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Abstract In this paper, a new multi-scale image fusion algorithm for multi-sensor images is
proposed based on Empirical Wavelet Transform (EWT). Different from traditional wavelet
transform, the wavelets of EWT are not fixed, but the ones generated according to the
processed signals themselves, which ensures that these wavelets are optimal for processed
signals. In order to make EWT can be used in image fusion, Simultaneous Empirical Wavelet
Transform (SEWT) for 1D and 2D signals are proposed, by which different signals can be
projected into the same wavelet set generated according to all the signals. The fusion algorithm
constructed on the 2D SEWTcontains three steps: source images are decomposed into a coarse
layer and a detail layer first; then, the algorithm fuses detail layers using maximum absolute
values, and fuses coarse layers using the maximum global contrast selection; finally, coeffi-
cients in all the fused layers are combined to obtain the final fused image using 2D inverse
SEWT. Experiments on various images are conducted to examine the performance of the
proposed algorithm. The experimental results have shown that the fused images obtained by
the proposed algorithm achieve satisfying visual perception; meanwhile, the algorithm is
superior to other traditional algorithms in terms of objective measures.

Keywords Image fusion . Empirical wavelet transforms . Data driven .

Simultaneous image decomposition

1 Introduction

Image fusion is an effective tool in many theoretical research and practical applications [1, 2, 9,
15]. Because of the limitation of imaging mechanism, any single imaging sensor can hardly
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provide a comprehensive presentation of a scene. Consequently, image fusion can be
employed to combine images captured by several sensors from the same scene to
generate an informative image. The attractive feature of image fusion is that the fused
image is more valuable than the sum of images, because image fusion can abstract
complementary information from each source image and eliminate redundant
information.

Recent years have witnessed an increase in the number of image fusion algorithms, among
which multi-scale image fusion accounts for a large percentage. Such kind of fusion algorithm
decomposes source images into several layers with different morphological components first
and then designs different fusion rules for different layers; finally fused coefficients
are reconstructed to get the fused image. Until now, many multi-scale image presen-
tation models have been utilized in image fusion. Pyramid family (including
Laplacian, contrast, ratio pyramid and the like) are widely used in early stage. Then
wavelets are brought into this field [9, 15]. As wavelets are well established in the
scientific community with strict theoretical foundation and get more directional infor-
mation, they perform better than Pyramid based algorithm. Recently, several geometric
extensions of wavelets are introduced into image fusion, such as Ripplet transform
[2], Ridgelet transform [1], Shearlet Transform [14], Curvelet transform [23] and
Contourlet transform [10, 22].

However, multi-scale image representation models use fixed filters for any image, which
makes it impossible to guarantee that the corresponding filters are the optimal ones to represent
an image. A better alternative is adaptive image representation where the filters are generated
according to the characteristics of images. In [7], Huang et al. proposed a new signal analysis
method based on empirical mode decomposition (EMD) where the aim of the method is to find
narrow band oscillatory components called intrinsic mode functions (IMFs). The EMD
method is fully driven by signals, and it needs no prior assumptions. The method has been
applied to image fusion [6, 13]. However, there are two basic difficulties in applying EMD on
this field. The first one is its lack of mathematical theory; and the second one is that it does not
ensure that decompositions of different source images are matched (the corresponding sub-
bands of all the source images share the same morphological components), which makes it
meaningless for multi-scale comparison [13]. In literature [3], the authors presented a new
signal analysis method called empirical wavelet transform (EWT). It can separate input signals
into amplitude modulated-frequency modulated (AM-FM) components by building an adap-
tive wavelet tight frame. Compared with EMD, EWT possesses a strict theoretical foundation.
Hence, it performs better than EMD in theory. However, as EWT generates wavelets according
to data to be processed, it cannot guarantee to generate the same wavelets for all the source
images, and consequently different source images may be projected into different basis sets. As
a result, it is nearly impossible to design proper fusion rules.

With the aim at solving the problems mentioned above, a straightforward extension of EWT
is invented, which is named as Simultaneous Empirical Wavelet Transform (SEWT). With it,
all the source images can be projected into the same basis set which is generated according to
the source images themselves. Meanwhile, we propose a novel image fusion method based on
SEWT, abbreviated as SEWTF.

