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Abstract State-of-the-art audio segmentation strategies obtain good results when perform-
ing simple tasks but its performance is degraded when segmenting real-world scenarios such
as radio and television programmes; this issue can be partially solved by performing a fusion
of different audio segmentation strategies. Hence, a framework to perform decision-level
fusion in the audio segmentation task is presented in this paper. First, the class-conditional
probabilities of each audio segmentation strategy are estimated from a confusion matrix
obtained by performing audio segmentation in a training dataset. Performance measures are
extracted from these class-conditional probabilities, which are used to compute different
estimates of the classifier’s reliability; specifically, reliability estimates based on precision,
recall, accuracy, F-score and mutual information were proposed. These reliability estimates
are used as weights in a weighted majority voting fusion strategy. The validity of the pro-
posed fusion scheme and reliability estimates was assessed in the framework of Albayzin
2010, 2012 and 2014 audio segmentation evaluations, which consisted in segmenting collec-
tions of radio and television programmes. The experimental results showed that this simple
fusion strategy improves the performance achieved by the individual audio segmentation
strategies and by other well-known decision-level fusion strategies.
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1 Introduction

Audio segmentation is a task consisting in dividing an audio signal into homogeneous
segments according to some criteria; it encompasses simple tasks such as speech activity
detection, which consists in detecting the speech parts of an audio stream, and more com-
plex tasks such as the detection of other classes such as speech combined with background
music or noise. Audio segmentation plays a crucial role in the performance achieved by sub-
sequent speech technologies tasks. Automatic speech recognition (ASR) is usually preceded
by a segmentation stage in order to improve the detection of sentences, to remove music
and non-speech information that would cause insertions in the transcription and to detect
overlapped speech [30]. Hence, its use is very common in broadcast news transcription and
subtitling [22], but it is also applied to more complex tasks such as information retrieval
of big collections of multimedia documents [23]. Besides these tasks, audio segmentation
can be used to annotate and tag audio or multimedia documents in order to perform tasks
such as supervising the payment of royalty fees related to music [33]. Another task in which
audio segmentation has a paramount importance is the automatic classification of music
collections by performer or gender, in which music and boundaries between songs must be
detected before classification [40].

Audio segmentation strategies can be classified in two groups: strategies for segmen-
tation by acoustic change detection and strategies for segmentation by classification.
Strategies of the first type, also known as distance-based approaches, compare adja-
cent windows of audio by using a given distance measure, deciding whether there is an
acoustic change between the windows in function of this distance. After the division of
the audio stream into segments, these segments can be classified into the target classes.
Common approaches for segmentation by acoustic change detection imply the segmen-
tation of the audio using the Bayesian information criterion (BIC) [32] or its variants
[1, 9]; after this segmentation stage, statistical modelling via Gaussian mixture models
(GMMs) or support vector machines (SVM) are common approaches for the classification
step [21].

The second type of audio segmentation strategies consists in, instead of looking for an
acoustic change in a window of data, directly assigning a target class to an audio frame or
a window of data, hence resulting in a sequence of homogeneous segments. These segmen-
tation approaches, known as model-based strategies, use statistical models to represent the
different acoustic classes; using these models, the audio stream is segmented by finding the
most likely sequence of models. The most common strategy for segmentation by classifi-
cation is Viterbi decoding [41], which is an algorithm that finds the most likely sequence
of states given the input data [28, 38]. Another common approach is the use of GMMs for
frame-by-frame classification of the audio streams [11, 28]. Other approaches for segmen-
tation by classification are based on different machine learning algorithms such as neural
networks [22] or support vector machines [27].

