexible.

4 Experiments

4.1 Comparison with conventional CNNs

In this subsection, we compare the performance of conventional serial CNNs and their
improved versions after applying the proposed cross-level strategy on image classification.
The the AlexNet [16], Network-in-Network (NIN) [23], VGG-11 [29] and GoogLeNet [33]
are employed to verify the effectiveness of the cross-level strategy. In this work, we use
the dataset adopted by ILSVRC (used for ILSVRC classification challenges from 2012 to
2014). As a subset of ImageNet dataset, it contains 1000 categories and each category has
about 1300 images for training and 50 images for validation. Totally, there are about 1.28
million training images and 50000 validation images.

The experimental setup is similar to the approach reported in [16]. All the images are
first down-sampled to a fixed spatial resolution of 256 × 256 and the mean intensity over
the training set from each pixel is subtracted. All the models are learned using stochastic
gradient decent algorithm. All the experiments are conducted on Caffe [2, 15], which is a
popular deep learning framework created by Jia et al. The implementation files of AlexNet,
NIN and GoogLeNet are publicly available on Caffe model zoo website [3]. Specifically,
the “BVLC AlexNet” and “BVLC GoogLeNet” which have been integrated into Caffe-
master toolbox are used for training AlexNet and GoogLeNet, respectively. The “Network
in Netowrk model” available on website [4] (derived from [3]) is adopted to train NIN. The
VGG-11 network is implemented strictly based on the configuration provided in [29]. In
our experiments, all the parameters used for training are set as default values reported in
the configuration and solver files. The cross-level strategy is applied to these four networks
by modifying the corresponding network configuration files. For a fair comparison, all the
parameters with respect to model training remain the same with the original networks. For
simplicity, the modified versions of these four networks are named AlexNet-Cross, NIN-
Cross, VGG-11-Cross and GoogLeNet-Cross, respectively.

(a) (b) (c)

Fig. 5 Three cropping approaches for prediction. a 1-crop. b 10-crop, the upper-left crop is exhibited in
bold. c 18-crop, the left-center crop is exhibited in bold
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Table 1 The top-1 and top-5 accuracy rates of eight learned CNN models: 1-crop prediction

Model Top-1 Top-5

AlexNet 56.48 % 79.56 %

AlexNet-Cross 57.37 % 80.52 %

NIN 59.42 % 81.60 %

NIN-Cross 60.56 % 82.61 %

VGG-11 64.79 % 86.12 %

VGG-11-Cross 65.04 % 86.39 %

GoogLeNet 68.93 % 88.90 %

GoogLeNet-Cross 70.28 % 90.08 %

The classification performance of each learned CNN model is evaluated with two com-
monly used measures, namely, the top-1 and top-5 accuracy rates. These two measures are
both calculated using the validation image set since the images in the testing image set used
in the final ILSVRC competition are with held-out class labels. The top-1 accuracy rate
is the ratio of images whose ground truth category is exactly the prediction category with
maximum probability, while the top-5 accuracy rate indicates the ratio of images whose
ground-truth category is within the top-5 prediction categories (sorted by the probabilities).

For each test image, as shown in Fig. 5, we employ three cropping approaches which are
1-crop, 10-crop and 18-crop to obtain the prediction score. As shown in Fig. 5a, the 1-crop
prediction approach only extracts the center patch of appropriate size such as 224 × 224
according to the spatial size of the network’s input data layer for prediction. The 10-crop
prediction approach [16] is mostly used in the literature, as shown in Fig. 5b, in addition
to the center crop, four corner crops are also extracted for prediction. Moreover, the hor-
izontal reflections of these five crops are also used for prediction, so there are totally 10
crops involved. The 18-crop prediction approach is similar to the 10-crop prediction one,
as shown in Fig. 5c, another four crops locating at left-center, right-center, up-center and
bottom-center as well as their flipped versions are added into the prediction set. For the lat-
ter two multi-crop prediction approaches, one prediction result (a 1000-dimensional vector)
is obtained from one crop by the network’s softmax layer, so a merging strategy is required
to get the final prediction score. To this end, we adopt two popular strategies: averaging and
choosing-max. The former one calculates the average score over all the crops’ scores, while
the latter one constructs the final score by choosing the maximal element over all the inputs

Table 2 The top-1 and top-5 accuracy rates of eight learned CNN models: 10-crop prediction

Model Top-1(ave) Top-1(max) Top-5(ave) Top-5(max)

AlexNet 59.09 % 58.97 % 81.67 % 81.27 %

AlexNet-Cross 59.85 % 59.62 % 82.18 % 81.69 %

NIN 61.35 % 61.21 % 83.08 % 82.61 %

NIN-Cross 62.44 % 62.41 % 84.01 % 83.62 %

VGG-11 67.02 % 66.76 % 87.56 % 87.05 %

VGG-11-Cross 67.29 % 67.04 % 87.80 % 87.27 %

GoogLeNet 70.35 % 70.39 % 89.84 % 89.66 %

GoogLeNet-Cross 71.58 % 71.59 % 90.76 % 90.64 %
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Table 3 The top-1 and top-5 accuracy rates of eight learned CNN models: 18-crop prediction

Model Top-1(ave) Top-1(max) Top-5(ave) Top-5(max)

