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Abstract In this article, we propose a newmethod of image stitching that computes, in a robust
manner, the transformation model applied to creating a panorama that is close to reality. The
random selection of matching points used in existing methods, using Random Sample
Consensus (RANSAC) or the threshold of the execution process (iteration number) cannot
generally provide sufficient precision. Our approach, in this regard, comes to solve this
problem. The calculation of the transformation model is based on the VORONOI diagram that
divides images into regions to be used in the matching instead of control points. In this case, the
transformation estimation will be based on the regions seeds that provide the best correlation
score. Among the advantages of our method is solving problems related to outliers that can, in
existing methods, affect the reliability of the mosaic. The results obtained are satisfactory in
terms of stability, quality, execution time and reduction of the computational complexity.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-016-3478-z&domain=pdf
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1 Introduction

The technology of image mosaic is a recent axis of research within the field of computer
vision. This new technology is about getting a panoramic view from a sequence of images.
Mosaic images can be used in a number of computer vision applications and computer
graphics, such as the construction of large aerial and satellite photographs using image
collections [29], motion detection [3, 5], video indexing [9, 30], virtual environment [31],
medical image and radiography system [16, 34].

Image registration encounters many obstacles that arise in the variety of images. Each method
must take into account the type of degradation, geometric deformations between images and the
required accuracy. In this case, it is still inconceivable to achieve an appropriate universal formula
for any case of image mosaic. However, most methods follow the following four steps: 1)
detection of primitive, 2) primitive matching, 3) estimation of transformation model [14], 4)
projecting the transformed image on the reference image. At the stage of estimation of transfor-
mation model, the automatic selection of the RANSACmethod [10, 11, 25, 26] does not prevent
the selection of outliers [13]; the number of iterations required by the RANSACmethod affects in
a direct way the execution time and also the results that are not stable for the same sample images.

In this paper, a new calculation method for the transformation model is proposed based on a
geometric principle by splitting images to stitch, in a subsequent stage, into cells with
VORONOI diagram [20, 33]. This work aims to enhance the contribution presented in [19]
by improving both the calculation time of the geometric transformation and the projection time
of images on a flat scene, in addition to proposing a new matching method which eliminates
outliers. Our approach consists of three stages: the first identifies a set of interest points between
the two images with the SIFT detector [22], the second is to use matched points (also called
seeds) by the VORONOI diagram to subdivide images into cells. These will be matched by the
ZNCC method [21, 28] to keep only highly matched ones. In the third step, we proceed to the
calculation of the geometric transformation model that generally requires matching pairs in the
existing methods (in the case of the homographic projection, minimum 4matching pair points).

The random selection of points with the non-deterministic method RANSAC may, some-
times, lead to the selection of outliers, which may affect the results obtained. The robustness of
our approach lies in the choice of pairs of points from the best VORNOI regions previously
matched. This choice, initially, allowed us to eliminate the random selection criterion used by
RANSAC and to reduce significantly the complexity and computation time as well. The final
step is that of deformation of the target image against the reference image. This mosaicking
process is repeated each time a new image is inserted.

The paper is organized as follows: after this introduction, the related work is reviewed in
Section 2. Details of the proposed approach are presented in Section 3. Experiments and results
are discussed in Section 4, and the conclusion is in Section 5.

2 Related works

Image registration [36] is a fundamental field of research in creating mosaic images. This
article addresses the category of low-level feature-based mosaicing methods [12] based on two
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major steps. The first extracts the image characteristics such as edge, corner, pixel, color,
histogram etc. Algorithms that perform this operation are numerous, and among the most
popular we find FAST [27, 32], HARRIS [24], SURF [4] and SIFT [22]. The second step is
intended to calculate the optimal geometric transformation between images by using a learning
technique to estimate parameters of a model by random sampling of observed data such as
RANSAC [10, 11, 25, 26].

