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Abstract As an increasing number of digital images are generated, a demand for an effi-
cient and effective image retrieval mechanisms grows. In this work, we present a new
skeleton-based algorithm for 2D and 3D shape retrieval. The algorithm starts by drawing
circles (spheres for 3D) of increasing radius around skeletons. Since each skeleton corre-
sponds to the center of a maximally inscribed circle (sphere), this process results in circles
(spheres) that are partially inside the shape. Computing the ratio between pixels that lie
within the shape and the total number of pixels allows us to distinguish shapes with simi-
lar skeletons. Experimental evaluation of the proposed approach including a comprehensive
comparison with the previous techniques demonstrates both effectiveness and robustness of
our algorithm for shape retrieval using several 2D and 3D datasets.

Keywords Shape recognition · Shape retrieval · Earth mover’s distance · 2D and 3D
skeleton

1 Introduction

With recent improvements in computer science and technology, digital images have been
popularly used in many applications, such as multimedia entertainment, computer-aided
design, digital library, and electronic commerce. As the size of both 2D and 3D shapes
increases, their effective and efficient retrieval becomes vital, attracting many researchers
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from several fields including pattern recognition [64, 101], computer graphics [29, 63],
computer vision [50, 71], applied mathematics [57, 91], and event detection [11–13].

It has commonly been assumed that 3D shape retrieval techniques are classified into
three categories: geometry-based, view-based and hybrid techniques [91, 101]. This classi-
fication is based on whether shape features are extracted from the shape geometry, shape
view or both. Geometry-based retrieval techniques only exploit shape geometry and topol-
ogy information, whereas view-based methods use image features, and spatial maps [91].
However these two classes are not completely disjoint and several hybrid methods have
been developed to use both categories [91]. 2D shape retrieval approaches, on the other
hand, are classified as either contour-based or region-based, depending on the way features
are extracted from the contour or the shape region.

A considerable amount of literature, published on both 2D and 3D shape retrieval, clearly
demonstrates that there are still major problems to overcome. Insufficient performance of
the shape retrieval techniques, not being invariant to translation, rotation or scaling, and not
dealing properly with part matching in which the goal is to find whether the shape to be
matched is a part of another shape or vice versa are only a few examples for these problems.
Here, insufficient performance of the matching algorithm has been faced especially in the
case of interactive user query requests, where the priorities of shape similarities change
depending on the user preference and application behavior [49]. Although major differences
between input shapes are mainly used in shape retrieval approaches, minor differences may
be more important for some matching scenarios. For example, the number of small holes
on a CAD model carries important structure for technical drawing databases. Thus, finding
a model with the same number of holes is more important than the overall appearance
similarity, increasing the difficulty of shape retrieval.

As observed from prior studies [57, 91], 2D and 3D shape retrieval approaches are not
directly applicable to each other. While viewing angle, illumination, and image acquisition
play a critical role for 2D shape retrieval, they have little or no effect for 3D. On the other
hand, when 2D shape retrieval approaches are modified to apply for 3D, their computa-
tional complexity increases due to the larger size of 3D models [17]. When a 3D shape is
projected onto the 2D plane, one dimension of the shape and its physical information are
lost. Figure 1 presents an example, where a 3D model is shown differently in 2D depending
on the viewing angle. As a result of these problems, researchers mostly develop their shape
retrieval algorithms to apply for either 2D or 3D only. In contrast, we propose a 2D shape
retrieval algorithm, which can easily be extended for 3D in this paper.

Many 2D and 3D shape representation and description techniques have been proposed
in recent years. Skeleton is a geometry-based shape representation technique used in both

Fig. 1 3D shape seen differently
in 2D space according to various
angles
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Fig. 2 Sample 3D and 2D skeletons superimposed on their shapes are shown in top and bottom, respectively

2D and 3D [91] and known as the core of the shape [89]. Because of its compact and
powerful representation, skeleton has been used in many computer vision applications such
as character recognition, image analysis, digital image processing, fingerprint recognition,
visual inspection, and binary image compression. Figure 2 shows 2D and 3D skeletons
superimposed on their shapes. Skeleton is related to the medial-axis and medial-surface
[92] for 2D and 3D shapes, respectively. Specifically, the skeleton of a 2D shape forms the
centers of the maximal disks inside the shape boundary, and the radii of these maximal disks
represent the thickness of a shape (Fig. 3). Similarly for 3D shapes, skeleton is defined as
the centers of the maximal spheres inside the shape surface, and the radii of these maximal
spheres represent the thickness of the shape. Given the radius of such discs (or, spheres)
associated with each skeleton, 2D and 3D shape can be reconstructed exactly. It is well-
known that the skeletonization process is sensitive to minor boundary changes, but this

Fig. 3 The skeleton is defined by the loci of centers of maximum discs that touch the shape border in a least
two distinct points and that fit entirely within shape. Thus, while points A, B, and C form skeletons, D does
not
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sensitivity is reduced by preprocessing of boundaries or surfaces, or post processing of
extracted skeletons [77].