The reminder of the paper is constructed as follows: in Section 2, the theory of SEWT is
explained; in Section 3, the proposed image fusion algorithm is presented in detail; Section 4
presents the experimental results and discussions; finally, conclusions are drawn in the
Section 5.
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2 Simultaneous empirical wavelet transform

Wavelets are useful tools for signal (images) analysis. However, their wavelet base sets are fixed,
which makes it impossible for us to design a filter that is optimal to represent any signal, and
consequently it affects the results of signal analysis. So it is good to design different filter sets
according to the signal to be processed, and decompose signals with their optimal filter sets. In
literature [3], the authors have done a pioneering job where EWT is proposed with the aim at
extracting amplitude modulated-frequency modulated components of an input signal. EWT can
build a wavelet tight frame corresponding to an adaptive filter bank.

However, signal decomposition has been widely used in some cases where several signals
need to be processed at the same time, for example, signal comparison, image fusion and the
like. In this case, EWT cannot be used directly, because its filter bank is not fixed but
determined by the processed signal. Different signals may produce quite different filter banks,
and then these signals unavoidably be projected into different wavelet spaces. Adaptive filter
bank design may be an attractive feature of EWT in some cases, but it brings us much trouble
in the case of simultaneous signal decomposition.

In order to address the problem mentioned above, we present a EWT’s straightforward
revision named as Simultaneous EmpiricalWavelet Transform (SEWT). The algorithm uses the
same filter bank to process all the signals that need to be processed at the same time. In this way,
signals can be projected into the same wavelet basis without the loss of adaptivity of filter bank.
1D SEWT and 2D SEWT are presented in subsection 2.1 and subsection 2.2, respectively.

2.1 1D SEWT

Traditional EWT algorithm contains three steps [4]: first the processed signal is transformed
into Fourier domain; then find out the Fourier supports and build a tight frame set of wavelets
based on them; finally the signal is decomposed with the assistance of the empirical wavelets.
In order to get the same tight frame set of wavelets for several signals, we need to find Fourier
supports based on all the signals rather than one single signal.

Let fi(t) (i=1,…,Ni) denote the processed signals, and Ft f ið Þ ωð Þ (i=1,…,Ni) denote the

Fourier transform of fi(t), namely Ft f ið Þ ωð Þ ¼ ∫þ∞
−∞ f i tð Þe−iwtdt. Based on jFt f ið Þj ωð Þ, we can

detect Fourier supports which can cut the signal into adjacent intervals. Fourier supports for
each signal are detected by finding the local lowest minima. For the Fourier spectrum
Ft f ið Þ ωð Þ, assume that it containsN local maximum ∇in(n=1,…,N), and its location is indexed
by ω̂n

i n ¼ 1;…;Nð Þ. Then we can get at least one local minima in the interval [ω̂n−1
i , ω̂n

i ] which
is denoted as Δi

n. The location of these local minima ωi
n(n=1,…,N) is given by

ωn
i ¼

0; i ¼ 0
arg
ω

minΔn
i ; 0 < i < Ni

π; i ¼ Ni

8<
: : ð1Þ

From the procedure discussed above, it is straightforward to see that different signals may
generate quite different Fourier supports. However, in order to generate the same tight frame

set, we need to get a unique one, here we set ω ¼ ∪
K

i¼1
ωi. Based on the set ω, we can define a

wavelet tight frame, B = {ϕ1(t), {φm(t)}m = 1
M − 1}, where ϕ1(ω) refers to empirical wavelets, and
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{φm(t)}m = 1
M − 1 denotes the scaling function. Following the setting in [4], we can get the

Fourier transforms of B using Meyer’s and Littlewood-Paley, which are denoted as

Ft ϕ1ð Þ ωð Þ; Ft φmð Þ ωð Þf gM−1
m¼1

n o
.

Once the wavelet tight frame is determined, we can get the approximation layer for each of
signal

W f ið Þ 0; tð Þ ¼ F−1
ω Ft f ið Þ ωð ÞFt ϕ1ð Þ ωð Þ
� �

ð2Þ

and the detail layers for each signal

W f ið Þ m; tð Þ ¼ F−1
ω Ft f ið Þ ωð ÞFt φmð Þ ωð Þ
� �

: ð3Þ

where F−1
ω denotes the inverse Fourier Transform.

The inverse 1D Simultaneous Empirical Wavelet Transform can be defined by

f i tð Þ ¼ W f ið Þ 0; tð Þ∘ ϕ1ð Þ tð Þ þ
XM−1

m¼1

W f ið Þ m; tð Þ∘φm tð Þ ð4Þ

where ° is a convolution operator.