Today, there are several recent studies conducted in this category. Brown M. and D.G.
Lowe in their reference article [7] were among the first authors to propose a method of
automatic stitching insensitive to the order of images, orientation, scale and illumination. In
[17] the authors propose an improved automatic method of image mosaic based on SURF to
extract the features and to match in the overlapping portions. An algorithm [18] deals with the
panorama in real time for mobile systems cameras. The proposed system generates panoramic
images and displays the intermediate results simultaneously on the mobile screen. The authors
in [23] propose an algorithm which combines the idea of simulating affine transformation
(ASIFT) [35] with the speed of the FAST detector [27, 32] and FREAK [1] providing a high
quality fast image mosaic.

RANSAC [10, 11, 25, 26] is a robust algorithm capable of computing the parameters of the
examined model, i.e. it can estimate the parameters accurately despite the presence of outliers
among the data. However, the downside of RANSAC is that it does not have a time limit when
it calculates these parameters. By limiting the maximum number of iterations, the result may
not be optimal and may not be stable during a number of subsequent tests using the same data.
Another disadvantage of RANSAC takes place during the estimation of specific thresholds in
the model under examination. In this paper we propose a new method of mosaic which
renounces the use of RANSAC by exploiting the performance of VORONOI diagram [20, 33].

3 Proposed work

In this article, a new approach to mosaicking image based on VORONOI regions is presented
(Fig. 1). First interest points are extracted from the processed images then only the corre-
sponding points are kept by the use of SIFT descriptors. Next, each image is divided into
several regions by the VORONOI diagram based on the points already matched by SIFT. Then
comes the stage of matching each pair of regions by ZNCC [21, 28] to determine those that
have the best correlation scores. By using the seeds of these regions, we can calculate the
geometric transformation between the two images. Finally, the images are deformed within a
single frame to produce the image of the mosaic.

3.1 Mosaicking tools

3.1.1 Detection of interest points by SIFT

We will start with the detection of interest points and measure the matching between the two
images by SIFT descriptors (Fig. 2). It is to identify distinctive points (or keys), which lead to
identify an object. The detection of these points leads to setting up feature vectors whose
components are specific to the item. SIFT contributed to the progress of information extraction
methods in an image by providing a robust and satisfactory algorithm properties required by
systems, in our case, artificial vision. We obtain a set of pair points, also called control points.
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3.1.2 VORONOI diagram

The VORONOI diagram is a method of dividing an image into a number of regions. In
mathematics, let us place ourselves in a 2D plan called E. Let S be a set of n points in the plane,
called (seeds, sites, or generators) n ≥ 3. It is to subdivide the space into regions around each point
p of S. In this case, S is the set of control points from the SIFT descriptors, such as all the points in
the region containing p are closer to p than any other point of S. We are therefore interested in the
mediators neighboring points S. Let p and q be two points of the set S such as themediator of these
two points dividing the plane into two half-planes by the following formula:

D p; qð Þ ¼ M∈E; d p;Mð Þ < d q;Mð Þf g ð1Þ

INPUT IMAGES

• im1

• im2

SIFT

• extract features im1

• extract features im2

• features matched

VORONOI DIAGRAM

• divide im1 using Voronoi 

• divide im2 using Voronoi 
REGIONS 
MATCHED

ESTIMATE GEOMETRIC 
TRANSFORMATION

using seeds of regions

IMAGES WARPED INTO 
A SINGLE FRAME

Fig. 1 Procedure of the image
mosaic of our approach

Fig. 2 Matched pair points in image 1 and 2
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With D( p,q) the half-plane containing the point p, M represents all the points in the plane
E, and D the Euclidean distance between p and the points belonging to M.

Based on control points previously detected (Fig. 2), we will apply the VORONOI diagram
to divide the two images into multiple regions [20] (Fig. 3).

The regions detected by VORONOI in an image i are written as Ri
k with 1≤ k ≤n and n is

the number of control points (Fig. 3a).
With regard to the geometrical form and the pixel count of the pairs of regions in the two

images (Fig. 3b). We can already see that there is a similarity between the majority of these
pairs of regions.