In this paper we propose a novel skeleton-based shape retrieval algorithm, which can
be used for both 2D and 3D. The algorithm starts by drawing circles (spheres for 3D) of
increasing radius around skeletons. Since each skeleton corresponds to the center of a max-
imally inscribed circle (sphere), this process results in circles (spheres) that are partially
inside the shape. Computing the ratio between pixels that lie within the shape and the total
number of pixels in each circle (sphere) enables us to find out the overall shape of the local
region. As a result, this process distinguishes regions in which the skeletons are associated
with same-sized circles (spheres) but their shapes are different. We use the Earth Mover’s
Distance (EMD) [70] to compute the similarity between two sets of skeletons associated
with this new information. Experimental evaluation of the proposed approach including
a comprehensive comparison with alternative techniques in 2D and 3D demonstrates the
effectiveness and robustness of the proposed algorithm for shape retrieval using several
datasets.

The main contributions of the proposed work are summarized as follows. First, the
skeleton representation of a shape in 2D and 3D is enhanced by drawing circles (spheres)
of increasing radius. To the best of our knowledge, the proposed framework presents the
first technique that enriches the skeleton representation of a shape in this fashion. Second,
we show how to use this representation effectively for retrieving similar database shapes.
Third, we perform extensive experimentation using five 2D and two 3D datasets of different
modality and order of magnitude. The proposed approach outperforms most of the exist-
ing techniques and yields comparable results to the best performing algorithms on these
datasets. Our preliminary work on 2D shape retrieval is presented in [86].

The remainder of the paper is organized as follows: After providing a summary of the
related work in Section 2, we discuss the details of the proposed algorithm in Section 3.
Section 4 presents the experimental results for 2D and 3D shape retrieval. We present
discussions regarding the overall framework in Section 5, and draw conclusions in Section 6.

2 Related work

3D shape retrieval techniques are broadly classified into three categories: geometry-based,
view-based, and hybrid, while 2D shape retrieval techniques are grouped into contour-based
and region-based methods. In this section, we review some of the related techniques in these
categories. The reader is referred to [36, 101], and [91] for details.

Geometry-based techniques use the distribution of shape features to represent the geo-
metric information. Significant advantages of this class consist of its ability for the partial
matching, multi-scale shape representation, and articulated object matching. The feature
extraction process adopted by these techniques is usually designed with two goals: having
a strong discriminative ability and providing robustness to different geometric representa-
tions, such as meshes, volume data, point clouds, and range images. These features can be
either local (e.g., probability density-based shape descriptor [1], morphological strategies
[35], multi-scale signature [88]), global (e.g., shape distribution [62], skeleton graphs [37,
55], shape histogram [4], reeb graphs (MRG) [33], Extended Gaussian Image (EGI) [34],
Complex Extended Gaussian Image(CEGI) [38]) or both (e.g., [10, 46, 72, 85]).

Among these approaches, shape distribution [62] is a powerful method using various geo-
metric properties, e.g., distances between surface points, angles of random surface triples
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to measure the similarity between 3D shapes. 3D Zernike moments [59], which are consid-
ered as the extensions of spherical harmonics based descriptors [27], form another powerful
method used for 3D shape retrieval. These moments are computed as a projection of the
function defining the shape onto a set of orthonormal functions within the unit ball. Ben-
Chen and Gotsman [8] propose a 3D shape descriptor based on conformal geometry, which
computes the amount of local work required to transform an object into a sphere. Shih and
Chen [79] suggest an Angular Radial Transformation-based Elevation Descriptor (ART-
ED), which identifies both external and internal information of a 3D shape. Furthermore,
Bustos et al. [10] present a method based on combining the descriptors of different global
and local features to improve the retrieval precision.

Graphs are powerful and flexible data structures allowing for the modeling of dif-
ferent data types. Graph-based approaches also belong to geometry-based techniques.
These techniques use the graph topology for shape representation and employ some
graph matching algorithm to calculate the similarity between a pair of graphs [17,
20, 33, 37, 89]. Although graphs are widely employed in different domains, effi-
cient and effective graph matching tools remain to be developed for many modern
applications.

