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Abstract Automatic image annotation enables efficient indexing and retrieval of the images
in the large-scale image collections, where manual image labeling is an expensive and labor
intensive task. This paper proposes a novel approach to automatically annotate images by
coherent semantic concepts learned from image contents. It exploits sub-visual distributions
from each visually complex semantic class, disambiguates visual descriptors in a visual
context space, and assigns image annotations by modeling image semantic context. The sub-
visual distributions are discovered through a clustering algorithm, and probabilistically asso-
ciated with semantic classes using mixture models. The clustering algorithm can handle the
inner-category visual diversity of the semantic concepts with the curse of dimensionality of the
image descriptors. Hence, mixture models that formulate the sub-visual distributions assign
relevant semantic classes to local descriptors. To capture non-ambiguous and visual-consistent
local descriptors, the visual context is learned by a probabilistic Latent Semantic Analysis
(pLSA) model that ties up images and their visual contents. In order to maximize the
annotation consistency for each image, another context model characterizes the contextual
relationships between semantic concepts using a concept graph. Therefore, image labels are
finally specialized for each image in a scene-centric view, where images are considered as
unified entities. In this way, highly consistent annotations are probabilistically assigned to
images, which are closely correlated with the visual contents and true semantics of the images.
Experimental validation on several datasets shows that this method outperforms state-of-the-art
annotation algorithms, while effectively captures consistent labels for each image.
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1 Introduction

As multimedia content is explosively expanding where more visual information is available in
digital archives, the need for effective image retrieval has greatly increased. Image retrieval
mainly relies on captions and descriptions that describe a particular image [49]. In an ideal
world where all images are properly annotated, image retrieval should be a near-solved
problem through application of mature text retrieval techniques. However, since annotation
involves cumbersome and rigorous manual labor, this utopia might be virtually impossible. It
also causes errors, inconsistencies and subjectivity (especially for large collections). This has
led researchers to explore automated approaches to solve (or partially alleviate) the image
annotation process. Automatic image annotation (AIA) hence attempts to automatically
identify and/or discover keywords to describe the contents of images [57]. Although many
existing AIA algorithms can be found in the literature [37, 39, 57, 62], most of their
performances are not entirely satisfactory. This has motivated researchers to further explore
possible AIA solutions.

AIA algorithms can be categorized into two major groups. The first group includes AIA
approaches that assign labels based on global image features [10, 52]. Such approaches allow
straightforward indexing and retrieval since the annotations cover general terms. However, the
main limitation is their failure to consider the fact that a single image can belong to multiple
categories. This is hence less satisfactory for users with more complex queries that demand
more detailed semantic content.

The second AIA category on the other hand, includes approaches that utilize local features
to annotate visual objects with keywords. These approaches explore correlations among labels
and local patches or segmented regions. Therefore, image annotation is treated and modeled as
an image classification task, where each label is predicted using a multiclass classifier. Typical
methods [6, 9, 43] usually learn a generative/discriminative classifier from training data to
discover a mapping function from extractable low-level features (from the images or regions)
to semantic concepts.

Practically, the second approach would be a more preferred strategy to conduct AIA.
Although several multi-label AIA techniques have been recently proposed in the literature, it
seems that the relationships among visual appearances and the semantic concepts are multi-
aspect and intricate in large-scale image environments [31]. Specifically, visual diversity
(concept polymorphism) and semantic confusion (visual polysemia) are two main issues being
reported [48, 63, 65]. Visual diversity is due to the reason that a certain concept can have
different visual appearances under different circumstances (e.g. orientation, scale, lighting
condition, etc.). Consequently, an object representing one single concept can possibly be
characterized by different visual features in different images. This is also coupled with the
facts that current segmentation methods are not mature enough to robustly partition objects
from images, and with the projection of 3D real scenes to 2D space, only one view of the
object appearance is captured. On the other hand, semantic confusion exploits the apparent fact
that a visual pattern usually shares different semantic meaning as it can occur in many
concepts. The incomplete and noisy feature extraction process, and inconsistent visual features
also lead to extremely ambiguous visual patterns. This means that it is difficult to assign an
exact semantic label without contextual information. In addition to these problems, most
current methods rely on automatic segmentation algorithms that are usually unable to decom-
pose images into their respective semantic regions [5]. Hence, learning a single concept model
solely based on the visual appearance is very challenging.
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Typical methods attempt to discover correlations between visual descriptions and semantic
concept [47, 53]. The representation commonly used in these approaches is the bag-of-visual
words (BoW) model [13], which characterizes each image as a histogram of ‘visual words’ in a
visual dictionary. The visual words are computed using an unsupervised vector quantization
algorithm such as k-means on the low-level features of local patches or key points. Despite the
scalability and efficiency of this model, one main drawback is feature mismatching which is
due to the ambiguity of the visual words. To minimize the quantization loss between local
features and visual words, supervised dictionary learning has also been proposed in the
literature [18, 28]. In [18], Gao et al. proposed a weakly supervised dictionary learning method
which incorporated cheaply available visual features, and iteratively refined the quantization
process and feature-to-visual words mappings. Nevertheless, it is implicitly assumed that all
the image patches related to a semantic concept are visually correlated. As a result, the
generated low coherence visual words are not expressive of the semantic concepts. Moreover,
the distance measures used for the clustering of the high dimensional visual feature space
exhibit a more sensitive nature [45].

This paper proposes a novel approach, called visual- and semantic-consistent image
annotation (VSCIA) to tackle the above mentioned issues. The visual diversity problem is
alleviated by grouping all the samples in the same class into an unknown number of sub-visual
distributions which are visually coherent. This is specifically achieved using a clustering
algorithm which can efficiently partition the high-dimensional image data in each semantic
class. Subsequently, the sub-visual distributions of each semantic class form a mixture model
for that class. As a result, non-ambiguous descriptors can be associated with image labels
through these mixture models. Inspired by the fact that image annotations are visually and
semantically consistent for each image, the contextual knowledge is incorporated into the
model in both visual and semantic levels. This can not only discern the actual visual contents
of the images but can also reduce the semantic confusion and generate more coherent
annotations. Chiefly, the visual context is learned using a probabilistic Latent Semantic
Analysis (pLSA) model which characterizes the joint distributions between images and visual
contents via latent visual topics. Therefore, all images share the same set of visual topics which
provide context to ambiguous descriptors in each image and thus, maximize the likelihood
about the actual visual content. This helps to assign relevant local labels to the visually
consistent local descriptors of an untagged image. Yet, the scene-centric representation of
the images enforces to investigate the global consistency through local labels of each image.
This can be achieved by the proposed semantic context modeling, where a concept graph
exploits the correlations between semantic concepts. It also enables to probabilistically rank
the semantic concepts with regard to the image scene. Furthermore, highly consistent anno-
tations can be associated to each image, which are closely correlated with its visual contents
and true semantics.