3.1.3 Matching VORONOI regions

In this stage, we match each pair of VORONOI regions (Fig. 4) by the method (ZNCC, Zero
mean Normalized Cross Correlation) [21, 28], formulated as follows:

ZNCC Rk
i ; R

k
j

� �
¼

Rk
i −R

k
i

� �
: Rk

j−R
k
j

� �

‖Rk
i −R
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With Ri
k a region of the left image and Rj

k a region of the right image with the same size. Rk
i

and Rk
j are respectively the average of the regions Ri

k and Rj
k.

We keep in this stage only the pairs that offer a better correlation score strictly greater than
0.8.

Fig. 3 a Image divided by VORONOI diagram. b Identification of each pair of regions by a distinct color
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After the matching process between the test images we obtain Fig. 5 below gives us an idea
about the overlap area between the two images.

The candidate points to be used to calculate the transformation will be the seeds
(generators) of VORONOI regions having the best ZNCC correlation score.

The table below illustrates the correlation scores for the first 20 pairs of regions between the
two test images in descending order.

In the process of calculating the projective transformation, we need at least four
pairs. In our approach, we selected the pairs of seeds belonging to the first five
matched regions (those in red color) in Table 1. The fifth pair of seed couples will
be used for validation of the projective transformation found by the other seed couples.
Figure 6 shows the regions selected to the calculation of the transformation. Again, we
observed that the regions of the left image are almost identical with those of the right
image.

3.1.4 Calculation of the geometric transformation

The next step is to calculate the geometric transformation based on control points (Seeds) of
VORONOI regions (Fig. 7).

At this point, both images are related by a geometrical transformation Tij, called
homography, which is a matrix of size 3×3 with eight degrees of freedom. Two matching
points of the left and right image are related by the matrix Tij with the following formula:

mki e Ti jmk j ð3Þ

Fig. 4 Result of matching two regions between two images

Fig. 5 Overlap area between the two images with a better correlation score
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With mki the point k of image i, mkj the point k of image j and Tij represent the geometric
transformation of size 3×3 which connects image i and j.

In order to test our approach, we used the projective transformation model. At this stage,
there is no need for RANSAC method as we already have the pairs of control points resulted
from the best VORONOI regions shown in Fig. 7 to calculate the projective transformation.
This will significantly reduce the time and complexity of computation (this part will be
detailed in the experimental section). Eventually, the image2 is aligned with the reference
image so that the pixels representing the same underlying structures are overlaid (Fig. 8).

Fig. 6 Selected regions that validate the measurement correlation condition

Table 1 Correlation score for each
pair of region Rang Region id Correlation score

1 45 0.996

2 67 0.996

3 4 0.989

4 53 0.987

5 81 0.985

6 42 0.984

7 61 0.982

8 60 0.980

9 65 0.978

10 49 0.974

11 11 0.973

12 10 0.973

13 85 0.970

14 115 0.969

15 100 0.969

16 112 0.969

17 84 0.966

18 25 0.966

19 68 0.965

20 6 0.959

– – –
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3.2 Robustness of the proposed approach

3.2.1 Matching

The highlight of matching used in our approach, is to detect the entire overlap region
(Fig. 5) by the combination of SIFT detector [22] and VORONOI diagram. This approach
provides a robust and reliable matching, in the examples used (database). Similar regions
in the two images representing the overlap area (regions with the highest correlation score)
can reach, according to the test results obtained, approximately 46 % of the total size of the
image.

Fig. 7 Selected control points for the calculation of the transformation

Fig. 8 Stitching of two images
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3.2.2 Rate of outliers

We can see in the two images in Fig. 9a, that among the pairs points matched by SIFT, that
there are two points connected by a red line constituting an outlier that can influence the results
of the mosaic. In our approach, shifting the matching process from points to regions,
provides a robust correspondence and eliminates potential outliers. In fact, the outlier
detected by SIFT (Fig. 9a) does not belong to the overlap zone detected by our approach
(Fig. 9b). In addition, the region’s correlation score in which occurs the false matching
provides a poor match thus does not fall within the regions of the overlap area of the two
images.