In contrast to extracting the shape features directly, view-based techniques obtain a set
of 2D views for a given 3D model for representation. A typical view-based technique is
the Elevation Descriptor (ED) [80], which computes the minimum distance between six
corresponding views (elevations) of two models, where each view is described by a set
of concentric circular areas. A similar framework, Light Field Descriptor (LFD), is pre-
sented by Chen et al. [15, 78]. The approach considers two 3D models to be similar, if
they look similar from all viewing angles. Thus, LFD compares silhouettes of the 3D shape
obtained from ten viewing angles distributed evenly on the viewing sphere. The silhouettes
are encoded by Zernike moments and Fourier descriptors. Frejlichowski [26] expands this
technique by rendering several two-dimensional projections of a 3D model and by using
the 2D Polar-Fourier transform for obtained projections. The resulting method is shown to
be more effective than LFD for 3D shape retrieval. Dense sampling and fast encoding for
3D model retrieval [28] extracts SIFT features [56] to generate the bag-of-visual-features.
The 3D model is then described using the distribution of visual words. Eitz et al. [25] pro-
pose a view-based descriptor for an efficient multi-sketch shape matching approach. The
authors generate a set of 2D sketch-like drawings for each object. Axenopoulos et al. [6]
also present a view-based approach for the accurate alignment of 3D objects using their 2D
binary (black/white) silhouettes.

Hybrid techniques rely on both visual and geometric features of 3D shapes. DESIRE [94]
is one such hybrid shape descriptor comprising three different descriptors: silhouette-based,
depth buffer-based, and ray-based. DESIRE achieves superior performance over several
famous view-based or geometry-based techniques such as Light Field [15] and Spherical
harmonics [41]. Papadakis et al. [65] propose a generic strategy to improve the effectiveness
of 3D retrieval systems by combining multiple shape descriptors. Another hybrid 3D shape
descriptor named PANORAMA is presented in [66], which uses a set of 2D views of a 3D
shape. The method obtains a panoramic view of a 3D shape by projecting it to three axis-
aligned cylinders and unfolding the projection images into 2D images. The features for the
panoramic views are extracted using Fourier and wavelet transforms. Leng and Xiong [45]
show a hybrid shape descriptor named TUGE, which combines the depth buffer-based shape
descriptor [95] and the GEDT shape descriptor [27]. The performance of TUGE is reported
to be slightly better than DESIRE.
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Depending on the way shape features are extracted from the contour or from the whole
shape region, 2D shape representation and description techniques are classified as either
contour-based or region-based. Although a number of such techniques in each group have
been presented in the literature, these algorithms do not yet provide entirely satisfactory
results [18]. In general, these algorithms are expected to meet the following principles;
good retrieval performance, low computation complexity, robustness to noise, general
applicability, and invariance to similarity transformation [42].

Shape context (SC) [7] is one of the most powerful 2D shape descriptors based on counter
points. The algorithm starts by generating n discrete counter points. The set of n − 1 vec-
tors originating from point pi to all other points represents the overall shape relative to pi .
This information is encoded in the spatial histogram called shape context. Although this
algorithm has a good descriptive power, it does not perform well for shapes with articula-
tion parts. To deal with this problem, inner distance shape context algorithm [53] has been
proposed. Given a set of boundary points on the shape, this algorithm considers the shortest
path between each point pair. The approach has been shown to be robust to shape deforma-
tion, however, its main shortcoming is its sensitivity to the number of boundary points, e.g.,
with low number of such points its performance drops dramatically [32].

Fourier descriptor is another most extensively used shape description method employed
by many approaches in the literature, e.g., [14, 39, 93]. Fourier descriptor-based tech-
niques describe both closed curve and partial shapes [51]. Granlund presents the Fourier
invariants to describe the rotational symmetry of shapes [31]. Arbter et al. [5] develop
the affine-invariant Fourier descriptor to extract affine invariant features. Although this
descriptor possesses computational efficiency and attractive invariance properties, it can
not be used with shapes consisting of several components. To deal with such shapes, Li
et al. recently propose affine invariant ring Fourier descriptor, which computes a set of
affine invariant closed curves from the object [48]. Rouber and Steiger-Garcao introduce
UNL Fourier descriptor to describe disjointed or articulated shapes in the domain of hand-
written character recognition [69]. Although powerful, its sensitivity for occlusion and
the high dimensionality of the feature vector obtained by this technique are its two main
shortcomings.

Guocheng et al. proposed a shape descriptor called Shape Filling Rate (SFR), which
deals with the problems of describing part structure and articulation for shape recognition
[32]. Specifically, SFR first performs equal space sampling on the shape contour points. For
each contour point p, the algorithm draws circles centered at p and computes the ratio of
the number of pixels that lie within the shape to the total number of pixels. The distance
between two shapes is computed using χ2 test statistics without taking into consideration
the point coordinates. To improve the retrieval rate, the algorithm is combined with shape
context and dynamic programming. Since the approach takes the same number of contour
points for each database shape, its retrieval performance drops when some shapes are more
complex than others. Our work is inspired by SFR. However, due to the improved per-
formance of shape similarity techniques based on skeleton matching, we employ skeleton
shape representation in our approach. In addition, the proposed framework does not require
the same number of skeletons for each shape. Thus, shapes are not assumed to have similar
complexities as in the case of SFR. Moreover, not only is the proposed approach applicable
to 2D shape retrieval only, it can also be used for 3D shape retrieval as shown in this paper.