The overall framework of the proposed model is shown in Fig. 1. In the training phase, the
visual clustering algorithm generates an unknown number of sub-visual distributions for each
semantic class. The visual-consistent descriptors of the samples in the sub-visual distributions,
which are derived from the visual context model are then used to train the mixture models.
Subsequently, the global semantic context is learned for the final labeling an untagged image
in the testing phase.

The contributions of this work are twofold. First, a visual clustering algorithm is proposed
for high dimensional image data, which can partition diverse visual samples of a semantic
concept into unknown number of coherent sub-visual distributions. Second, the proposed
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contextual modeling can reduce the semantic confusion by leveraging context in both visual
and semantic levels, and hence perceiving each image in its particular scene. Specifically, the
visually consistent descriptors of each image scene determined by the visual topics in a pLSA
model are associated to their labels through mixture models, and the semantically consistent
labels explored in a concept graph are presented in the final annotations.

The reminder of this paper is organized as follows. Section 2 explains the related work.
Clustering algorithm that deals with the diverse visual samples of the semantic concepts is
presented in Section 3. In Section 4, we introduce the scene-centric image annotation by
context modeling. Experimental results and discussions are given in Section 5. Finally, some
concluding remarks of this paper and the future work are presented in Section 6.

2 Related work

As a popular research topic in recent years, many research efforts have been devoted to the
problem of image annotation. It is usually cast into a machine learning strategy to combine
multiple sources of information in order to associate visual features with semantic concepts.
Despite interesting advances, it suffers from two main issues: visual diversity (concept
polymorphism) and semantic confusion (visual polysemia).

To address the visual diversity problem, the major challenge is to find class models that are
invariant enough to incorporate different visual variations and yet discriminative enough for
broad semantic classes. Many works have been conducted in combining multiple visual words
and modeling their visual relationships. Zheng et al. [65] presented a visual synset as a
semantic-consistent cluster of visual words. They used distributional clustering based on
information bottleneck principle to group the visual words in visual synsets. Although this
technique can partially retrieve visually diverse samples of the same semantic class, the visual
synsets do not take the spatial contexts among visual words into consideration. Moreover,
influence of the number of the classes on the semantic inferences of the visual synsets, and the
final classification are not investigated. In [31], Li et al. incorporated the BoW model into a
Vicept (visual appearance-to-semantic concept) image representation as a hierarchical

Fig. 1 Schematic illustration of the proposed VSCIA system
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representation of image semantics. In their model, membership distribution between each
visual word and semantic concepts was established. Therefore, the problem of visual diversity
was addressed by learning the probability relationships between one certain concept and all the
visual appearances. However, this method uses learning algorithm via mixed-norm regulari-
zation optimization which is an expensive task. It also depends on the purified image training
database which is not easily available.

Several studies have proposed to capture the existing spatio-contextual relationships in
natural images, and reduce the semantic confusion. Lazebnik et al. [29] calculated the
distribution of the visual words at multi-spatial resolutions, which introduced some informa-
tion about the distributions of the visual words surrounding the region of interest. They then
utilized spatial pyramid matching to measure the similarity of the images. However, wrongly
representing the local regions in a specific spatial resolution may cause errors in context
representation. Tirlly et al. [51] used simple spatial relations between visual words in their
visual sentences. They employed pLSA model to remove the noisiest visual words in a
language modeling approach. Vogel and Schiele [54] constructed a semantic vocabulary by
manually associating local patches to concepts for semantic modeling of natural scenes. They
divided images into regions, predicted the categories of these regions, and used normalized
histograms of the concepts as concept-occurrence vectors for a global image representation.
Their work was based on the idea that the meaning of an image can be described using the
meaning of its constituent visual words. Rasiwasia and Vasconcelos [42] presented a holistic
model to compute the co-occurrence statistics on the whole image without considering the
local spatial relationships among features. They represented images in two levels of concept
representation and semantic space. The concepts were modeled by formulating the probability
distributions of the semantic multinomial which were derived from the images of each concept.
The concept models were then used to represent images as vectors of posterior concept
probabilities under these contextual concept models. In [17], word frequencies were integrated
with the spatial neighborhood representation by considering each visual word as an item, and
counting the number of items in a novel set of local patterns. However, the relevant and non-
redundant constraints cannot be directly applied on the local patterns mining process.

More complex graph relations [3, 25, 64] were presented in the literature to model the
visual and semantic representation. For instance, Zhao et al. [64] proposed a multi-graph
learning model to handle the action retrieval problem. In each graph, they used the similarities
between images in terms of visual features in different levels, and combined the multiple
graphs in a regularization framework to exploit the complementation of various features by
learning the optimized weights of each graph. Assari et al. [3] proposed a contextual approach
to video classification based on generalized maximum clique graphs. They used co-occurrence
of concepts and classified a video based on matching its semantic co-occurrence pattern to
each class representation. Izadinia et al. [25] modeled the joint relationships between low-level
events in a graph for the problem of complex event recognition. They used a graph structure to
learn co-occurrence patterns of the low-level events in a latent SVM training procedure. Li
et al. [32] proposed to model the relevance between an image and a tag as a pair-wise similarity
in a unified space in their projective matrix factorization with unified embedding (PJMF)
method. They constructed a correlation matrix from two low-dimensional latent representa-
tions for images and tags in the unified space, and used it to the social image retagging task. In
[55], Wang et al. presented a complex graph clustering to address a high-level semantic image
annotation based on hot Internet topics. They exploited the hot Internet topics through the
modeling and clustering of the complex graph, and annotated the images by top keywords in
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the corresponding hot topics. Nevertheless, these approaches rely on local relations between
adjacent nodes, and thus ignores the long-term relationships. Markov Random Fields (MRF)
and Conditional Random Fields (CRF) are also two common approaches to capture the spatial
relationships among neighboring regions. Multi-scale CRFs were utilized in [23] in order to
annotate regions using both local and global image features. Jiang et al. [26] proposed a
Boosted CRF Concept Fusion (BCRF-CF) framework to model the inter-conceptual relation-
ships and refine the detection results for each of the target concepts. It iteratively discovered
related concepts through independent concept detectors. In [41], local detectors were used to
assign primary object labels to segmented regions, and the labels were adjusted using a CRF.
The extracted global features from the inter-class spatial relationships and locally related
location features were utilized in [20] to annotate regions. It used CRF to include pairwise
affinity preferences between neighboring pixels/regions. Ladicky et al. [27] proposed a
hierarchical CRF model which integrated visual features and contextual priors over multiple
image segmentations. Llorente et al. [36] used MRF to incorporate the statistical co-
occurrences of quantized visual features and spatial relationships. However, these graph-
based approaches have limitations in the sense that they are computationally expensive in
training the high order graph structures. The complexity is also increased with the large
number of classes. Therefore, the existing methods only consider very limited number of
adjacent nodes in the graph structure.