State-of-the-art audio segmentation techniques achieve a good performance when deal-
ing with easy tasks in controlled situations, for example speech activity detection in clean
conditions, but the detection of more complex acoustic classes is still a challenge. The dif-
ferent approaches for audio segmentation that can be found in the literature have partially
solved the problem, but there is still room for improvement. A plausible solution to deal
with degraded performance in difficult audio segmentation tasks consists in the integration
of data and knowledge from different sources, which is known as data fusion [5] and aims
at enhancing the strengths of different systems while dimming their weaknesses at the same
time.
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There are three main types of fusion techniques: feature-level fusion, score-level fusion
and decision-level fusion. Feature-level fusion consists in the combination of different fea-
tures extracted from the waveform in order to create high-dimensional feature vectors,
which is commonly performed by concatenating and normalizing the different feature vec-
tors [29]. This results in large feature vectors which often include redundant information
that is increasing the computational cost of the system and even damaging its performance,
which is commonly avoided by performing feature selection [13, 24] or projecting the data
into a discriminative subspace [8, 10]. Score-level fusion consists in, given a set of systems
that output a score for each target class when classifying an example, combining the scores
in order to obtain a single score per class that leads to the final decision. These scores can
be interpreted as a posteriori probabilities of the different classes, so they can be combined
by means of combination rules [16]; scores can also be considered as fuzzy membership
values, so fuzzy logic techniques [7] or belief functions [34] can be used to obtain a classi-
fication result. It is also possible to use the scores to train another classifier that will output
the final classification decision.

The last type of fusion techniques, namely decision-level fusion, uses the classification
decisions of different systems to decide which is the actual class of an example. The com-
bination of different classifiers in this way is commonly referred to as ensemble classifier.
Although combining different systems by making ensembles of classifiers may optimize
strengths and minimize weaknesses, this is not always an easy task. Feature and score-level
fusion seem to be the best choice, as the amount of information used in order to make a clas-
sification decision is greater than in the case of decision-level fusion, but they lack of some
qualities that are present in a decision-level fusion scheme. As stated in [18], any classifier
is capable of producing an output label, making this fusion level the most universal one.
Moreover, this type of fusion scheme has great scalability as, in general, no re-training of
the whole system is necessary anytime a new classifier or modality has to be integrated [31].
In addition, the application of decision-level fusion approaches is common in pattern recog-
nition scenarios other than audio segmentation, as other types of fusion may not be feasible
due to the incompatibility of the different systems. For example, in [37] and [39], this fact is
discussed in the scenario of template-protected biometrics. Another example can be found
in [12], where the incompatibility of the sensors used for mine detection only allows for a
decision-level fusion.

The most straightforward combination method in ensemble classification is the majority
voting, i.e. the class that was selected by more systems is the one that is chosen [26]. Another
habitual version of decision-level fusion is the weighted majority voting [20], that requires
an estimation of the weight assigned to each system, which is commonly based on the
reliability of that system: a training set is classified using a given system, and the reliability
of that system, i.e. its weight, is assigned depending on how accurately it classified the
training examples. Performing a relaxation of the weighted majority voting scheme leads
to the Naive Bayes (NB) approach [19], in which a reliability is computed for each class
and for each classifier; this reliabilities are obtained by estimating the class-conditional
probabilities computing the confusion matrix of the classifier when classifying a training set
of examples. One advantage of this method is that it can be used in two-class problems [15]
but applying it in multi-class scenarios is also possible [19]. On the other hand, this method
only takes into account the true positives achieved by the classifier for that class; this do not
necessarily lead to a good solution, as in this way the fusion strategy is not accounting for
the errors committed by the classifier, it only accounts for the right choices.

In this work, we propose a framework to create ensembles of audio segmentation sys-
tems, that can be used when the only available output information about the individual audio
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segmentation strategies is the start and end instants of the audio segments and the target
class assigned to them. The class-conditional probabilities for each individual strategy are
estimated by computing the confusion matrix resulting from performing audio segmenta-
tion on a training dataset. Performance measures extracted from the confusion matrices are
then used to estimate the reliability of the individual strategies when classifying each of the
target classes. Finally, a weighted majority voting scheme is used to combine the outputs of
the different audio segmentation systems that comprise the ensemble. In this way, any audio
segmentation approach can be part of this ensemble system, as it does not matter whether
it outputs scores corresponding to the different classification decisions or just the label of
the assigned class, given that only the output labels are needed to estimate the reliability.
Besides this ensemble classification framework, we propose different reliability estimates
that can be extracted from the class-conditional probabilities. These reliability estimates are
built by combining the true/false positives and the true/false negatives obtained by the clas-
sifier on a training set, which leads to reliabilities that do not only account for the correct
choices but also for the errors committed by the classifiers.