There is a rich literature for skeleton-based shape matching. To name a few, Liu and
Geiger [54] presented a framework in which shape axis tree defined by the locus of mid-
points for optimally corresponding boundary points are matched. Using graph topology
changing operations may result in matches that do not preserve the coherence of the shape.
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Sharvit et al. proposes a shape recognition framework based on shock graphs [74]. Although
this method has shown promising results, the errors of fundamental flows can break the hier-
archical relations among parts of the shape. In [83], shape recognition is achieved by solving
the problem of subgraph isomorphism. Shock graphs are converted into rooted trees, which
in turn are matched using a tree matching algorithm. Selection of the root plays an important
role in matching, and thus different root selections may lead to improper node correspon-
dences. In [73], the distance between two shapes is computed using the least action path
deforming one shape to another. Since finding the optimal alignment of the shock graph has
high complexity, the authors adopt a dynamic programming method.

3 Skeleton-based shape recognition

Our framework can be divided into two stages. The first stage associates each skeleton with
information reflecting how the local region around the skeleton changes, while the second
stage matches skeletons armed with this new information. Figure 4 presents the overview of
the proposed approach. Our motivation for using skeletons rather than contour points in 2D
comes from the studies showing that skeleton-based shape similarity descriptors perform
better than contour-based ones even in the case of partial occlusions [73, 99]. Similarly,
skeleton based 3D shape similarity descriptors achieve better retrieval performance than the
techniques employing both topological and geometric features together [49, 90].

3.1 Enhanced skeleton representation

The proposed approach starts by computing the skeleton for a given shape. Each skeleton si
is associated with its coordinate (xi , yi ) (for 3D (xi , yi , zi )) and the radius ri of the maximal
inscribed circle (sphere) that completely lies inside the shape, i.e., the radius of the maximal
inscribed circle centered at si equals the minimal distance from si to the boundary (surface).
For each skeleton si , we draw circles (spheres) centered at (xi , yi ) (for 3D (xi , yi , zi )) with

Fig. 4 Overview of the algorithm. After the input shapes are represented as a set of skeletons with new
information, we compute the matching between them using EMD
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increasing radius starting from ri to the maximum radius of the skeletons inside the shape.
This process results in circles (spheres), which are partially inside the shape. The portion of
the pixels that are inside the shape allows us to learn the overall region around the skeleton
and forms the basis of our framework (Fig. 5).

More specifically, for skeleton si of shape S, we enrich its representational power by
adding a new component ei defined as

ei =
R+ε∑

k=ri

nki
Nk
i

, (1)

where nki is the number of pixels that lie inside the shape, Nk
i is the total number of pixels

for circle (sphere) of radius k, R is the largest radius of the skeletons in shape S, and ε is a
small positive constant. Using the proposed method, 2D and 3D skeletons are represented
respectively as 4-dimensional (x, y, r, e) and 5-dimensional (x, y, z, r, e) vectors, forming
a more discriminative shape representation than the original one. This new representation
allows us to distinguish shapes associated with the skeletons of the same radius but with
different e values. Figure 6 presents an example for 3D. Although each skeleton in each
shape has the same radius, the value of e in each skeleton is different. Precisely, the radius of
the skeleton at the horse leg, sand glass, and hammer are the same. However, when a sphere
with larger radius around each skeleton is drawn, the amount of pixels that lie inside the
shape differs, offering a more powerful representation. Figure 7 presents a similar scenario
for 2D.

3.2 Skeleton matching

Given two shapes P and Q represented using the proposed method, i.e., for 2D

P = {(x1, y1, r1, e1), . . . , (xn, yn, rn, en)},
Q = {(x1, y1, r1, e1), . . . , (xm, ym, rm, em)}, (2)

and similarly for 3D,

P = {(x1, y1, z1, r1, e1), . . . , (xn, yn, zn, rn, en)},
Q = {(x1, y1, z1, r1, e1), . . . , (xm, ym, zm, rm, em)} (3)

we now proceed with the second stage of our algorithm, finding the distance between them.
We compute the distance using the Earth Movers’ Distance (EMD) algorithm [70], which
has been successfully used in several applications, e.g., [2, 19–21, 47, 96, 100]. EMD finds

Fig. 5 After finding the largest radius of the skeletons of the input shape, we draw circles (spheres for 3D) of
increasing radius around each skeleton. The portion of the pixels that are inside the shape allows us to learn
the overall region around the corresponding skeleton. Top and bottom parts present this process for 2D and
3D shapes, respectively. The left most image shows the original shape, while right images show the circles
(spheres) with increasing radii
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Fig. 6 The radius of the maximal inscribed sphere associated with each skeleton in each shape is the same.
However, the skeletons have different e-values

the optimum match between two sets by computing the minimum amount of work needed
to transform the first set into the other. In the case that two input sets have unequal total
weight, EMD performs partial matching such that the minimum amount of work required
to cover the mass in the lower-weight set with the mass in the higher-weight set.