The evidence in the literature suggests that contextual relations can provide higher order
statistical information and enhance the discriminative power of features. These contextual
features involve larger supporting regions than a single feature and hence can represent more
complex structures in images. However, most of the existing methods compute the spatial co-
occurrences from either the locally adjacent regions or the whole image. More importantly,
these approaches only verify spatial consistency of features within local areas at one of the
visual or semantic levels instead of the entire image scene. Although computationally efficient,
they cannot capture the contextual relationships between all descriptors, and thus, they obtain
limited performance improvement.

In order to overcome the visual diversity problem, a visual concept learning is proposed in
this paper. It aims at the visual diversity problem using a clustering algorithm, where
incoherent data in a visual cluster are forced to construct new clusters with the same semantic.
Therefore, each visual cluster can be shaped by visually consistent samples for efficiently
modeling a sub-visual distribution. This can result in the minimization of the intra-class
diversity, while the visual discrimination between clusters can be maximized. In addition, it
can also handle the curse of dimensionality in image descriptors. Using mixture models, these
visual clusters can be associated with semantic classes in order to locally annotate images.
Although the local label assignment can be enhanced, the image annotations are not expressive
enough to describe image scenes semantically. This is because the feature descriptors are
extracted individually, and therefore, the visual and semantic consistencies of the global scene
contexts are not taken into account.

In this work, a principled solution is proposed that can leverage visual and semantic
contextual modeling to improve the limitations of the traditional methods, and reduce the
semantic confusion. It is inspired by the human perception in explaining the image content.
The humans usually perceive the visual scene as a whole entity and without ambiguity with
respect to the visual categories that the image belongs to, such as indoor or outdoor scenes.
Coherent semantic terms are then matched the visual content to describe the image. Therefore,
both the visual and semantic consistencies are necessary to be achieved across the entire image
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scene in order to develop an efficient image annotation system. Correspondingly, the contex-
tual relationships are exploited in both visual and semantic levels. Using pLSA, the visually
relevant images are linked through latent visual topics which provide context to ambiguous
descriptors in each image. A concept graph is also constructed from semantic concepts in order
to find frequent (or repetitive) co-occurring concepts to explore the spatial dependency in
semantic image data. Furthermore, our proposed model is different from the existing ap-
proaches since the relationships between images and their visual contents, the correlations of
the semantic concepts and local image descriptors, and dependency among semantic concepts
are leveraged efficiently. This can potentially boost the image annotations since non-
ambiguous descriptors better map the visual space into the semantic space, and the coherent
semantic meaning as a whole entity can be better preserved.

3 Clustering for visual diversity reduction

Most existing methods for AIA generate a visual codebook by grouping the low-level features
extracted from training images into a predefined number of clusters, treat the center of each
cluster as a visual word, and then annotate an unseen image by finding the closest entry in the
codebook with the extracted features of the image. However, these methods rely on the
assumption that the high-dimensional image features in each cluster are uniformly distributed
in the Euclidean space. This assumption however, might not hold true for all cases because
objects within the same semantic category may not be perceptually similar. This is the intra-
class diversity which is inevitable in some semantic categories. Therefore, current AIA
methods which assign the keywords based on the visual features without considering different
viewpoints, poses and lighting conditions tend to fail.

To relieve the intra-class diversity, the training samples must be grouped based on their
visual features. The success of the grouping procedure is not guaranteed since image visual
descriptors contain heterogeneous features. It is desirable to integrate heterogeneous yet
complementary feature descriptors to exploit more characteristics of images for discrimination.
Multi-view learning or learning with multiple distinct feature sets can be used to handle this
problem by considering the diversities of different views. In [34] for instance, multi-view
Hessian regularization (mHR) was proposed to combine multiple Hessian regularizations
obtained from multi-view features. Although it can explore the complementary properties of
different features from different views, it is still challenging because of the difficulties in
correlation discovery between multiple views. In [59], Xu et al. extended the theory of the
information bottleneck to model the multi-view learning problem. They introduced the margin
maximization approach to improve the code distance of the encoded examples. The multi-view
data were then mapped into a new subspace as a compact representation of the original space.
However, these methods concentrate on supervised or semi-supervised learning where a
validation set is required. Specifically, in a semi-supervised learning method, some labeled
examples are given to predict the labels of unseen examples. In this paper, we focus on multi-
view clustering, which is much more difficult for lacking training data to guide the learning
stage.