The proposed ensemble classification techniques and reliability estimates applied to
audio segmentation are assessed in three different experimental frameworks, which are
those defined for Albayzin 2010 [3], 2012 [35] and 2014 [25] audio segmentation evalua-
tions (from now on, Albayzin 2010, 2012 and 2014 ASE). These evaluations consisted in
performing audio segmentation in broadcast news domain.

The rest of this paper is organized as follows; an overview to ensemble classification
is presented in Section 2; in Section 3 we describe the procedure to extract performance
measures from a confusion matrix; after defining the performance measures, in Section 4
we propose different reliability estimates by combining them , and a theoretical comparison
among this method and others based in the same principle can be found in Section 5 .
With respect to the experimental validation of the proposed technique, first some aspects
on the application of the proposed technique to the audio segmentation task are described
in Section 6; next, the experimental frameworks used in the experiments are described in
Section 7; to conclude, the experimental results are presented in Section 8, followed by a
discussion in Section 9 and some conclusions and future work in Section 10.

2 Ensembles of classifiers

Two issues have to be taken into account when building an ensemble classifier: the gener-
ation of classifiers (where diversity plays a crucial role) and the design of the method for
combining them [26]. Focusing on the latter issue, the most basic ensemble classification
method is the majority voting (MV) scheme, which counts the votes assigned to each class in
order to make a final decision. This scheme assumes that all the votes are equally important,
i.e. all classifiers have the same weight in the voting. A relaxation of this constraint leads
to the weighted majority voting (WMV) strategy, which assigns a different weight to each
classifier depending on system performance, in a way that votes of top performing systems
count more than those of other systems. However, not all the systems are equally good at
classifying different classes, so a relaxation of the constraint that assumes that all the classes
are equiprobable can be done; in this way, a different weight can be assigned to each clas-
sifier and each class according to their performance [19]. These weights can be considered
as reliabilities, as they indicate how reliable a classifier is when classifying a specific class.
There is another constraint in the latter approach that can be relaxed, namely the assump-
tion of equal individual accuracies; relaxing this assumption leads to a Naive Bayes (NB)
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combiner [19], in which a confusion matrix is obtained from classifying a set of examples
and the weight for each classifier and class is equal to the corresponding class-conditional
probability.

Formally, let E = {e1, . . . , em} be an ensemble classifier composed of m classifiers (or
ensembles), and let C = {c1, . . . , cn} be a set of n classes. Classifier E has to classify
examples taking into account the individual decisions of each ensemble ei , i ∈ 1, . . . , m.
To do so, each ei has an associated reliability rei ,cj

for each of the n classes, which is an
estimate of the classification performance of ei when classifying class cj . As stated above,
this estimate can be made by observing the behaviour of the ensembles when classifying a
set of examples [36]. Given that a WMV scheme is used to combine the different classifiers,
the combination rule can be defined as:

c∗ = arg max
cj ∈C

∑

ei∈E

rei ,cj
δei ,cj

(1)

where δei ,cj
= 1 if ei outputs cj and δei ,cj

= 0 otherwise.

3 Estimating class-conditional probabilities and performance measures
from a confusion matrix

A confusion matrix contains information about the actual and predicted classifications of
a classification system, so it provides valuable information about the errors produced by
the classifier. Let CMei

be the confusion matrix of ensemble ei , where CMei
(cj |ck) is

the number of examples of class ck that were classified as class cj by ei . This matrix,
once normalized by the number of classified examples, represents an estimate of the class-
conditional probabilities of actual and predicted classes:

Pei
= 1

‖CMei
‖CMei

(2)

where ‖CMei
‖ is the cardinality of the confusion matrix, i.e. the number of examples used to

build the matrix. Hence, Pei
(cj |ck) is the conditional probability that ensemble ei classifies

an example of class ck as class cj .
Four main performance measures can be extracted from the class-conditional probabili-

ties of ensemble ei for class cj :