Formally, let P and Q be the first and second sets with n and m points as defined before.
Let D = [di j ] be the ground distance matrix, where di j is the ground distance between
points pi ∈ P and q j ∈ Q. Based on the work of Eberly who finds the distance between
two points in the scale-space [23], we define ground distances d2D(pi , q j ) for 2D and
d3D(pi , q j ) for 3D as follows:

d2D(pi , q j ) =
√

α1(xi − x j )2 + α1(yi − y j )2 + α2(ei − e j )2, (4)

d3D(pi , q j ) =
√

α1(xi − x j )2 + α1(yi − y j )2 + α1(zi − z j )2 + α2(ei − e j )2, (5)

where α1 and α2 are two parameters associated to point coordinates and weights, and have
the role to control these elements during the matching. Since rotation and translation of a
shape changes the positions of its skeletons but does not change the skeleton weights, in the
experiments we set α1 and α2 to 0.1 and 0.9, respectively.

Fig. 7 Although each skeleton located at the center of each circle is associated with the same radius, drawing
circles with increasing radius allows us to distinguish the skeletons
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The objective of EMD is to compute a flow matrix F = [ fi j ], with fi j being the flow
between pi and q j , minimizing the overall distance:

Work(P, Q, F) =
m∑

i=1

n∑

j=1

fi j di j (6)

subject to:

fi j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n

∑n
j=1 fi j ≤ wpi , 1 ≤ i ≤ m

∑m
i=1 fi j ≤ wq j , 1 ≤ j ≤ n

∑m
i=1

∑n
j=1 fi j = min

(∑m
i=1 wpi ,

∑n
j=1 wq j

)
.

(7)

The w associated with each point is the weight, and we take this as the e-value in our frame-
work. These constraints ensure that flows from P to Q are non-negative and unidirectional,
the total amount of flow sent by each element in P and the total amount of flow received
by each element in Q are limited to their weights, and the amount of flow sent from P to
Q is maximum. Since the computation of EMD is exponential in the number of features
per input set, performing shape retrieval on large datasets becomes a critical issue. Pele and
Werman present the fast-EMD, which makes it possible to compute EMD on large databases
using thresholded ground distances [68]. Their experiments show that using the fast-EMD
the running time decreases by an order of magnitude for image retrieval. We used this EMD
version in our experiments.

The original definition of EMD was extended in [16] to account for transformation.
When the transformation T is applied to the second set, distances dTi j are defined as

dTi j = d(pi , T (q j )), and thus, the objective function becomes Work(P, Q, F, T ) =
∑m

i=1
∑n

j=1 fi j dTi j . Using this extended version of EMD, the proposed approach is applica-
ble to cases where shapes have undergone transformation.

4 Experiments

This part shows the experiments that we have performed to evaluate the proposed frame-
work. First, we present our tests on the 2D shape retrieval and demonstrate the robustness
of the proposed framework against noise and occlusion. We then present the 3D retrieval
experiments that we have conducted to illustrate the effectiveness of our approach. Finally,
we present the efficiency experiments measuring the time it takes to compute the distance
between a pair of shapes in 2D and 3D. All experiments are conducted using Matlab Builder
JA and Java on Windows-7.

4.1 2D shape retrieval

We used several 2D datasets for the experiments and employed different performance mea-
sures to assess the quality of the proposed shape retrieval technique along with alternative
approaches. We first consider two standard databases for 2D shape retrieval, Kimia-99 and
Kimia-216. Kimia-99 database consists of 99 shapes, grouped in 9 classes with 11 shapes
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Fig. 8 Kimia-99 database, consisting of 9 classes with 11 shapes per class. Each row shows a different class

per class, whereas Kimia-216 database consists of 18 classes with 12 shapes per class.
Figures 8 and 9 present Kimia-99 and Kimia-216 datasets, respectively.

We use leave-one-out cross validation to these datasets. Namely, the first shape from the
database is removed and used as a query for the remaining database shapes. After the query
shape is put back in the database, the procedure is repeated with the second shape from the
database, etc., until all database shapes have been used as queries. Given a query view of
an object class, when the recognition algorithm returns another view of the same class as its
nearest neighbor, we classify this as a correct object recognition.

We compare the performance of the proposed framework against the original skeleton
representations, where each skeleton is associated with its coordinate and the radius of
the maximal inscribed circle. During the EMD stage, the weight of each point is taken as
this radius, whereas for our algorithm the weight is computed as the e−value. In addi-
tion, we have implemented the SFR approach [32] according to its description. Based on

Fig. 9 Kimia-216 database, consisting of 18 classes with 12 shapes per class. Different views of the same
objects appear in columns
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the overall matching statistics, we observe that the original skeleton representation, SFR,
and the proposed method obtain 85.3, 87.2, and 95.1 % recognition rates, respectively for
Kimia-99. Repeating the same experiment for Kimia-216, our framework achieves 94.5 %,
while the original skeleton representation and SFR results in 83.7 and 84.2 % recognition
rates. The recognition scores of these methods along with some previous shape retrieval
techniques, which use these datasets are reported in Fig. 10. One may observe that the pro-
posed method outperforms both the skeleton method and SFR and is competitive to best
performing approaches on these datasets.