Note that in order to achieve uniform visual descriptors for a reliable labeling in our
VSCIA method, the visual diversity must be tackled in each semantic class. Therefore,
the training examples of each class with inherent visual variations are taken into account
for diversity reduction. However, the training examples in the same category are labeled
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identically which are in fact supposed to be unlabeled. In other words, there is no
visually uniform labeled training examples in each semantic class to use supervised or
semi-supervised learning approaches. In fact, diversity reduction is an unsupervised
learning problem, where clustering methods are applied to organize data into groups of
similar members in a collection of unlabeled data. However, the popular clustering
methods such as K-means that are usually developed to handle uniformly distributed
data (or single-view data) are often unreliable for high-dimensional multi-view image
data. They also require the number of clusters to be known beforehand, which is usually
hard to determine. In addition, it is noticeable that the multi-view structure of training
examples in each semantic class forces the clusters to be irregular or intertwined.
Therefore, the clusters exist either in a single view or combinations of views with
different densities separated by less dense regions. This can be partially solved by
density-based clustering methods such as DBSCAN [16] that rely on this kind of density
estimation. However, these methods are based on a single global density threshold which
cannot suitably characterize multi-view data with variation of densities. Likewise, al-
though many hierarchical clustering approaches such as CURE [21] and OPTICS [2] do
not constrain the shape of the clusters, and do not require predefined parameters, they are
not satisfactory for diversity reduction in multi-view features of the semantic classes.
These methods often use a distance matrix as their input and iteratively obtain a
hierarchy of clusters, called dendrogram, to represent cluster relatedness. A partition
can then be found by fixing a cut-off threshold on the dendrograms at a specific level.
However, similar to the density-based methods, most hierarchical methods use a global
density (cut) threshold through a hierarchical cluster representation. Moreover, multi-
view features need a complex criterion for merging (or separating) the clusters specially
when noise and outliers are present. To deal with the problems above and preserve the
maximum information, an efficient clustering method is proposed, in which given a set
of feature vectors labeled by an individual semantic concept, an optimum number of
clusters is generated in an incremental manner. It can leverage the advantages of both
hierarchical and density-based clustering algorithms. The proposed method focuses on
the use of density-like information in the multi-view features, and obtains clusters of
arbitrary shape while avoiding the problem of the global density threshold. It is hence a
subspace clustering based on the HDBSCAN algorithm [8] that can efficiently handle the
curse of dimensionality in image feature descriptors by using dimension reduction.
Particularly, it is built on the idea that all the clusters can no longer be found in the
entire feature space especially for the high-dimensional image data. In addition, it is
likely that clusters lie in the subspaces due to the variation of the visual features for a
specific class label. For instance, a specific feature of a semantic concept, such as color
or shape of a car, may take totally different values in the feature space. This is the matter
of subspace clustering algorithms which aim at finding all clusters in all subspaces using
heuristic search techniques [7, 40]. However, these algorithms usually involve a lot of
redundancy as they allow multiple cluster memberships. Instead, we propose a simple yet
effective clustering in a top-down manner using the ‘noise’ concept. Starting with the
entire feature space, the possible clusters are created. The remaining samples are con-
sidered as ‘noise’ which can be grouped in the further clusters in the reduced dimension
space. This algorithm can find all the disjoint clusters hierarchically. The clustering
hierarchy is achieved as a dendrogram from a minimum spanning tee (MST) which is
capable of detecting clusters with irregular boundaries. Note that the only priori

8554 Multimed Tools Appl (2017) 76:8547–8571



knowledge required for finding the optimal clustering is the minimum number of
samples to form a cluster, which is a classic smoothing factor in density estimates.

Let X={x1, x2,…, xN} denote the data samples, where xi={η1, η2,…,ηd} is a set of d
different image features. The mpts denotes the minimum number of samples in each cluster.
The dis(xp, xq) stands for distance metric between xp and xq. The discore(xp) is the distance from
xp to its mpts -nearest neighbor. The mutual reachability distance is computed by
dism(xp, xq) =max{discore(xp),discore(xq),dis(xp, xq)}. The Gmpts is a complete graph where
vertices are xi, i=1,…n, and each edge is the mutual reachability distance between two
respective connected vertices. The main steps of the proposed algorithm are summarized in
Algorithm 1.

Algorithm 1: Clustering of high-dimensional image data by dimension reduction

Obviously, all the subspaces are considered by d
dw

� �
which shows all the combinations of

different visual features. Starting from the entire feature space by assigning dw= d, the most
similar samples are grouped into one cluster and removed from the clustering process in the
following iteration. With the MST of the mutual reachability graph, the connected components
and noise samples are identified and labeled at each level. The partitioning of the data is similar
to DBSCAN [16] that runs Single-Linkage over the transformed space of mutual reachability
distances, cuts the resulting dendrogram at a level of ε-radius, and treats all resulting singletons
with the discore greater than ε as a Bnoise^ class. In DBSCAN, the radius parameter should be
predefined, which apparently, is difficult to estimate. Instead, different values of the radius are
examined in this method by considering different density levels (threshold) in the cluster
hierarchy. Note that clusters are defined as connected components in each density level, and
boundary examples which their estimated density is below the threshold are noise. This top-
down procedure efficiently produces a clustering tree that contains all disjoint clusters for each
semantic category. This algorithm attempts to capture the coherence that exists in a subset of
samples on a subset of image features. Therefore, the number of features used in the distance
metric is different in each cluster. Using this algorithm, the most conceptually and visually
similar samples can be collected in a cluster based on the multi-view features. The computa-
tional complexity of the proposed algorithm is O(dn2) while the required memory is O(n2)
when the Prim’s algorithm is used to construct the MST (building the tree one edge at a time
by adding the lowest weight edge), and the distance matrix is provided as input.
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4 Scene-centric annotation

The proposed annotation technique is a multi-label multi-instance learning framework [60],
which in addition to probabilistically assigning local labels, also models the contextual
relationships at both visual and semantic levels.

As discussed in the previous section, visual-incoherent examples in a semantic class form
new clusters of sub-visual distributions with the same semantic. Therefore, the correlation
among a semantic class and its visual content exhibits a one-to-many relationship. To
characterize this relationship, mixture models can be used, which probabilistically associate
the sub-visual distributions with their corresponding semantic classes. Once the mixture
models are built, they are utilized to reveal semantic labels of an unseen image based on its
visual descriptors. However, the visual descriptors might be incomplete, noisy or ambiguous
due to the lack of mature feature extraction, sensitivity to small errors in feature extraction,
high dimensionality, and coarseness of the compositional descriptors. A promising solution is
to consider an image as a unified entity, and integrate the contextual dependencies among
visual elements of an image scene. This is inspired by the fact that a collocation of several
visual concepts is likely to be much less ambiguous since the scene context is image-specific.
Therefore, to be more robust to imperfection and unreliability of the visual descriptors, the
global consistency is imposed on the visual descriptors of the same image. This can be
achieved by topic modeling before the label assignment in the mixture models. In this work,
a pLSA model is proposed to characterize latent visual topics between images and visual
descriptors. These visual topics correspond to image patches with similar visual attributes, and
they allow each image to be represented as a mixture of visual topics.

However, similar to the visual dependency in the visual context, the semantics conveyed by
different labels for a specific image are actually correlated. Therefore, ignoring contextual
relations among annotation words, and labeling the local image patches independently cannot
achieve robust annotation results. Contextual knowledge is indeed embedded in the manual
annotations, since humans usually annotate an image with a set of keywords with coherent
semantic meaning as a whole entity (with respect to the visual content) rather than annotate
each keyword one by one [57]. A straightforward strategy to obtain the contextual knowledge
is through the co-occurrence frequency of pairs of concepts. It can be reasonably assumed that
if two concepts are similar or related, their contextual environments will be equivalent, and
they tend to appear in similar contexts. However, the contextual similarity is dependent on the
concept distributions in the database [4]. To capture the contextual information, a concept
graph is constructed between semantic concepts, where thicker edges represent more correlat-
ed labels. Using this structure, concepts with stronger relationships/higher correlations are
taken into account, making the final labeling more consistent for each image.