– The true positive TPei ,cj
represents the ratio of correctly classified examples of class

cj :

TPei ,cj
= Pei

(cj |cj ) (3)

– The true negative TNei ,cj
is the ratio of examples of class ck, k �= j not classified as cj :

TNei ,cj
=

n∑

x=1
x �=j

n∑

y=1
y �=j

Pei
(cx |cy) (4)

– The false positive FPei ,cj
is the ratio of examples of class ck, k �= j classified as cj

FPei ,cj
=

n∑

x=1
x �=j

Pei
(cj |cx) (5)



7426 Multimed Tools Appl (2017) 76:7421–7444

– The false negative FNei ,cj
is the ratio of examples of class cj classified as ck, k �= j :

FNei ,cj
=

n∑

x=1
x �=j

Pei
(cx |cj ) (6)

Figure 1, which shows the estimated class-conditional probabilities for one of the ensembles
used in our experiments, exemplifies how to compute the four aforementioned performance
measures in a five-class classification system for class c2.

4 Proposed reliability estimates

Given Pei
, two different ways to estimate the reliability rei ,cj

of the ensemble system ei for
class cj are described below.

4.1 Mutual information

The mutual information of ei for class cj represents the amount of information that ei shares
with the groundtruth g about class cj . Its reliability is defined as:

rMIei ,cj
= pg,ei ,cj

· log

(
pg,ei ,cj

pei ,cj
pg,cj

)
(7)

where pg,ei ,cj
is the probability that ei correctly outputs class cj :

pg,ei ,cj
= TPei ,cj

(8)

pei ,cj
is the probability that ei outputs class cj :

pei ,cj
= TPei ,cj

+ FPei ,cj
(9)

and pg,cj
is the groundtruth probability of class cj :

pg,cj
= TPei ,cj

+ FNei ,cj
(10)

Substituting (9) and (10) into (7), the mutual information based reliability estimate rMIei ,cj

is defined as follows:

rMIei ,cj
= TPei ,cj

log
TPei ,cj

(TPei ,cj
+ FPei ,cj

)(TPei ,cj
+ FNei ,cj

)
(11)

Fig. 1 Example of computation of performance measures using the estimated class-conditional probabilities
of a five-class classifier
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4.2 Precision

Precision, which decreases when the false positive ratio increases, represents the relevance
of the positively classified examples. A precision-based reliability estimate can be defined
using the performance measures described in Section 3 as follows:

rPRei ,cj
= TPei ,cj

TPei ,cj
+ FPei ,cj

(12)

4.3 Recall

Recall, which decreases when the false negative ratio increases, measures the goodness of a
system when detecting positives. Its corresponding reliability estimate can be defined as:

rREei ,cj
= TPei ,cj

TPei ,cj
+ FNei ,cj

(13)

4.4 F-score

The F-score takes into account both the false positive and the false negative ratios of a
classifier. It is defined as the harmonic mean between precision and recall.

F-score = 2 · Precision · Recall

Precision + Recall
(14)

Combining (12) and (13), the F-score based reliability estimate rFei ,cj
is defined as

follows:

rFei ,cj
=

2 · rPRei ,cj
· rREei ,cj

rPRei ,cj
+ rREei ,cj

= 2TPei ,cj

2TPei ,cj
+ FPei ,cj

+ FNei ,cj

(15)

4.5 Accuracy

A reliability estimate can be defined such that a classifier is more or less reliable depending
on its ability to classify a given class, i.e. depending on its accuracy:

rREei ,cj
= TPei ,cj

+ TNei ,cj
(16)

5 Comparison with other existing methods

As briefly discussed in Section 2, a simple way to combine classifiers is the WMV strat-
egy, in which the accuracy of each classifier is used as its reliability. However, this strategy
assumes that the accuracy of a classifier is the same for all the classes; this constraint is
removed in the NB strategy, which uses the class-conditional probabilities defined in (2)
as reliabilities since, in this way, the reliability depends on the performance when a classi-
fier classifies a given class. However, the class-conditional probability only accounts for the
true positives TPei ,cj