As mentioned before, the main limitation of SFR comes from the fact that the algorithm
takes the same number of contour points for each database shape. When sufficient points are
selected for simple shapes only, more complex shapes are represented poorly, decreasing the
retrieval rate. To show this more clearly, we have created a subset of MPEG-7 dataset, which
consists of 1400 silhouette shapes of 70 classes with 20 shapes in each class. Our subset
contains 10 classes with 10 shapes per class (see Fig. 11). For this dataset, the recognition
scores for the original skeleton representation and SFR are obtained as 87.0 and 79.0 %,
while the proposed framework yields 96.0 % recognition score. We should note that in the
experimental evaluation of SFR, the authors combine their approach with shape context and
dynamic programing to improve its performance. In our experiments, we have not combined
these approaches, as we have implemented SFR according to its description only. However,
we expect that performing such a unification with some matching algorithm for both original
skeleton representation and the proposed method will improve the retrieval rates as well.

In our next experiment we use the whole MPEG-7 dataset, which has been used exten-
sively to assess the performance of shape retrieval algorithms. For this dataset, the usual

Fig. 10 Recognition scores for Kimia 99 and Kimia 216 databases of several methods: Height functions
[97], SSD [67], Curve Normalization [44], PS+LBP [75], IDSC + LBP [76], SFR [32], Hilbert Curve [24],
TSDIZ [3], CPDH+EMD [82], and Curve Normalization [44]
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Fig. 11 A subset of MPEG-7 database, consisting of 10 classes with 10 shapes per class

metric employed by many previous works is the bullseye score, which rates how many
of the 20 examples of the correct class appear in the top 40 matches. The result of the

Fig. 12 Bullseye scores for MPEG-7 of several methods: Height functions [97], SSD [67], Curve Normal-
ization [44], PS+LBP [75], IDSC + LBP [76], AIR [30], AIR+Diffusion process [22], Hilbert Curve [24],
TSDIZ [3], CPDH+EMD [82], and and SFR [32]
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Fig. 13 The fifteen different leaf species in the Swedish leaf data set

proposed framework along with other approaches is shown in Fig. 12 and reveal that our
approach is comparable to the state-of-the-art methods and even outperform most of them.
The method [22] reports the best possible bullseye score by uniting the advantages of dif-
ferent works, where a local affinity matrix with K-nearest neighbors is used. However,
selecting a reasonable K value is quite important to obtain good performance, limiting its
practical applications [43]. On the other hand, the simplicity of our approach is an impor-
tant advantage, which makes it suitable to be used on a range of different applications, in
which shapes can be represented as a set of skeletons.

In addition to Kimia and MPEG-7 datasets, we also measure the efficacy of the proposed
framework on two real datasets, Swedish leaf [87] and tools [9]. The Swedish leaf dataset

Fig. 14 Recognition scores for the Swedish leaf database of several methods: IDSC+DP [52], SC+DP [52],
Fourier descriptors [52], Soderkvist [87], sPACT [98], SPTC+DP [53], and SFR [32]



Multimed Tools Appl (2017) 76:7823–7848 7837

has collected from 15 different Swedish tree species with 75 leaves per species. Figure 13
presents examples from these 15 leaf species. The result of the leave-one-out experiment
of the proposed approach along with some previous shape retrieval techniques is shown in
Fig. 14. The tools dataset, on the other hand, contains 35 articulated shapes: 10 scissors, 15
pliers, 5 knives, and 5 pincers. The whole dataset is shown in Fig. 15. We report the bullseye
score of our approach and previous methods in Fig. 16. The results of the experiments
on these two datasets are consistent with the previous shape retrieval experiments. While
for the Swedish leaf dataset our method yields one of the best scores, it outperforms the
existing techniques for the tools database. We should note that in the Swedish leaf dataset,
the best three performing approaches are either use the grayscale leaf pictures or combine
two techniques into one framework. Since grayscale images carry more powerful distinctive
features than silhouettes, the recognition rate for sPACT [98] using contour is significantly
improved when it uses grayscale. On the other hand, when only silhouettes are available,
the proposed framework obtains the second top score.