AlexNet 58.98 % 58.97 % 81.65 % 81.18 %

AlexNet-Cross 59.76 % 59.73 % 82.17 % 82.61 %

NIN 61.29 % 61.29 % 83.15 % 82.63 %

NIN-Cross 62.52 % 62.44 % 84.01 % 83.61 %

VGG-11 66.98 % 66.80 % 87.58 % 87.02 %

VGG-11-Cross 67.27 % 67.06 % 87.81 % 87.22 %

GoogLeNet 70.33 % 70.39 % 89.82 % 89.61 %

GoogLeNet-Cross 71.64 % 71.60 % 90.76 % 90.65 %

at each dimension. Let s1, s2, ..., sN denote the prediction scores from N different crops,
the final score calculated using the averaging strategy is

save = 1

N

N∑

i=1

si , (3)

and the j -th element of choosing-max prediction score smax is

smax,j = max{si,j }, i = 1, 2, ..., N, j = 1, 2, ..., 1000. (4)

Table 1 lists the top-1 and top-5 accuracy rates of eight learned CNN models using 1-
crop prediction. For AlexNet, NIN and GoogLeNet, it can be seen from Table 1 that the
cross-level strategy results in a rise of about 1 % in terms of both top-1 and top-5 accuracy
rates. In particular, the performance improvement of GoogLeNet is the most significant.
From our perspective, this is mainly because the proportion of levels which are influenced
by the cross-level strategy in GoogLeNet is the highest among these three networks. The
improvement of VGG-11 is relatively small (about 0.25 %) since the proportion of the
influenced level is small, but the progress is still considerable in image classification task.
We will show later that the number of weights in VGG-11-Cross just increases slightly with
respect to its original network VGG-11.

Tables 2 and 3 list the classification performance of eight CNNmodels using 10-crop and
18-crop prediction, respectively. The results with averaging and choosing-max strategies
are both provided. Comparing with the results in Table 1, we can see that all the measured
accuracy rates clearly increase after applying multi-crop prediction approach. The differ-
ence between the performances of 10-crop and 18-crop prediction is generally small for
all the eight models. Moreover, the averaging strategy usually outperforms the choosing-
max strategy in terms of both top-1 and top-5 accuracy rates. Most importantly, for all the
four architectures, the improvement on all the measured rates after applying the proposed

Table 4 The size of physical memory taken by the above eight CNN models

Network without cross-level with cross-level ratio

AlexNet 243.9MB 320.6MB 1.314

NIN 30.4MB 40.4MB 1.329

VGG-11 531.5MB 539.0MB 1.014

GoogLeNet 53.5MB 64.5MB 1.206
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Fig. 6 The core structure of the new designed network

cross-level strategy is still very obvious, which is generally similar to the situation shown in
Table 1.

Table 4 lists the size of physical memory taken by the above eight CNN models. For
AlexNet, NIN and GoogLeNet, the size of a CNN model increases about 20 %-30 % after
applying the cross-level strategy, which is generally acceptable in practice. For VGG-11,
the increasing percentage is less than 2 %, but the classification accuracy of the VGG-11
network also obtains a growth of more than 0.2 % on each measure after applying the cross-
level strategy, as listed in the previous three tables. This further confirms the effectiveness
of our cross-level strategy for the heavy models. As mentioned before, the number of feature
maps generated by a cross layer is normally set as half number of the original maps in that
level in our method. When the output of a cross layer is connected to a fully-connected layer
(e.g., the AlexNet), the increased 50 % number of feature maps will have a considerable
effect on the final model size, which is the main factor that increases the model size. In this
work, due to the reason that training a CNN model is very time-consuming, the increased
percentage of feature maps and the position that the a cross layer added are not fully studied.
This issue will be further studied in the future.

4.2 Application to new network design

In addition to the existing networks, the cross-level strategy can be also used for the design
of new networks. To verify this point, as well as to further demonstrate the effectiveness of
the cross-level strategy from another point of view, we design a new CNN architecture by
referring to the GoogLeNet [33]. Specifically, we just remove two branches in the Inception
of GoogLeNet, while all the other structures remain the same, mainly including the depth
of network and the number of feature maps each branch generates. We apply the cross-
level strategy to this new network just as the way to the GoogLeNet. The core structure of
the designed network is shown in Fig. 6, in which only the 1 × 1 and 3 × 3 branches are

Table 5 The classification performance of the new designed network

Measure GoogLeNet New network

1-view: top-1 68.93 % 68.74 %

1-view: top-5 88.90 % 88.78 %

10-view: top-1(ave) 70.35 % 70.26 %

10-view: top-5(ave) 89.84 % 89.81 %

Model size 53.5MB 48.2MB
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preserved. The training conditions and testing approaches adopted to this new network are
the same as those to the GoogLeNet.

Table 5 lists the classification performance of the new network as well as the GoogLeNet
for comparison. We can see from Table 5 that the performance of this new network is very
close to that of GoogLeNet, but the model size decreases by about 10 % from 53.5MB to
48.2MB.

5 Conclusion

In this paper, we present a novel strategy called cross-level for CNN-based image classifi-
cation. The basic idea is to establish a convolutional layer between two nonadjacent levels
in the network, which aims to learn more sufficient feature representations for a better clas-
sification performance. Experimental results on four popular convolutional neural networks
demonstrate the effectiveness of the proposed cross-level strategy.We also exhibit the poten-
tial of the cross-level strategy used for the design of new networks. In the future, we will
conduct more experiments to further study the impact of the increased percentage of fea-
ture maps and the position that the a cross layer added. Furthermore, we will also verify the
effectiveness of cross-level strategy used for other CNN-based vision applications, such as
object detection and face recognition.
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