: this means that only the correct classifications are taken into account,
without considering the errors, namely false positives or false negatives. This can lead to
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the following situation: given a classifier ei that always outputs class cj , TPei ,cj
would be

maximum, but FPei ,cj
would be very high. If the class-conditional probability is consid-

ered as a reliability estimate, a high reliability would be assigned to a classifier like this one
regardless the fact that it always outputs the same class. Nevertheless, when using perfor-
mance measures such as those proposed in Section 4, the false positives and false negatives
are also considered, hence avoiding this type of issues.

Other of the methods to estimate reliabilities that can be found in the literature account
for the behaviour of groups of classifiers, such as the behavioural knowledge space (BKS),
which consists on learning which combination of the outputs of the classifiers produces
which output [14]. This method and others such as the pairwise fusion matrix method
described in [17] lead to a loss of scalability of the fusion strategy, as well as to an increase
of the computational cost when the number of classifiers and classes is big. The fusion strat-
egy proposed in this paper preserves the scalability and efficiency even when the number of
classifiers and classes is high, as the confusion matrices are individually computed for each
classifier without taking into account the output produced by the other classifiers that are
part of the ensemble. In addition, the proposed method do not require an optimization pro-
cedure as happens in other fusion strategies that learn agreement or disagreement patterns
among individual classifiers, which do not always lead to a great improvement in perfor-
mance [31] and increases the dependence on the training data, as those observed patterns
are expected to be found in the test data as well.

6 Use case: audio segmentation

This Section describes how the ensemble classification methods described in previous Sec-
tions were applied in the audio segmentation task. When combining audio segmentation
outputs, it must be noted that the examples to be classified, i.e. the acoustic-homogeneous
segments, are not predefined, so different audio segmentation strategies may output seg-
ments that start and end at different time instants, making it impossible to consider the
segments as examples to be classified. Another option would consist in taking temporal
windows of a given duration and combining the corresponding labels of the different sys-
tems, but this would lead to a resolution loss at segment boundaries. Hence, to overcome
this problem, each frame is considered as an example to be classified; in this way, as the res-
olution of the system is the highest possible, the loss of information at segment boundaries
is avoided by working in a frame-by-frame-basis.

A set of individual audio segmentation strategies must be defined in order to fuse their
outputs and assess the proposed fusion technique. In these experiments, four different
state-of-the-art audio segmentation approaches were used; two of them consist in segmen-
tation followed by classification approaches, while the other two consist in segmentation by
classification approaches:

– Audio segmentation strategy e1: segmentation is done using the BIC strategy [32] fol-
lowing the classic growing-sliding window approach [6]. Classification is performed
using an SVM with a lineal kernel [21].

– Audio segmentation strategy e2: segmentation and classification are performed in the
same way as in e1, but in this case the SVM uses a radial basis function kernel.

– Audio segmentation strategy e3: Viterbi decoding is used, and the different classes are
modelled using GMMs [38].
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– Audio segmentation strategy e4: Viterbi decoding is used, but in this case the different
classes are modelled using three-state HMMs.

The acoustic features used in the aforementioned audio segmentation strategies were 12
Mel-frequency cepstral coefficients, augmented with their energy, delta and acceleration
coefficients. These features were extracted every 20 ms using a 10 ms sliding window.

It must be noted that the audio segmentation strategies are named ei in order to be
consistent with the notation followed in the previous Sections of this paper.

7 Experimental frameworks

This Section describes the experimental frameworks used to assess the proposed fusion
strategy and the reliability estimates. As mentioned in the Introduction, three different
experimental frameworks used in audio segmentation evaluations were used; specifically,
those used in Albayzin 2010, 2012 and 2014 ASE. Two different sets of experiments were
carried out: the first one consists in a 10-fold cross-validation experiment on each database,
in order to analyse in detail the performance of the proposed techniques; the second one con-
sists in performing the experiment defined for the different Albayzin evaluations, in order
to validate the results of the cross-validation experiments as well as to compare the achieved
results with the ones obtained in the aforementioned evaluations.