2.2 2D SEWT

In the real world, we need to process 2D signals. So it is of great significance to extend the
newly proposed SEWT to 2D space. One straightforward alternative is to reshape the signal
into 1D row by row or column by column; then performs 1D SEWT on the reshaped signal;
and finally 1D approximation layer and detail layers are mapped into 2D space. However, such
process may lose some vital spatial information among neighboring pixels. Here, 2D
Littlewood-Paley wavelet transform is used. The transform can be regarded as a filter bank
obtained in the Fourier domain on annuli supports for filtering images.

Let Ii(p) (i = 1,…,Ni) denote the processed images (2D signals) with p representing pixel
locations, and FP I ið Þ θ; jωjð Þ denotes Pseudo-Polar Fourier Transform where θ refers to angle
of Fourier Transform. For any image Ii, each θ produces a FP I ið Þ θ; jωjð Þ. Before detecting
Fourier boundary for each image, we need to compute the average spectrum with respect to θ.
Namely,

F I ið Þ ωj jð Þ ¼ 1

N θ

X
k¼1

N θ

FP I ið Þ θk ; ωj jð Þ: ð5Þ

The Fourier spectrum will indirectly influence the empirical Littlewood-Paley wavelets, so
it should take into account all the images that need to be decomposed. Here, we define an
average-average spectrum with respect to i:

F ωj jð Þ ¼ 1

Ni

X
i¼1

Ni

F I ið Þ ωj jð Þ ¼ 1

NiN θ

X
i¼1

NiX
l¼1

Nθ

FP I ið Þ θl; ωj jð Þ: ð6Þ
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Fourier boundary detection can be conducted on the average-average spectrum in Eq. (6),
and the detection results are kept in ωi

m(m = 1,…,M). Then build a set of 2D Simultaneous
Empirical Wavelets B = {ϕ1(p), {φm(p)}m = 1

M − 1}, where ϕ1(p) denotes 2D empirical wavelets,
and {φm(p)}m = 1

M − 1 denotes the 2D scaling function. The approximation layer of image Ii(p) is
defined as

W I ið Þ 0; pð Þ ¼ F−1
ω FP f ið Þ ωð ÞFp ϕ1ð Þ ωð Þ
� �

; ð7Þ

and the detail layers of image Ii(p) are defined as

W I ið Þ m; pð Þ ¼ F−1
P Fp I ið Þ ωð ÞFp φmð Þ ωð Þ
� �

: ð8Þ

The inverse 2D Simultaneous Empirical Wavelet Transform can be defined by

I i pð Þ ¼ W I ið Þ 0; pð Þ∘ ϕ1ð Þ pð Þ þ
XM−1

m¼1

W I ið Þ m; pð Þ∘φm pð Þ: ð9Þ

where ° is the 2D convolution operator.
EWT in [4] and SEWT presented in this paper can be regarded as extensions of traditional

Wavelet Transform (WT). In addition, EWTand SEWT share the same mathematical theory of
WT. The difference of EWT and SEWT with WT is that their wavelet functions are not fixed
for all the images but generated according to each signal to be processed. Hence, EWT and
SEWT also contain all the excellent properties of WT, including linear addition characteristic,
time-shift invariance, multi-scale analysis, tight frame, and so on.

3 The proposed fusion algorithm

3.1 Framework

The image fusion method based on 2D Simultaneous Empirical Wavelet Transform (SEWTF)
can be summarized in Fig. 1. The proposed SEWTF algorithm contains no registration steps,

IA

IB

Fused image IF
Optimal

Filter bank

Approximation
layerWA

0

Detail layers
{WA

1,WA
2,...,WA

L}

Approximation
layerWB

0

Detail layers
{WB

1,WB
2,...,WB

L}

Fused approximation
layer WF

0

Fused detail layer
{WF

1,WF
2,...,WF

L}

Step 1. Image decomposition Step 2. Coefficient fusion Step 3. Image reconstruction

Fig. 1 Framework of the image fusion method based on 2D Simultaneous Empirical Wavelet Transform
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so it is assumed that the source images are well registered. If the source images are not
geometrically aligned in practice, users need to pre-process them using the registration
methods such as [12, 18] before running this fusion algorithm.