To evaluate the sensitivity of our algorithm to noise, we perturbed each query in the
Kimia-216 dataset by randomly deleting its skeletons whose size was chosen randomly to
fall between 1 % and k % of the total number of skeletons. The value of k was systematically
increased from 1 to 99 %. The same experimental setup was then used with the perturbed
queries for this database. For k = 20 %, k = 50 %, and k = 80 %, the nearest neighbor
retrieval score of our approach was dropped around 3.4, 14.5, and 24.4 %, respectively. The
results for all values of k shown in Fig. 17 present the algorithm’s robustness to missing data.

Fig. 15 The tools dataset contains a total of 35 articulated shapes from 4 different classes
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Finally, to evaluate the fitness of our approach for dealing with occlusion, we generated a set
of occluded scenes, each with two shapes selected from different classes in the Kimia-216
dataset. Each of these occluded scenes was used as a query against the complete Kimia-216
dataset. We define our recognition schema to be effective if one of the query shapes appears
in the nearest neighbors. The results are presented in Fig. 18, where the left column shows
the occluded query and the top nine nearest neighbors from left to right appear in each row.
The correct retrievals are shown inside rectangles. We should point out that our recogni-
tion framework accounts for topological similarities. Thus, shapes from different classes
but with similar topologies may be retrieved as nearest neighbors. For instance, while the
hammer and bone, and camel and elephant are topologically similar, they are from different
classes. Shapes belonging to different classes, therefore, may be ranked high in the nearest
neighbor list.

4.2 3D shape retrieval

The 3D shape retrieval experiments are made using two well-known 3D databases: the
Princeton Shape Benchmark (PSB) [81] and McGill Shape Benchmark (MSB) [84]. PSB
contains a total of 1814 shapes, which is subdivided into a training set and a test set with
equal size. Shapes belonging to the training set are classified into 90 classes, whereas those
in the test set are grouped into 92 classes. MSB consists of 420 objects classified into 19
classes. Different from PSB, which only contains rigid shapes, MSB also has non-rigid
shapes such as humans, snakes, pliers, octopuses, and spiders. Figures 19 and 20 present
examples of 3D shapes for these datasets.

Fig. 16 Bullseye scores for the tools dataset of several methods: ID [53], SC [7], HF [97], ID+SC [58],
ID+SC+HF [58], and SFR [32]
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Fig. 17 Nearest neighbor recognition scores decrease gracefully as a function of increased perturbation

To quantify the performance for these datasets, we employ R-precision, which is given
as a ratio of the shapes retrieved from the same class as the query in R closest matchings,
where R is the size of the query class. In other words, R-precision is the recall for the top R
retrievals. Similar to the 2D shape retrieval experiments, we first compare the performance
of the proposed framework against the original skeleton representations, where each skele-
ton is associated with its coordinate in 3D and the radius of the maximal inscribed sphere.
The R-precision scores of the proposed framework along with original skeleton representa-
tions and other approaches using the same datasets are shown in Fig. 21. The results for the
MSB dataset demonstrate that the proposed framework outperforms all approaches except

Fig. 18 Results of occlusion experiments where two images in each occluded scene are selected from dif-
ferent classes of the Kimia-216 dataset. The leftmost column shows the occluded query scenes for each row,
while the top nine ranked nearest neighbors are shown on the right. A shape inside a box indicates that it
belongs to the class of one of the query shapes. Shapes belonging to different classes but are topologically
similar to the query are ranked high in the nearest neighbor list
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Fig. 19 Views of sample objects from the Princeton Shape Benchmark (PSB)

for the multi-scale version of Bag of Feature on Geodesic (BoFoG-M) [40], which pro-
duces a slightly better score. BoFoG-M combines the local geometric feature with its spatial
context in a multi-scale notion. As mentioned before, performing a similar unification in
our algorithm is likely to improve its performance. On the other hand, for PSB containing

Fig. 20 Sample views of rigid and non-rigid shapes from the McGill Shape Benchmark (MSB)
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Fig. 21 R-precision scores for PSB and MSB datasets of several methods: Multi-scale version of Bag of
Feature on Geodesic (BoFoG-M) [40], Bag of Local Geometry Feature (BoLGF) [40], Dense LD-SIFT
(DLD-SIFT) [60], Resampled LD-SIFT (RLD-SIFT) [60], Linear Combination Local Statistical Features
(BF-LSF) [61], Single-scale version of Bag of Feature on Geodesic (BoFoG-S) [40], Light Field Descriptor
(LFD) [15], and Bag of Local Distance Feature (BoLDF) [40]

only rigid shapes, our framework yields the best R-precision ration. The descriptive power
of enhanced skeleton representations and effectiveness of EMD for partial and complete
matching are two main reasons for achieving the best or one of the best scores for these
datasets.