7.1 Albayzin 2010 ASE

Albayzin 2010 ASE consisted in performing audio segmentation into classes “speech” (sp),
“music” (mu), “speech over music” (sp+mu), “speech over noise” (sp+no) and “other” (ot),
where class “other” contained everything that did not belong in the other classes, and was
not considered for evaluation [2].

The database used in Albayzin 2010 ASE was compiled for this evaluation, and it is
composed of a set of broadcast news programmes in Catalan recorded from 3/24 TV channel
[3]. This database consists of 24 sessions of different durations, which were divided into a
training partition and a testing partition, as summarized in Table 1. The database includes
speech and non-speech regions, and the speech regions can be clean speech or speech with
some background information such as noise or music. Silence detection was automatically
performed, while the different audio classes were manually labelled. The distribution of
the different classes in the database, both for the evaluation experiment and the 10-fold
cross-validation experiment, is represented in Fig. 2.

Table 1 Summary of the
datasets of Albayzin 2010, 2012
and 2014 ASE

Database Set Number of sessions Duration

Albayzin 2010 Train 16 57 h 27 min

Test 8 30 h 4 min

Albayzin 2012 Train 32 5 h 17 min

Test 72 18 h

Albayzin 2014 Train 20 21 h 16 min

Test 15 15 h 38 min
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Fig. 2 Class distribution on Albayzin 2010 database. Percentage of audio of each class in the train and test
partitions (left) and in the 10 folds (right) of Albayzin 2010 experiments

7.2 Albayzin 2012 ASE

Albayzin 2012 consisted in automatically detecting the presence or absence of classes
speech, music and noise, being it possible that these classes appear either separately or
simultaneously, even the three of them at the same time.

The training material of Albayzin 2012 ASE was the database used in Albayzin 2010
ASE, described above, while the development and test sets were composed by recordings
of the Aragón Radio radio station. In these experiments, the development dataset was used
for training in order to avoid data mismatch, so from now on, the train partition of Albayzin
2012 ASE refers to this development partition. A summary of the data partitions used in the
experiments is presented in Table 1.

As commented above, the aim of Albayzin 2012 ASE was to detect classes speech (sp),
music (mu) and noise (no), either individually or simultaneously; thus, this task can be also
considered as a problem in which seven different classes must be detected, where these
seven classes correspond to all the possible combinations of the three individual classes,
namely speech (sp), music (mu), noise (no), speech with music (sp+mu), speech with noise
(sp+no), music with noise (mu+no) and speech with music and noise (sp+mu+no); we
will refer to these classes as overlapping classes. Figure 3 shows the amount of audio of
each overlapping class in the different partitions both for the evaluation and cross-validation
experiments. As shown in the Figure, the amount of audio of classes “no” and “mu+no” is
negligible, so we decided to ignore it in order to avoid training models with such a small
amount of data.
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Fig. 3 Class distribution on Albayzin 2012 database. Percentage of audio of each class in the train and test
partitions (left) and in the 10 folds (right) of Albayzin 2012 experiments
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7.3 Albayzin 2014 ASE

The task to be performed on Albayzin 2014 ASE was the same as in Albayzin 2012 ASE;
it consisted in detecting the presence or absence of classes speech, music and noise.

The data used in this evaluation consists in a combination of the databases used in
Albayzin 2010 and Albayzin 2012 ASE, as well as environmental sounds extracted from
different websites. The different databases can be merged or even overlapped, making the
task more challenging [25].

Two partitions, were defined for Albayzin 2014 ASE, namely a training dataset and a
test dataset, which are summarized in Table 1. Figure 4 shows the amount of audio of each
overlapping class in these two partitions as well as in the 10 folds of the cross-validation
experiment. Classes “no” and “mu+no” were not considered in this case either for the same
reason as in Albayzin 2012 ASE.