In this paper, let IA and IB denote the well registered source images with the size of M ×N,
and IF denotes the fused image. The fusion framework takes the following three steps,

(1) Based on the two source images IA and IB, build a set of 2D Simultaneous Empirical
Wavelets B = {ϕ1, {φi}i = 1

L − 1}. Decompose the source images IA and IB by 2D SEWT into

subbands WA ¼ W0
A;W1

A;⋯;WL
A

� �
and WB ¼ W0

B;W1
B;⋯;WL

B

� �
using Eqs. (7)

and (8) respectively. Here, W0
* refers to the approximation layer and W1

*;⋯;WL
*

represent the detail layers.
(2) With the assistance of the designed fusion rules, the approximation layer and detail layers

are combined to get the fused layers W F ¼ W0
F ;W1

F ;⋯;WL
F

� �
. Let r = {r0, {ri}i = 1

L }

denote the fusion map set where r0 is the fusion map for approximation layer, and {ri}i = 1
L

are the ones for detail layers. Then we have

W0
F ¼ r0W0

A þ 1−r0ð ÞW0
B ð10Þ

and

W i
F ¼ riW i

A þ 1−rið ÞW i
B i ¼ 1;…; L ð11Þ

(3) Conduct inverse 2D SEWT on W F to obtain the final fused image IF using Eq. (9).

In the proposed fusion algorithm, 2D Simultaneous Empirical Wavelet Transform plays a
vital rule. It can decompose each source image into several subbands with different morpho-
logical components. In addition, the 2D wavelets are generated adaptively according to the
source images themselves, which guarantees that the wavelets are the optimal ones for
decomposing these images. Note that each group of source images will generate a tight frame
set of wavelets.

Figure 2 displays an example of 2D SEWT: Fig. 2a shows a pair of source images (a CT image
and an MRI image), their decomposed layers by 2D SEWT are listed in Fig. 2b. The tight frame
set of wavelets is determined adaptively according to the two source images shown in Fig. 2a.

(a)      (b)

Fig. 2 An illustration of 2D SEWT: (a) source images; (b) decomposed layers
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The proposed SEWTF algorithm can be easily extended to fuse an image sequence which
contains more than two source images. First, two source images are randomly selected for
fusion using SEWTF algorithm, and then the fused image is combined with another source
image using SEWTF; repeat such operation until all the source images are fused. Finally, we
can get the fused image of the image sequence.

3.2 Fusion rules

2D SEWT can decompose each source image into one approximation layer and several detail
layers. The approximation layer preserves the basic visual information of the source images,
such as intensity level and structures; while the detail layers capture high frequency informa-
tion, such as strong edges and textures. So it is necessary to design different fusion rules for the
two kinds of layers in a bid to abstract salient visual information instead of implicit information
from each source image.

Theory on biological vision shows that human vision system is sensitive to contrast in
visual signal, so we need to preserve the visual information in all the layers of each source
images, though the approximation layer contains little such information. Here, a global
contrast measure is used to predict the contrast of pixels in approximation layer of each source
image

S W0
* pð Þ� � ¼ 1

M � N

X
w qð Þ∈W0

*

D W0
* pð Þ;W0

* qð Þ� �
; ð12Þ

where D(W*
0(p),W*

0(q)) refers to the intensity distance between coefficients at p and q,
namely, D(W*

0(p),W*
0(q)) = |W*

0(p) ‐W*
0(q)|. The fusion rule for approximation coefficients

is defined as such a sigmoid function

r0 ¼ 1

1þ e−a S W0
Að Þ−S W0

Bð Þð Þ ; ð13Þ

where a is a positive constant that determines how threshold-like the sigmoid function is.
Namely, if the parameter is assigned to be a high value, r0 shall be very close to the following
threshold function

r0 ¼ 1; S W0
A

� �
> S W0

B

� �
0; otherwise

�
: ð14Þ

However, if a is close to zero, r0 is close to 0.5. It is straightforward to see that sigmoid
function is a tradeoff of averaging and maximum selection. Figure 3 displays a sigmoid
function and a threshold function. In this algorithm, we choose the sigmoid function instead
of the threshold function because the former one is smooth and continuous, which makes the
fused images smoother and avoids blocking artifacts effectively.

For detail layers, as they contain high frequency information of source images, we adopt
absolute maximum selection as their fusion rules. In images, high frequency always corre-
sponds to salient information, such as edges or textures. This fusion rule, on the one hand, is
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conducive to preserve salient information in final fused images; and on the other
hand, performs well in terms of computation complexity. The fusion rule for detail
layers is formally defined as,

ri ¼ 1; W i
A

		 		 > W i
B

		 		
0; otherwise

�
i ¼ 1;…; Lð Þ ð15Þ

Once getting the fusion map set r = {r0, {ri}i = 1
L }, we can get a fused approximation layer

and L detail layers using Eqs. (10) and (11).