3.2.3 Calculation time

The calculation of the transformation is not based on RANSAC method, which is, as
mentioned above, a non-deterministic iterative method and does not guarantee getting
the real homography, nor the stability of results at each program execution. In
addition, with the RANSAC method, computational complexity increases according
to the image size, the number of matching points detected and the desired accuracy.
However, this approach helps to overcome these problems by eliminating the phase of
random selection of points to be used in the calculation of transformation (See Fig. 13
of the experiment).

Fig. 9 a) Example of outliers of the two images after using SIFT. b) Elimination of outliers after using the
matching based on the VORONOI diagram
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3.2.4 Stability of results

We notice that with each program execution, the RANSAC algorithm is used for the
same pair of images. The points selected as (best inliers), which will make up the
basis of the calculation of the transformation matrix, are not the same (because of the
random selection), and each time we would mostly get different results (see Table 2
above). However, in our approach, the points selected to calculate the transformation
remain the same for the all four tests, thanks to the stability of the correlation scores
(which remain constant) between the VORONOI regions to which the selected seeds
belong.

4 Experimentation

In this section, we have implemented our approach and Huang approach [15] (based on
RANSAC) using a computer system equipped with: Intel (R) i3, 2 .2 GHz with 6 GB
RAM. In addition, we compare the present approach to the one proposed by Huang [15] in
terms of the mosaic quality, the execution time and the projection time optimization of two
images on a flat surface. Both approaches are tested on synthetic data (Adobe System Database
[6]) and real data (Fig. 16).

4.1 Simulations

To demonstrate the performance and robustness of our approach, we perform a simulation by
choosing a pair of sequences from the ten categories of Adobe System Database [6] (five pairs
of these are shown in Fig. 10); each sequence offers two gray-scale images of arbitrary scene.
Firstly, we detected interest points by the SIFT algorithm [22] which aims to subdivide the
image into VORONOI regions. Then, the matching of these regions is carried out by the
correlation function ZNCC [21, 28] in order to obtain pairs of regions (having the best
correlation score). By using the seeds of these regions, we calculate the geometric

Table 2 Points used in the calculation of transformation by RANSAC and the present approach

Tests Results with RANSAC [15] Results with our approach

Test 1

Test 2

Test 3

Test 4
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Fig. 10 Five sets of sample images
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Fig. 11 VORONOI region having the best ZNCC score
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Huang’s method [15] Our approach
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Fig. 12 Results of the mosaic obtained by the two methods
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transformation. Finally, the projection of the two images in the same plane allows constructing
a mosaic image.

After detecting the control points with the SIFT algorithm and the subdivision of images in
VORONOI regions, the regions with the best ZNCC correlation score are shown in Fig. 11.

Figure 12 shows the results of the mosaic obtained by the two methods (our approach and
Huang’s method).

According to Fig. 12, the results obtained by both approaches (our approach and Huang’s)
are satisfactory in terms of mosaic construction. However, the difference between the two
methods is the time of calculation of the geometric transformation and the projection time of
the two images on a flat surface.

According to Fig. 13, the calculation of the geometric transformation by the proposed
method is faster in terms of calculation time. This is valid for the entire database used. This
result can be explained by the fact that our approach significantly reduces the computational
complexity and solves the major problem of RANSAC method which lies in the random
selection of points that will make up the basis of the estimation of geometrical transformation.
In other words, the calculation of the transformation is performed only once, unlike RANSAC
method, which depends on the number of iterations varying according to the required
accuracy.

The projection step involves creating a single image combining the different parts of the
captured scene (I1 and I2) by the projection of two images on a flat surface. Each point of the
panorama is a projection of a point of the set of original images taking into account that it may
be projected onto several images simultaneously by using the previously calculated transfor-
mation. The elapsed time during this step is still significant compared to the overall execution
time. For this reason, in our approach we will use the results of the matching of regions
obtained by VORONOI to reduce the projection time. In other words, the projection of the
second image I2 on the source image I1 is performed only with the points that are not in the
overlap area between the two images (Fig. 14).