7.4 Evaluation metric

A common metric used to measure the performance of an audio segmentation system is the
segmentation error rate, which is defined as the ratio of the overall segmentation error time
to the sum of the durations of the segments that are assigned to each class in an audio file
[35]. Given a dataset Ω composed of different audio files, each file is divided into adjacent
segments that are separated by change-points. The segmentation error time of a segment n

is defined as:

Ξ(n) = T (n)
[
max(Nref (n),Nsys(n)) − Ncorrect (n)

]
(17)

where T (n) is the duration of segment n, Nref (n) is the number of reference classes that
are present in n, Nsys(n) is the number of classes that the audio segmentation system claims
to be in segment n, and Ncorrect (n) is the number of reference classes that were correctly
assigned to segment n.

The overall segmentation error rate is computed as

SER(%) =
∑

n∈Ω

Ξ(n)

∑
n∈Ω

(
T (n)Nref (n)

) (18)

This error measure includes three different types of error:

– Class error time (CET): amount of time that was assigned to an incorrect class.
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– Missed class time (MCT): amount of time that a class is present but not labelled by the
audio segmentation system.

– False alarm class time (FACT): amount of time that a class is not present but it was
labelled by the audio segmentation system.

A forgiveness collar of one second was considered in order to alleviate the influence of
inconsistencies and errors in the manual annotations.

It must be noted that SER was the performance measure used in Albayzin 2012 and 2014
ASE, but not in Albayzin 2010 ASE, where a different metric was used [3]. In this paper,
in order to have coherence between the different experimental frameworks, this metric was
used in Albayzin 2010 ASE experiments as well.

8 Experimental results

In this Section, the performance of the fusion strategies for audio segmentation presented in
this paper are assessed on the experimental frameworks described in Section 7.

As mentioned in Section 7, two different experiments are performed on each experi-
mental framework, namely a 10-fold cross-validation experiment and the test experiment
defined for the evaluations, namely evaluation experiments. Table 2 shows the performance
achieved in the different experimental scenarios; these results, as well as those achieved
when using a MV fusion strategy, must be outperformed by the proposed fusion techniques.

A reference system is necessary in order to establish a baseline to the performance of the
proposed fusion strategy and the different reliability estimates; on the one hand, the fusion
strategy must outperform the systems that are being combined; also, the proposed fusion
strategy is expected to outperform simple fusion strategies. In the 10-fold cross validation
experiment, a MV strategy is used as a baseline system; in the evaluation experiments, the
MV system is used for comparison as well as a NB approach [18] and a WMV scheme,
in which the optimal weights of the classifiers are selected based on the global accuracy
(different to the per class accuracy as defined in Section 4) of each classifier as suggested
in [18].

8.1 10-fold cross-validation experiments

Tables 3, 4 and 5 show the SER obtained on Albayzin 2010, 2012 and 2014 ASE audio
segmentation experiments, respectively, when constructing ensemble audio segmentation
systems of two, three and four individual systems using the different ensemble strategies

Table 2 SER (%) of the audio segmentation strategies on Albayzin 2010, 2012 and 2014 experimental
frameworks when performing two different experiments: 10-fold cross-validation (CV) and test both on the
training and test partitions defined for Albayzin ASE

Albayzin 2010 Albayzin 2012 Albayzin 2014

System CV Train Test CV Train Test CV Train Test

e1 19.41 19.32 22.89 20.39 14.32 20.39 24.23 21.36 24.23

e2 19.62 18.03 21.67 21.55 16.45 21.55 24.34 21.39 24.35

e3 24.15 23.43 23.55 23.16 23.13 23.18 30.37 28.07 30.48

e4 20.92 19.71 20.08 22.73 15.06 22.72 26.27 23.03 26.31
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Table 3 SER (%) on Albayzin 2010 ASE cross-validation experiments