In our next experiment, we perform a more comprehensive evaluation of the proposed
method along with the alternative approaches. Instead of concentrating the recall for top
R retrievals as before, the system’s performance is evaluated by computing the total num-
ber of retrieved shapes that is necessary to retrieve the entire query class. To measure
this, we report precision-recall curves for these datasets. Figures 22 and 23 present these
curves for MSB and PSB datasets, respectively. As in the previous experiments, the pro-
posed method is competitive to the best performing techniques for MSB and yields the
best result for PSB. Upon investigation as to why our algorithm yields poorer performance
on MSB, we found that the high similarity between different classes of non-rigid shapes
(ants, crabs, spiders, octopuses) poses a negative effect on the quality of the results. We
believe that enforcing spatial constraints during the matching stage or taking the advan-
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Fig. 22 Precision-recall plot for MSB of several methods: Multi-scale version of Bag of Feature on Geodesic
(BoFoG-M), Single-scale version of Bag of Feature on Geodesic (BoFoG-S) [40], Light Field Descriptor
(LFD) [15], D2 [63]

tage of graph representations would improve the performance of proposed framework in
such cases.

4.3 Efficiency experiments

Our next set of experiments computes the overall efficiency of the proposed work applied
for 2D and 3D shape retrieval. To do this, we first measure how much time it takes for our
approach to find the distance between two shapes. On an Intel(R) Core(TM) i5-3317U CPU
@ 1.70GHz computer with 4GB RAM, it takes about 0.7 sec to match a pair of shapes,

Fig. 23 Precision-recall plot for PSB of several methods: Multi-scale version of Bag of Feature on Geodesic
(BoFoG-M), Single-scale version of Bag of Feature on Geodesic (BoFoG-S) [40], Light Field Descriptor
(LFD) [15], D2 [63]
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each with around 1000 skeletons. The preprocessing time spent for creating the e−value for
one shape is recorded to be less than 0.05 sec. Since 3D shapes are represented with one
extra dimension, the matching time and e−value creation time in 2D and 3D are almost the
same. Our implementation of the SFR approach [32] and original skeleton representation
also takes the same amount of time for matching a pair of shapes on the same computer. As
mentioned before, we use the fast-EMD [68] in our experiments. To compute the improve-
ment offered by the fast-EMD, we repeat the previous experiment with the original EMD
[70]. According to the results, finding the distance between shapes in 2D and 3D increases
to 11-15 seconds, yielding about 20 times slower matching.

5 Discussion

Our objective in this paper was to show the feasibility of using skeletons associated with
new information for shape retrieval. Although a skeleton is not a good shape descriptor
for all 2D and 3D shapes, it provides an accurate representation for many. This is evident
by the retrieval scores of original skeletons as they are comparable to those of the existing
methods. This performance is improved further by our algorithm, yielding one of the best
shape retrieval scores on both 2D and 3D datasets used in the experiments.

Since the proposed method works with skeletons, input shapes are required to be cor-
rectly segmented from the background. Because correct segmentation is an unresolved
problem for natural scenes, this requirement limits the applicability of our algorithm. How-
ever, there has been attempts in the literature for generating skeletons from natural images.
Thus, the proposed framework may be extended to work with shapes in such images, posing
an interesting research direction for the future.

We should note that EMD is a global distance that accounts for all the points of the input
shapes. Although we have shown that our framework is robust to perturbation of the shapes
in terms of missing skeletons, the method is still global. Thus, in case a point representing
an occluder with large weight exists in an input shape, its presence will have a negative
effect on shape retrieval results since the algorithm cannot selectively exclude the point. On
the other hand, if there are some unique attributes shared by input points, they can be used
in EMD to improve the part matching ability of our approach.

6 Conclusion

In this paper, we have presented a new skeleton-based 2D and 3D shape recognition algo-
rithm. The algorithm works by drawing circles (spheres) of increasing radius around each
skeleton starting from the radius of the maximal inscribed circle (sphere) which lies within
the shape. Computing the ratio between pixels that lie within the shape and the total num-
ber of pixels in each circle (sphere) enables us to find out the overall shape of the local
region. To the best of our knowledge, the proposed framework is the first framework that
enriches the skeleton representation of a shape in this fashion. We have experimentally eval-
uated the method by using the Kimia-99, Kimia-216, a subset of MPEG-7, whole MPEG-7,
Swedish leaf, and tools datasets for 2D and the McGill Shape Benchmark (MSB) and
Princeton Shape Benchmark (PSB) for 3D shape retrievals. Experimental evaluation of the
proposed approach in both 2D and 3D presents that adding a new component to each skele-
ton improves its representational power over the original skeleton representation and yields
better retrieval scores than many existing techniques on several datasets.
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Despite being simple and easily implemented, promising results have been obtained by
the proposed algorithm. In the future, we would like to explore the approach further for a
better retrieval performance. Specifically, we plan to improve the performance by imposing
spatial constraints in the framework, taking the e−value as a histogram around each skele-
ton, using graph representations, computing hierarchical skeletons at different resolution,
and employing different distribution-based matching algorithms. In addition, we also plan
to explore methods to solve the issue of occlusion so that complex occluded shapes may be
retrieved effectively.
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