4.1 Modeling visual context by pLSA

The proposed VSCIA model investigates the contextual correlations of each image at
both the visual and semantic levels. As for the visual context of images, a pLSA model is
used to analyze the consistency of the combination of the visual descriptors in each
visual scene. Preserving the local consistence in the feature space has been recently
approached in the literature [19, 34, 35]. In [35] for instance, Liu et al. proposed a multi-
view Hessian discriminative sparse coding method to encode the intrinsic local geometry
of data manifold for image annotation. However, as shown by Donoho and Grimes [14],
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the Hessian-based methods exhibit undesired results in very high-dimensional data since
they require estimations of second derivatives. In addition, although their method can
leverage the local geometry of the data distribution, and utilize the complementary
information of multi-view features, it is not a precise way for the local consistence of
visual context, and visual disambiguation for semantic labeling. Instead, we show that
co-occurrence embeddings relate statistical correlations of the local visual structures.
Specifically, we aim at introducing a latent visual topic layer between two observable
components (i.e. images and descriptors in our case). The goal is to find these latent
visual topics corresponding to visually similar scenes that frequently occur in the dataset.
The visual topics are shared across all the images, and hence they can exploit a rich
context to ambiguous descriptors in each image.

The proposed model assumes that there are a limited number of visual descriptors denoted
by V, and a database consisting of N images. The corpus of image documents is summarized in
a V by N co-occurrence matrix, where n(vi, Ij) denotes the number of occurrences of a visual
descriptor vi in image Ij for i = 1,…,V and j = 1,…,N. This model associates an unobserved
visual topic variable z∈Z={z1,…, zk} with each observation. A joint probability distribution
p(vi, Ij) of an image j is governed by the hidden conditional distribution of the visual context as:

p vi; I j
� � ¼ X K

k¼1
p zk ; I j
� �

p vi; zkð Þ ð1Þ

where p(zk, Ij) is the probability of topic zk occurring in image Ij, and p(vi, zk) is the
probability of visual descriptor vi occurring in a particular topic zk. This model represents
each image as a convex combination of latent visual topics [44]. In other words, a
particular image is composed of a mixture of the visual topics corresponding to a specific
visual scene. As shown in Fig. 2, the similar images share the same set of visual topics.
In the visual-based latent space, p(visual topic|image) denotes the degree to which an
image can be represented using the corresponding latent visual topics. It is quite
predictable that the mixture models applied on the consistent visual descriptors can
generate more reliable local labels.

Fig. 2 Similar images share the same set of latent visual topics, which their posterior probabilities aim at visual
consistency through each image
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4.2 Mixture models for labeling local image descriptors

The visual diversity problem can be alleviated by the clustering algorithm which partitions
visually diverse samples from the same semantic class into coherent sub-visual distributions.
Therefore, the diversity reduction leads to a one-to-many relationship between a semantic class
and its visual content. This makes the label assignment more complex, where the common
approaches that are based on the visual-to-semantic modeling [61] are unsuitable. Intuitively,
this paper proposes to probabilistically associate the sub-visual distributions with their corre-
sponding semantic classes using mixture models which can represent arbitrarily but finite
number of densities. For an untagged image, visual-consistent image descriptors discovered in
the pLSA model can be matched to the most relevant semantic classes in a mixture modeling
scheme. The mixture models are learned for the semantic concepts in the training stage.
Accordingly, the generated clusters of a semantic concept build a mixture model for that
concept. A larger cluster with more samples possesses a higher likelihood of belonging to its
relevant concept. In this context, cluster and component are used interchangeably because
every mixture component is estimated using cluster samples. The centroid of the mixture
components are referred to as codewords, which are generated by the quantization of the
cluster samples [33].

The samples belonging to a given component are assumed to be drawn from a multivariate
normal distribution N(μ,σ2) that is a better approximation to real data [30], where μ is the map
of the relevant codeword. The consistent visual descriptor vi in image Ij is associated with the
m-th concept containing δ codewords based on the probability density function:

ϕ vi λmjð Þ ¼
X δ

n¼1
ωn 1=

ffiffiffiffiffiffiffiffiffiffi
2πσ2n

q� �
e

−
D vi ;μnð Þ

2σ2n

� �
ð2Þ

where λm is the model ofm-th concept, D is a distance metric, and ωn are the prior probabilities
for clusters n=1,…, δ (in m-th concept) with the constraint ∑n= 1

δ ωn=1. The priors are
estimated by the percentage of the descriptors assigned to the codewords. The maximum
likelihood (ML) method is used to estimate the parameters of each component [1].

Once the local labels are assigned, the label consistency in the image is determined using a
concept graph. More precisely, the concept graph is constructed form the co-occurrences of the
labels in all images, and then used to investigate the consistency and rank of the final label set
for each image. The high ranked label is the most consistent label with the other labels.

4.3 Modeling semantic context by a concept graph

The contextual relationships between semantic concepts are modeled using a graph structure,
which can provide a powerful tool to significantly improve the image annotation performance.
This concept graph is a relational model consisting of concepts which are interlinked unidi-
rectionally [22]. It is based on the idea that co-occurred concepts induce a similar scene. In
other words, typical correlated concepts often co-occur in the same image. This resembles the
manifold learning algorithms such as the Hessian regularized support vector machines [50]
that assume relevant image pairs are derived from the uniform conditional distribution pairs.
Nevertheless, in addition to the need of a large set of unlabeled samples, they are ideal for
images containing a single object. Alternately, the proposed model constructs the concept
graph using the co-occurrences of the concepts in the training set, and utilizes it to
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probabilistically rank the most consistent labels to the given scene. It can also model the
concept relationships more robust than the existing graph-based methods [20, 23, 26, 41] that
only investigate very limited number of adjacent nodes. This is because our concept graph
observes the image scene as a whole entity, and characterizes the relations between all the local
labels.