4 Experimental results and discussions

4.1 Experimental settings

In order to examine the performance of the proposed fusion algorithm, experiments on two
types of images are performed, namely multi-modal medical images and Visible-IR images. In
addition, medical images cover CT (Computed Tomography), MRI (Magnetic Resonance
Imaging), CBF (Cerebral Blood Flow), and SPECT (Single-Photon Emission Computed
Tomography). In the experiments, medical images come from two websites (http://www.
imagefusion.org) and (http://www.med.harvard.edu/AANLIB/home.html). Visible-IR images
are downloaded from Dr. Liu’s Homepage (http://home.ustc.edu.cn/~liuyu1/).

The proposed fusion algorithm is compared with five popular methods: Laplacian Pyramid
based algorithm (LP), Discrete wavelet transform based algorithm (DWT), Nonsubsampled
contourlet transform based algorithm (NSCT), Guided filtering based fusion algorithm (GFF)
[8], and the algorithm proposed by Liu et al. (LIU) [11]. In the fusion algorithms LP, DWT,
NSCT, source images are decomposed into four layers. The coefficients in approximation
layers are combined by averaging, and the ones in detail layers are combined by selecting
maximum absolute values. The settings of the algorithms GFF and LIU are the default ones in
the provided code.

To quantitatively compare the fusion performance of the proposed algorithm with others,
five quality measures are adopted in the experiments, including QF

AB [16], two Piella measures
(Q0, QE) [17], and VIFF [5]. QF

AB evaluates how much edge information are transferred from
source images to their fused one; Both Q0 and QE, constructed on the Structural Similarity

Fig. 3 Sigmoid function and
threshold function
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theory [20, 21], measure similarity of fused images and source images from the aspects of
correlation, luminance and contrast. VIFF measures the quality of fused images using visual
information fidelity. For all the measures, a higher value corresponds to a better fusion quality.

4.2 Parameter selections

There is only one parameter that should be determined, namely a in Eq. (13). It controls the
sharpness of the sigmoid function. As discussed above, a = 0 corresponds to r0 = 0.5 which
means that approximation layer of the fused image is obtained by averaging; a = +∞ corre-
sponds to an indicator function which means that approximation layer of the fused image is
obtained by selecting maximum global contrast. It is clear that neither 0 nor +∞ is the optimal
value for the parameter a. In order to tackle this problem, an empirical method is used.

Six pairs of source images shown in Fig. 4 are adopted here to empirically investigate the
influence of the parameter a on the performance of the proposed SEWTF algorithm. First,
these source images are fused by the proposed method with different parameter setting. Then,
the objective evaluation measures are calculated. The results with respect to the different
parameter setting are displayed in Fig. 5. In the figure, x-axis corresponds to a’s value, and y-
axis corresponds to the scores predicted by objective evaluation measures, includingQF

AB, two
Piella measures (Q0, QE), and VIFF. For all the measures, larger scores indicate better fused
results. Based on the curves in Fig. 5, it can be seen that the performance of proposed method
is the worst, when the parameter a is set to be zero. It suggests that averaging coefficients in
approximation layers is not a proper fusion rule. Meanwhile, we also note that there are nearly
no difference in terms of the performance of proposed method when a varies from 1 to 5. We
also check the performance of the proposed algorithm when the parameter a is distributed in
the interval of [10, 100], the performance is the same with that in the case of a varying from 1
to 5.

Figure 6 shows the relationship of the metric with the parameter a with the step of 0.2 in the
interval of [0.1, 0.9]. Here, we note that QF

AB and Q0 suggest that a larger a may be conducive
to produce a better fusion, while, QE and VIFF make the contrary conclusion. So in our
experiments, we set a as 0.5. In this case, the proposed algorithm can get satisfactory fusion
performance.

Note that in the proposed fusion algorithm, there is only one time decomposition and
reconstruction processing (DRP). Here, we test whether more times DRP are needed. The six
groups of source images shown in Fig. 4 are also adopted to check the influence of the time of
DRP on the performance of the proposed SEWTF algorithm. The objective evaluation

Fig. 4 Source images for parameter selections
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measures are employed to compare the fused images. The results with respect to the different
time of DRP are displayed in Fig. 7. The figure reveals that the scores given by evaluation
measures Q0, QE and VIFF do not increase with time of DRP, which means that more times
DRP does not result in better fusion. In addition, more times DRP need more computation
time. Hence, in the following experiments, there is only one time DRP.