According to Fig. 15a, b, it is clear that the elapsed time for the projection of two images on
a flat surface, using our approach, is considerably reduced for all tests with a percentage

Fig. 13 Estimation time model of
the geometric transformation by
the two methods
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following used images in a range of 14 to 46 % if we consider a strict threshold matching 0.8
(Fig. 15a), and from 33 to 55 % for a permissive threshold of 0.6 (Fig. 15b).

The analysis of Fig. 15a, b shows that the present approach provides satisfactory results
with respect to Huang method in terms of projection time of the two images on a flat surface.
After applying the geometric transformation to the second image, our approach performs only
the projection of the area not included in the first image. However, Huang method projects
fully the image on a plane surface. Therefore, the present approach is considerable if we want
to use in real time.

Fig. 15 Projection time using Huang method and the present approach: a) - 0.8 threshold; b) - 0.6 Threshold

Fig. 14 Overlap zone (Yellow) between I1 and I2 excluded from the projection procedure
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Fig. 17 VORONOI regions having the best ZNCC score
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4.2 Real data

The proposed method is tested on real data as well. We have taken, using a Canon EOS
450D camera, nine image sequences of arbitrary three-dimensional scene (Fig. 16). The
choice of test images comes to verify the different variations that the sequences may
undergo at the time of acquisition such as rotation, translation, scaling and moving
objects.

B
ow
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g
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ir
Data Our approachHuang method [15]

Fig. 18 Image mosaic using both methods

8822 Multimed Tools Appl (2017) 76:8803–8829



After detecting the control points with SIFT algorithm and the subdivision of images in
VORONOI regions, the regions having the best ZNCC correlation score are shown in Fig. 17.
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Fig. 18 (continued)
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After applying the geometric transformation (based on VORONOI regions) on the
second image of each image pair (Fig. 17), the construction of the mosaic image is
performed by our approach. The result of our method and Huang’s is presented in
Fig. 18.

According to Fig. 18, the results obtained by both approaches (our approach and Huang’s)
on real data are satisfactory at the mosaic construction. These results confirm the ones obtained
on synthetic images.

Similarly, the estimation time of the geometrical transformation by the two methods on real
data (Fig. 19) remains consistent with the results obtained from simulation data.

Figure 20 shows the elapsed time at the stage of projection of the two images on a flat
surface.

Figure 20a, b confirms the results obtained in the simulation which remain in favor of the
proposed method. The reduction of projection time varies between 1.18 and 30.79 % for a
threshold of 0.8 (Fig. 20a) and 2.1 to 51.59 % for a threshold of 0, 6 (Fig. 20b) according to the
sequence of real images used. These values can be simply explained by the following changes:
brightness, type of transformation, zoom, angle, etc. which influence the captured images. In
addition, these factors act in a direct manner on the overlap area and, therefore, it influences the
projection time.

4.3 Image blending

Because of the variations experienced by images at the time of acquisition (such as color
intensity due to lighting conditions, scaling and many others), it is possible to have transitions
between the images that form the mosaic image. In this case it is possible to use post-
processing methods such as multi-band blending [2, 7, 8], which proved to be particularly
effective for the mosaic image. Figure 21 represents a set of 4 pictures after applying the
blending method, and the obtained results are satisfactory in terms of eliminating color
discontinuities and phantom objects.

Fig. 19 Estimation time of the
geometric transformation model by
the two methods
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5 Conclusion

In this paper, we developed a new method of image mosaic based on VORONOI regions. This
method involves extracting the control points from two images by SIFT algorithm. Then these
points are used to subdivide the images into VORONOI regions. The VORONOI regions
matching step is performed through the correlation measurement ZNCC. We use the seeds of
the regions with the highest correlation score to calculate the geometric transformation
between the two images. In fact, this choice allows the optimization of the geometrical
transformation estimation in terms of two elements: time and stability of results. Finally, the
technique used to project images on a plane surface allows us to reduce the projection time
considerably. The robustness of the proposed method in terms of simplicity, stability and
quality of the mosaic image was proved by the results of experiments on synthetic data
(images of Adobe System Database) and on real data.

Fig. 21 Results of multi-band blending technique

Fig. 20 Projection time using Huang method and our approach: a) - 0.8 threshold b) - 0.6 threshold
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