Each node in the concept graph is a concept, and each edge reflects the co-occurrence
relationship between the two connecting concepts. Let y1 = {yI

1,…, yI
M} denote the labels of

image I, whereM is the number of semantic concepts, and |yI
M∩ yI

p| denotes the co-occurrence
frequency of the concept cm with the concept cp in image I. Correspondingly, the concept co-
occurrences are used to decide whether an edge exists between two concepts. The edge weight
between the two concepts cm and cp can thus be formulated as:

wm;p ¼ f m;p; if f m;p > θm or f m;p > θp
0; otherwise

�
ð3Þ

where fm,p= |y1
m∩ y1

p| +⋯ |yN
m∩ yN

p | is the overall co-occurrence frequency of two concepts cm
and cp in all N images of the database, and θm represents the average co-occurrence frequency
for the concept cm considering its neighboring concepts. In the experiments, an average co-
occurrence frequency is set for each concept because specific co-occurrence frequencies
represent varying importance for different pairs of concepts, and using several thresholds is
helpful to extract more reasonable neighbors for different concepts. The final label set is
generated using a sigmoid function defined as follows:

f xð Þ ¼ 1

1þ e−βx
ð4Þ

where β is a smoothing factor. This function generates values between 0 and 1. To decide
whether a concept is present in the final labeling set, the following annotation scheme is
designed using the sigmoid function as:

γm ¼ f
X T

p¼1
wm;pθp þ bm

� 	
ð5Þ

where γm denotes labeling score for the m-th concept for an image with T as the number
of initial labels, and bm stands for the number of times the m-th concept is repeated in the
image. In this equation, γm is mainly determined by ∑p = 1

T wm,pθp, where wm,p is the
occurrence distribution of the m-th concept given the p-th concept in the initial label set.
As shown in Fig. 3, the final annotations are generated probabilistically, which can also
be useful in ranking the keywords. In spite of the existing methods that involve a limited
number of neighbors as contextual constraints in analyzing the semantic context [56, 58],
the correlations among all the candidate local labels are investigated in this work. For
instance, to assign the label ‘curtain’ to an image, the existence of correlated labels such
as window, and the repetition of this label are taken into account. Thereafter, the
consistency of the set of semantic concepts is maintained according to the contextual
relationships.

The model parameters are obtained by the training the model, when the correlative
information of keywords is stored in matrix Wc [11]. This matrix analyzes the keyword
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correlations of training images. The correlation coefficients are normalized to [−1, 1], where
the negative values represent the inhibition of a specific concept by another in the same image,
e.g., Bsun^ and Bmoon^. Our proposed method utilizes a nonlinear network, which is more
efficient to represent complex nonlinear relationships among semantic concepts.

4.4 Complexity analysis

To annotate an untagged image, the trained model is used to probabilistically find the most
relevant labels. In the training process, model parameters of different parts of the VSCIA,
including clustering algorithm and scene-centric annotation are learned. However, in order to
annotate images, the required computations in the learned model can be approximated as
exploiting the most consistent descriptors to the given image, local labeling, and exploring the
most relevant terms from the concept graph. We compare the computation complexity of the
VSCIA with SML (supervised multiclass labeling) [9] which computes the conditional
distributions of features based on the density estimation in the Gaussian mixture models.
The SML method needs O(TLV), where T denotes the number of visual descriptors in the
given image, L stands for the number of Gaussian components, and V is the dictionary size
[39]. On the other hand, the computation complexity of the proposed VSCIA to annotate an
untagged image is O(VK)+O(TMδ)+O(TM), where K, M, and δ respectively denote the
number of latent visual topics in pLSA, the number of semantic concepts, and the average
number of sub-visual distributions in the mixture modeling. Obviously, it reduces to nnTMδ) in
the real-world datasets, which is the dominant part of the required computations. Nevertheless,
although the training time is considerable in the VSCIA, annotation time of the untagged
images is much less than the that of SML since the number of sub-visual distributions is
relatively small.

5 Experiment results

The proposed VSCIA approach is evaluated on three well-known multi-label benchmark
databases, namely MSRC [46], IAPR TC-12 [15], and NUS-WIDE [12].

MSRC contains 591 images (240×320 pixels) associated with objects from 21 different
semantic classes. The images are pixel-wise annotated, where each pixel is labeled with one

Fig. 3 An image and its labeling scores. The final annotations include ‘bed’, ‘window’, ‘wall’, ‘furniture’,
‘curtain’, ‘chair’, ‘floor-carpet’, ‘lamp’, ‘telephone’
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semantic class, or a ‘void’ class. One average, 3 labels are assigned to each image. From this
dataset, 350 images are randomly selected for training and the remaining for testing.

The IAPR TC-12 dataset consists of a large set of semantic concepts and challenging
images. It includes 20,000 pixel-wise annotated images, each of which annotated with a subset
of labels from 275 semantic classes with an average of 5 labels per image. The collection
provided is a subset of the MIR Flickr database [24] of real world images with varying lighting
conditions, scales, positions and image qualities. This makes it a particularly challenging
benchmark for automatic image annotation and retrieval. However, class labels are imbal-
anced, and some classes do not include enough images. Therefore, to accurately estimate the
model parameters, these classes whose labels are assigned to less than 20 images are discarded.
This results in a database of 19,970 images with 163 semantic labels, which is split into 17,970
training and 2000 test images.

To validate the performance of the VSCIA approach in large-scale real-world image
environments, it is evaluated on the NUS-WIDE image dataset which contains 269,648 web
images crawled from image sharing Flickr database. Remarkably, this dataset is one of the
largest publicly available multi-label datasets with a wide range of classes from objects (e.g.,
plane and tree) to visual scenes (e.g., garden and temple). The dataset is associated with 81
ground truth semantic concept tags. It is separated into two parts, the first part contains
161,789 images for training and the second part contains 107,859 images for testing. The
details of the NUS-WIDE dataset along with the two other datasets are summarized in Table 1.

The performance metrics used are precision, recall and F-measure. Given a concept w, let
Nc be the number of images that are correctly annotated by w, Ns be the total number of images
that are annotated by w, and Nt be the number of images that include w in the ground-truth. The

annotation precision and recall for the concept w are then defined as P wð Þ ¼ Nc
Ns
, and

R wð Þ ¼ Nc
Nt
, respectively. To combine recall and precision into a single efficiency measure,

we use the F-measure as F wð Þ ¼ 2*P*R
PþR . The average precision, recall and F-measure over all

concepts are used for evaluation.
Six state-of-the-art algorithms are used as benchmark baselines, namely SIRBOT

(semantic image retrieval based on object translation) [62], HDIALR (hidden-concept
driven image annotation and label ranking) [5], ECMRM (extended cross-media rele-
vance model) [57], SML (supervised multiclass labeling) [9], PJMF (projective matrix
factorization with unified embedding) [32], and HSIAHIT (high-level semantic image
annotation based on hot Internet topics) [55]. The same parameter settings suggested by
the authors are used for fair comparison. In SIRBOT, the JSEG tool is used to segment