4.3 Experiments on multi-modal medical images

Nowadays, medical images play an increasingly important role in clinical diagnosis and treat-
ment. For example, CT (Computed Tomography) images are widely used in orthopaedics,
because they can capture status of bones clearly; MRI (Magnetic Resonance Imaging) images
can reflect soft tissue information clearly, so they are usually adopted for diagnosing intracerebral
hematoma, brain tumors and the like. CBF (cerebral blood flow) can objectively reflect the
changes of tension and elasticity of cerebral blood vessels. SPECT (Single-Photon Emission
Computed Tomography) can measure the biology activities of cellular and molecular. However,
these images contain their own limitations, which may restrict their applications in real applica-
tions. For example, SPECT images are not clear enough and they cannot capture the structure of
tissues, so SPECT images are always used along with MRI or CT in clinical diagnosis.

In this subsection, the proposed algorithm is compared with others on various types of
medical images. The source images, as shown in Fig. 8, contain CT, MRI, CBF, and SPECT
images. In each row of the figure, two pairs of source images are displayed. Each pair contains
two images captured by different medical imaging equipments.

Figure 9 shows the fused images obtained by different methods. If taking a close look at the
figure, we can note the difference of the proposed algorithm with other schemes. As shown in
Fig. 9-(f1), the final image fused by the proposed SEWTF algorithm can well preserve the
complementary visual information of different source images, namely the fused image pre-
serves the soft tissue of human brain from the MRI image and the bone from CT image
simultaneously. However, in the brain tissue part of the fused images obtained by LP and
DWT, the brightness is decreased. In the fused image obtained by NSCT, the brain tissue is
neglected. LIU algorithm does not work well for this example as well, because it produces
some visible artifacts around the bone in the fused image.

Fig. 5 The relationship of the metric with the parameter a within the interval of [0, 5]

Fig. 6 The relationship of the metric with the parameter a within the interval of [0.1, 0.9]
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From Fig. 9-(a3) to (f6), we list 4 groups of color fused images. Different from the case of
gray image fusion, color image fusion needs to preserve salient visual information of each
source image; meanwhile, it should avoid color distortion. Figure 9-(f3) shows that the
proposed SEWTF algorithm can preserve the color from CBF image and the soft tissue of
human brain from MRI. From Fig. 9(a3)–(e3), we can note that the fused images generated by
the LP, DWT, GFF, and LIU method lose the color of CBF image, and consequently makes
some details invisible. Figure 9-(c3) shows that the NSCT based algorithm fails in producing
satisfactory fused image, because it tends to loss texture parts.

In order to compare the proposed SEWTF algorithm with others objectively, QF
AB [16], two

Piella measures (Q0,QE) [17], andVIFF [5] are employed to predict the quality of the fused images
obtained by different algorithm. The objective evaluations for the medical test images are shown in
Table 1. The objective evaluations indicate that SEWTF performs better than other methods, which
justifies the subjective conclusions drawn above.

Fig. 7 The relationship of the metric with the time of DRP

Fig. 8 Medical source images: each row contains two pairs of source images. The top row lists CT-MRI images;
the middle rule lists MRI-CBF images; and the bottom row lists MRI-SPECT images
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4.4 Experiments on visible-ir images

In the real world, visible images and IR(infrared) images are always fused into one
image. Visible image can only capture the surface information, while, the IR
image can reflect the inner information based on their temperature. The fusion
of Visible-IR images allows improved detection and directly recognizable locali-
zation of a target in the IR image with respect to its background in the visible image
[19].

In this subsection, the proposed algorithm is compared with others on Visible-IR images. In
each row of the figure, two pairs of source images are displayed. Each pair contains two
images captured by different scanners from the same scene (Fig. 10).

(a1) (b1) (c1) (d1) (e1) (f1)

(a2) (b2) (c2) (d2) (e2) (f2)

(a3) (b3) (c3) (d3) (e3) (f3)

(a4) (b4) (c4) (d4) (e4) (f4)

(a5) (b5) (c5) (d5) (e5) (f5)

(a6) (b6) (c6) (d6) (e6) (f6)

(a) LP (b) DWT (c) NSCT (d) GFF (e) LIU (f) SEWTF

Fig. 9 Fused medical images obtained by different algorithms
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Figure 11 shows the fused images obtained by different methods. By taking a careful look
at the figure, we note the final image fused by the proposed SEWT can well preserve the
complementary visual information of different source images. Take the first group of images as
an example, Fig. 11-(f1) suggests that SEWTF produces a more informative and natural fused
image. It can be noted that the images fused by NSCT based algorithm nearly neglect the
information from the IR image. The reason is that only the major principal components are
preserved and minor components are neglected in this fusion algorithm.