Table 1 A summary of the datasets used for experiment

Dataset MSRC IAPR TC-12 NUS-WIDE

Number of images 591 19,970 269,648

Image Size 240 × 320 480 × 360 varying sizes

Number of training images 350 17,970 161,789

Number of testing images 241 2000 107,859

Number of labels 21 163 81

Label per image 3 5 2

Image per label 50 350 6220
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the dataset images into regions. The image regions are then represented by color, texture
and shape features. In this method, a set of visual dictionaries are built by employing the
adaptive vector quantization, each region is labelled with one semantic concept by a
decision tree, and images are indexed and retrieved using an inverted file structure.
HDIALR builds a relation matrix by decomposing the data matrix of the holistic image
feature of the labeled and unlabeled images into two matrices of hidden concept basis
matrix and hidden concept coefficient matrix. The relation matrix discovers the relation-
ships between hidden concepts and labels. ECMRM incorporates regional, global, and
contextual features to annotate images. The regional features are obtained from segment-
ed regions, the global features are modeled as a global distribution of visual topics over
an image, and the textual context is described by a multinomial distribution of keywords.
In this model, both the global and contextual features are learned from the training data.
In SML, the annotation problem is formulated as a supervised multiclass labeling. It is
based on the density estimation to compute the conditional distributions of features given
a certain keyword. To represent images in SML, the bags of localized features are
utilized, and a Gaussian mixture model (GMM) consisting of 64 components is
established. For the other two methods of PJMF, and HSIAHIT, we use the results listed
in their original works. Accordingly, four methods of SIRBOT, HDIALR, ECMRM, and
SML are employed for the performance comparison on the MSRC and IAPR TC-12
datasets. In addition, the VSCIA approach is compared with the PJMF and HSIAHIT
methods on the full scale of the NUS-WIDE dataset for large-scale evaluation.

In the VSCIA method, a 192-dimensional feature vector is used to constitute the represen-
tation space. It includes the following robust features:

i) color histograms from the RGB and LAB color spaces, with 16 bins in each color channel,
ii) the mean and standard deviation of 512-dimensional Gist features,
iii) first and second derivatives of Gaussian and Laplacian of Gaussian with various orien-

tations and scales,
iv) mean and standard deviation of Gabor texture features (at 5 scales and 8 orientations),
v) seven invariant moments, and
vi) three Tamura features (coarseness, contrast, directionality).

Since the ground-truth object annotations of the datasets are available, they are directly
applied to the clustering algorithm to obtain sub-visual distributions. In the clustering algo-
rithm, mpts is empirically set to 3, which is sufficiently large to avoid wrongly clustered noise
data, and small enough to cater for separating different object appearances into different
clusters. For example, the samples for the semantic concept ‘flower’ in Fig. 4a are divided
into 6 separate clusters according to their visual attributes. These clusters are characterized by
different density levels. It is interesting to observe that some classes which indicate small
visual diversity generate fewer clusters, and vice versa. For instance, semantic class ‘cloud’ is
clustered into 2 clusters, whereas the visually complex classes such as ‘car’ generate more
categories.

Once the sub-visual distributions are established, they are used to learn the mixture models
for semantic classes. For each class, a mixture model is generated with expectation-
maximization on the samples that are known to belong to the visual clusters of that class.
Figure 4b illustrates the mixture model learned for the semantic concept ‘flower’ for the
clusters shown in Fig. 4a.
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The quantized visual descriptors are then used in a pLSA model to learn the visual topics.
Obviously, a strong coherence is assumed to exist among visual attributes of an image. In our
approach, the pLSA model assumes a latent lower dimensional topic space as the origin of the
image scenes. In the generative process of pLSA, the joint distribution of the local descriptors and
the images are used to model the visual topics. Once the visual topics are learned from the training
data, each image can be viewed as representing one or more of these topics. Notably, each
extracted local descriptor from a test image should be consistent with the other descriptors
extracted from that image as they represent the same topics. The number of visual topics is set
empirically by the cross-validation on the training set. Therefore, the mean average precision
(MAP) is measured by varying the number of topics in each dataset. Specifically, by splitting the
training set into 20 subsets, a single subset is used as the validation data to test the model, and the
remaining subsets are utilized as training data. Then, this process is repeated by changing the
number of visual topics from 20 to 210. Figure 5 depicts theMAP curves for different numbers of
topics in the three datasets of the MSRC, IAPR TC-12, and NUS-WIDE. The MAP curve for
MSRC peaks at 40 topics whereas for IAPR TC-12 peaks at 150 topics. On the other hand, the
MAP curve for NUS-WIDE images shows its highest value at 190 topics. As shown in Fig. 5, the
small numbers of topics lead to less satisfactory MAPs, which is due to the bias towards popular
scene elements such as ‘sky’, ‘cloud’ and ‘water’. The MAPs increase with the number of topics
growing, and peak at 40, 150, and 190. However, theMAPs decrease gradually when the number

Fig. 5 The effect of the number of visual topics on the performance in different datasets

Fig. 4 Semantic concept ‘flower’, a) distributed in 6 clusers by the clustering algorithm, and b) modeled by a
mixture model learned from the samples of the clusters
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of topics is larger than the peak point. This is because the large number of topics leads to a sparse
distribution of descriptors among the topics.

The latent visual topics can preserve the visual consistency among local descriptors of a
specific image. With the consistent visual descriptors, the local labels are assigned to images
using the learned mixture models. As images are also consistent in the annotation level, the
assigned keywords should be consistent as well. Therefore, the semantic context is leveraged
in this approach. The proposed concept graph is constructed from the co-occurrence matrix of
keywords to exploit the semantic context. A part of the constructed graph for co-occurred
concepts of IAPR TC-12 dataset is illustrated in Fig. 6. Each co-occurrence of two concepts
increases their connection weight. For instance, it can be seen that ‘chair’ occurs together with
‘table’, ‘window’, ‘door’, ‘curtain’, and ‘dish’, 470, 252, 120, 107, and 94 times, respectively.
This emphasizes the fact that images containing these objects show indoor scenes. Note that
the average co-occurrence frequency is set for each concept based on the number of images in
the database, which contain that concept.