Table 1 Objective evaluation re-
sults of various algorithms on med-
ical images

Source image QF
AB Q0 QE VIFF

#1 (a1) 0.7184 0.6197 0.7316 0.5256

(b1) 0.6073 0.5857 0.6728 0.3743

(c1) 0.4122 0.1958 0.5129 0.1244

(d1) 0.7119 0.7510 0.6985 0.4847

(e1) 0.5645 0.6540 0.6529 0.3574

(f1) 0.7454 0.8659 0.7080 0.5068

#2 (a2) 0.5892 0.5166 0.7753 0.5972

(b2) 0.5238 0.5032 0.7386 0.4705

(c2) 0.5919 0.5739 0.8054 0.5569

(d2) 0.5763 0.3934 0.7811 0.5176

(e2) 0.5785 0.6542 0.8014 0.5241

(f2) 0.6109 0.6633 0.7924 0.6340

#3 (a3) 0.6820 0.4057 0.8687 0.5761

(b3) 0.6413 0.4010 0.8453 0.5006

(c3) 0.4140 0.2228 0.5025 0.1955

(d3) 0.6941 0.4111 0.8929 0.4947

(e3) 0.7399 0.4634 0.8863 0.4796

(f3) 0.7638 0.4705 0.9021 0.5939

#4 (a4) 0.6643 0.3361 0.8707 0.5898

(b4) 0.6185 0.3205 0.8419 0.4998

(c4) 0.4196 0.1826 0.5052 0.2062

(d4) 0.6613 0.3335 0.8868 0.4902

(e4) 0.7071 0.3611 0.8862 0.4770

(f4) 0.7210 0.3849 0.8248 0.5984

#5 (a5) 0.6418 0.5303 0.8820 0.6545

(b5) 0.6148 0.4938 0.8712 0.5646

(c5) 0.4799 0.3572 0.6529 0.2762

(d5) 0.6367 0.4656 0.8786 0.5673

(e5) 0.6441 0.5747 0.8711 0.5616

(f5) 0.6843 0.5836 0.9021 0.5680

#6 (a6) 0.5953 0.4298 0.8474 0.6692

(b6) 0.5618 0.4051 0.8299 0.5706

(c6) 0.4768 0.3358 0.6781 0.3900

(d6) 0.5967 0.4112 0.8325 0.4848

(e6) 0.5329 0.4215 0.8035 0.5481

(f6) 0.5988 0.4325 0.8546 0.6864
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The objective evaluations for the Visible-IR test images are shown in Table 2. The objective
evaluations indicate that SEWTF performs better than other methods, which justifies the
subjective conclusions drawn above.

4.5 Image sequence fusion

Figure 12 displays an image sequence which is constructed by blurring an image’s different
regions. Two source images are selected for fusion using the proposed SEWTF algorithm, and
then the fused image is combined with another source image using SEWTF; repeat such

Fig. 10 Visible-IR source images

(a1) (b1) (c1) (d1) (e1) (f1)

(a2) (b2) (c2) (d2) (e2) (f2)

(a3) (b3) (c3) (d3) (e3) (f3)

(a4) (b4) (c4) (d4) (e4) (f4)

(a) LP (b) DWT (c) NSCT (d) GFF (e) LIU (f) SEWTF

Fig. 11 Fused Visible-IR images obtained by different algorithms
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operation until all the source images are fused. Finally, we can get the fused image of the
image sequence, which is shown in Fig. 13. It can be observed that all the coins in the fused
image are clear.

Table 2 Objective evaluation re-
sults of various algorithms on
Visible-IR images

Source images QF
AB Q0 QE VIFF

#1 (a1) 0.6826 0.8296 0.8596 0.8735

(b1) 0.6403 0.8032 0.8414 0.7550

(c1) 0.4990 0.5242 0.5658 0.3738

(d1) 0.6774 0.8585 0.8908 0.8394

(e1) 0.7150 0.8637 0.8966 0.8582

(f1) 0.6875 0.8658 0.8986 0.8738

#2 (a2) 0.6333 0.7625 0.7788 0.6531

(b2) 0.5837 0.7196 0.7589 0.5197

(c2) 0.5646 0.6746 0.7121 0.2956

(d2) 0.6084 0.7402 0.7691 0.4642

(e2) 0.5518 0.6947 0.6961 0.5084

(f2) 0.6546 0.7669 0.7824 0.5250

#3 (a3) 0.4828 0.6373 0.7254 0.5241

(b3) 0.4426 0.5802 0.7114 0.4197

(c3) 0.4499 0.6140 0.6500 0.2993

(d3) 0.4467 0.4901 0.6911 0.2648

(e3) 0.4532 0.5938 0.6823 0.3301

(f3) 0.4923 0.6238 0.7367 0.5632

#4 (a4) 0.6811 0.7090 0.9362 0.6390

(b4) 0.6219 0.6813 0.9186 0.4950

(c4) 0.6310 0.6161 0.6162 0.1268

(d4) 0.6566 0.7929 0.8483 0.4782

(e4) 0.7151 0.7117 0.9434 0.6618

(f4) 0.6519 0.7986 0.9437 0.6924

Fig. 12 An image sequence
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4.6 Computation time comparison

Image fusion algorithms have been widely employed in various fields, such as remote
sensing, optical imaging systems, and clinical diagnosis. Nearly all the applications
demand that the fusion algorithms run in real time. Hence, it is necessary to analyze
the computation consumption of the proposed algorithm. The algorithm contains three
parts with different computation time. First, source images are decomposed into
several layers using SEWT; then, the approximation layer and detail layers are fused,
respectively; finally, the fused approximation layer and detail layers are combined to
get the final fused image.

The comparison of computation time among the proposed algorithm and other
methods is presented. Fusion methods include (LP, DWT, NSCT, GFF, LIU). All
experiments are performed on a PC with an Intel Xeon 2.66 GHz CPU and 3.25 GB
RAM using Matlab 7.9.0. The elapsed time of fusion algorithms that process
1024 pixels are listed in Table 3.

From Table 3, it can be seen that the consumption time of GFF is the lowest,
followed by the DWT, LP, and LIU. As NSCT based fusion algorithm needs com-
plicated image decomposition and reconstruction, its computation time is the highest
among these fusion algorithms. The consumption time of the proposed algorithms is
longer than other four algorithms (except NSCT based fusion algorithm). In the
proposed fusion algorithm, time is mainly consumed in the process of image decom-
position, because the algorithm needs to find optimal wavelets rather than design
fixed wavelets.

Fig. 13 Fused image

Table 3 Comparison on time consumption

Image fusion algorithm LP DWT NSCT GFF LIU SEWTF

Time(s/1 K pixels) 0.0195 0.0174 2.4620 0.0059 0.0340 0.0489
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5 Conclusions

In this paper, we presented a novel multi-scale image fusion algorithm for multi-sensor images
based on simultaneous empirical wavelet transform. Like other multi-scale fusion algorithms,
it contains three steps: image decomposition, coefficient combination, and image reconstruc-
tion. But compared with traditional ones, an attractive feature of the proposed algorithm is that
it can simultaneously decompose the source images into the same wavelet set which is the
optimal one for these images. The global contrast based salience detection model is utilized to
fuse smooth parts, and maximum absolute value selection is employed to fuse the detail layers.
The proposed algorithm is tested on various types of image infusion, including multimodal
medical image fusion and Visible-IR fusion. The experimental results show that it can preserve
salient and complementary information of the source images. In addition, the results show
good performance on color image fusion.

In the real applications, the algorithm can be used in various fields, such as clinical
diagnosis, target detection, and digital camera. For example, in clinical diagnosis, MRI can
capture structural and anatomical information with high resolution, and SPECT images reveal
the metabolic change which is significant to clinical diagnosis. The proposed algorithm can
combine the two images into one image which contains more information. Hence, the
algorithm can help doctors to make correct diagnosis. In target detection, visible image can
only capture the surface information, while, the IR image can reflect the inner information
based on their temperature. The fusion of Visible-IR images allows improved detection and
directly recognizable localization of a target in the IR image with respect to its background in
the visible image.

However, there are still some limitations in the algorithm. First, the time consumption of the
algorithm is relatively high, which restricts its application in real time systems. Time is mainly
consumed in the process of image decomposition, because it needs to find out the optimal
wavelets for signals. Second, we do not test the proposed algorithm on noised images.
Considering that noises unavoidably affect the results in the process of generating optimal
wavelets, it is necessary to conduct denoising operations before running the proposed fusion
algorithm.
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