Tables 2 and 3 summarize experimental results when comparing the proposed approach to
the aforementioned state-of-the-art algorithms on the MSRC and IAPR TC-12 datasets,
respectively. Note that all metrics are average bests, that is the best average to represent over
the iterations in the experiments. When using the MSRC dataset, SIRBOT [62] performs better
than SML [9], ECMRM [57] and HDIALR [5]. This is because ECMRM and HDIALR
consider the label correlations, which is not completely applicable in the small label set of

Fig. 6 A part of the Concept graph constructed from co-occurrence matrix of concepts from IAPRTC-12 dataset

Table 2 Performance comparison of different approaches for image annotation on the MSRC dataset

Method Precision Recall F-measure

SIRBOT [62] 0.72 0.74 0.73

ECMRM [57] 0.69 0.71 0.70

HDIALR [5] 0.63 0.75 0.69

SML [9] 0.70 0.72 0.71

VSCIA 0.77 0.82 0.79
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MSRC. The HDIALR tries to find correlation information among different labels by projecting
the low-level image features onto a low-dimensional subspace. Instead, SIRBOT finds the
shared information by computing the co-occurrence of objects in an image. However, though
SIRBOT builds large visual dictionaries by separately performing vector quantization of local
features, intra-class diversity makes the representative codewords to be converged inefficiently.
Although SML is based on the sound application of multiple instance learning, it does not
consider the multi-label relationships in image annotation. Moreover, its performance much
drops if a concept includes a wide variability in its visual appearance. Remarkably, the VSCIA
method achieves the highest F-measure of 0.79 for automatic image annotation in the MSRC
dataset. The HDIALR algorithm outperforms SIRBOT, SML and ECMRM in IAPR TC-12
dataset as it discovers hidden visual concepts by constructing a relation matrix from the large
number of holistic image features. Although the label correlations and intra-label diversity are
taken into account, the visual and semantic context modeling cannot properly be specialized
for the images. The highest F-measure of 0.43 is obtained by the VSCIA method in IAPRTC-
12 dataset. As expected, the proposed VSCIA method provides greater performance in terms
of average precision, recall and F-measure in both datasets since the consistency of both visual
content and semantic context is ensured. In particular, when the data is sparse, it is important to
capture the closeness information of all data samples, which can be well performed by
considering the semantics of images consistent with the human visual system, thus achieving
the best performance.

To provide the experimental comparison more convincing and feasible, the proposed VSCIA
approach is evaluated on the large-scale NUS-WIDE image collection. We compare it with two
recently developed algorithms of PJMF [32], and HSIAHIT [55]. In the PJMF, an unlabeled
image is annotated by exploring its neighbors from feature and tag latent representations, which
are embedded in a unified space using a transformation matrix. This matrix is an image-tag
correlation matrix which is calculated using the original tagging information during the learning
process. The HSIAHIT builds latent topics by analyzing the texts on the related web pages
through a Latent Dirichlet Allocation (LDA) model. It tries to discover three kinds of relevant
relationships between topics, topics and images, and images. In this method, images are annotated

Table 3 Performance comparison of different approaches for image annotation on the IAPR TC-12 dataset

Method Precision Recall F-measure

SIRBOT [62] 0.41 0.30 0.35

ECMRM [57] 0.28 0.34 0.31

HDIALR [5] 0.45 0.31 0.37

SML [9] 0.36 0.31 0.33

VSCIA 0.53 0.36 0.43

Table 4 Performance comparison of different approaches for image annotation on the NUS-WIDE dataset

Method Precision Recall F-measure

PJMF [32] 0.20 0.12 0.15

HSIAHIT [55] 0.23 0.17 0.20

VSCIA 0.26 0.23 0.24
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by exploring the top keywords in the corresponding hot Internet topics which ae formed by the
modeling and clustering the built complex graph from the relevance relations. Table 4 reports the
comparison results of the proposed VSCIA with these methods. It can be observed that the
HSIAHIT method performs better than PJMF in terms of precision, recall, and F-measure.
Although both PJMF and HSIAHIT methods consider the latent information in the image
annotation, more relevant relationships are taken into account in the HSIAHIT method. In
addition, the PJMF method adopts the Euclidean distance to assess the relevancy in the unified
space, which is not reliable in the high dimensional image data. The local geometry information is

Fig. 7 Comparison of VSCIA annotations with those of ground-truth and the other methods in the MSRC
dataset

Fig. 8 Comparison of VSCIA annotations with those of ground-truth in the IAPR-TC 12, and NUS-WIDE
datasets

8566 Multimed Tools Appl (2017) 76:8547–8571



also not effectively preserved in the visual and tag spaces. Despite the advantages of the HSIAHIT
over the PJMF, the visual diversity of the semantic concepts, and the visual consistency of the
image scenes are not investigated in this method. On the other hand, the VSCIA outperforms the
annotation algorithms by achieving 0.26, 0.23, and 0.24 for precision, recall, and F-measure,
respectively. This is because the VSCIA method works in a similar way to the human perception
in explaining the image content. Therefore, the visual scene is perceived without ambiguity, and it
is described by correlated and semantic terms. In other words, the VSCIA can better propagate the
relationships among images and tags, and capture the consistencies between visual similarity and
tag relevance.

Other examples of annotation results for different images from the MSRC dataset are
shown in Fig. 7. The comparisons of the VSCIA annotations with the ground-truth in both
IAPR-TC 12, and NUS-WIDE datasets are illustrated in Fig. 8. These examples suggest the
effectiveness of VSCIA to annotate difficult images with multiple semantic concepts and
visual diversity. It is noticeable that the number of training samples of some classes is
unbalanced. This causes the wrong labels for some images. One of the key challenges in the
image annotation task which is easily and automatically relaxed in the proposed model is the
number of keywords that are necessary to describe the content of an image. Unlike many other
algorithms that assign an exact number of labels to each image (usually 5 labels) [9, 38, 57],
the images are annotated in the VSCIA by refining the local labels in the final label set.

6 Conclusion

A visual- and semantic-consistent image annotation (VSCIA) framework is presented in this
paper. The intuition is that not only visual descriptors representing a scene should be
correlated, but also annotation keywords must be consistent and specific for an image. This
is similar to the human perception in explaining the image content, by first well-perceiving the
visual scene without ambiguity, and then describing the image by correlated and semantic
terms. Hence, the visual consistency, semantic independency, and their connections are taken
into account. To this end, the pLSA model assumes each image is drawn from dependent
visual topics, and a concept graph captures the semantic contextual correlations. Moreover, the
intra-class diversity of the semantic concepts is already addressed by the clustering algorithm
to increase the intra-class weights while reducing the inter-class similarities, and to boost the
discriminative power of the local features. Besides, the potential intra-class samples in sub-
visual distributions are linked by mixture models. Since this approach considers the coherency
in two levels, it can construct less ambiguous local labels, and more realistic and meaningful
correlated annotations with smaller semantic gap.

However, the direct connections of the visual topics and semantic concepts needs further
exploration. It can lead to discovering semantic visual units underlying various forms of
semantic expression. We investigate this point in our future work.
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