Experiment Best MV rF rMI rPR rRE rAC

e1&e2 19.41 19.93 20.34 20.08 18.70 18.94 18.95

e1&e3 19.41 23.67 20.77 20.20 18.86 20.76 22.37

e1&e4 19.41 22.35 21.74 20.57 18.13 18.55 19.70

e2&e3 19.62 23.86 21.07 20.64 19.00 20.84 22.48

e2&e4 19.62 22.48 21.94 20.80 18.32 18.58 19.71

e3&e4 20.92 23.50 22.70 21.75 20.78 22.12 23.81

e1&e2&e3 19.41 18.90 18.89 18.82 18.51 18.69 18.88

e1&e2&e4 19.41 18.66 18.74 18.62 18.35 18.47 18.56

e1&e3&e4 19.41 19.71 19.56 19.41 18.79 19.23 20.03

e2&e3&e4 19.62 19.71 19.53 19.43 18.80 19.24 20.05

e1&e2&e3&e4 19.41 20.03 19.73 19.06 17.57 17.69 18.30

Results in boldface show those ensemble classifiers that outperformed both the MV strategy and the best
individual classifier

proposed in this paper. Specifically, rF, rMI, rPR, rRE and rAC stand for F-score, mutual
information, precision, recall and accuracy reliability estimates, respectively. These strate-
gies are compared with a MV ensemble strategy, in order to see if the proposed techniques
outperform this simple fusion approach.

Comparing Tables 3, 4 and 5, it is straightforward to see that the best reliability esti-
mate of the five presented in this paper is the one based on the precision, namely rPR; it
succeeded to outperform both the best individual audio segmentation strategy and the MV
strategy in 23 out of 33 fusion experiments. The recall-based reliability estimate, namely
rRE, succeeded to outperform the baseline system in 18 out of 33 fusion experiments. The

Table 4 SER (%) on Albayzin 2012 ASE cross-validation experiments

Experiment Best MV rF rMI rPR rRE rAC

e1&e2 16.71 17.05 16.50 16.48 16.49 16.49 17.05

e1&e3 17.15 21.06 17.49 17.40 16.61 18.00 20.02

e1&e4 17.15 19.96 17.03 16.97 15.89 17.48 19.18

e2&e3 16.71 20.79 17.31 17.28 17.03 17.62 18.69

e2&e4 16.71 19.74 16.92 16.75 15.96 17.17 18.32

e3&e4 20.32 21.85 20.51 20.40 19.65 21.92 22.19

e1&e2&e3 16.71 16.59 16.26 16.25 16.09 16.24 16.43

e1&e2&e4 16.71 16.39 16.07 16.04 15.91 16.03 16.18

e1&e3&e4 17.15 18.61 18.18 18.10 17.75 18.30 18.55

e2&e3&e4 16.71 18.48 18.03 18.10 17.65 18.15 18.38

e1&e2&e3&e4 16.71 17.86 16.21 16.20 15.65 15.99 16.95

Results in boldface show those ensemble classifiers that outperformed both the MV strategy and the best
individual classifier
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Table 5 SER (%) on Albayzin 2014 ASE cross-validation experiments

Experiment Best MV rF rMI rPR rRE rAC

e1&e2 20.62 21.09 20.99 20.83 19.96 20.37 20.80

e1&e3 20.98 25.16 21.09 20.95 20.05 22.69 25.19

e1&e4 20.98 22.84 21.84 21.14 19.39 20.24 22.19

e2&e3 20.62 25.12 21.01 20.90 19.83 22.38 24.87

e2&e4 20.62 23.00 21.60 21.00 18.92 20.19 21.74

e3&e4 22.60 25.72 23.81 23.62 22.42 23.75 25.65

e1&e2&e3 20.62 20.59 19.99 20.02 19.52 19.76 20.27

e1&e2&e4 20.62 19.91 19.67 19.65 18.93 19.10 19.60

e1&e3&e4 20.98 22.55 21.62 21.19 20.96 21.32 22.27

e2&e3&e4 20.62 22.65 21.68 21.36 20.95 21.30 22.21

e1&e2&e3&e4 20.62 21.07 19.72 19.57 18.91 19.62 20.65

Results in boldface show those ensemble classifiers that outperformed both the MV strategy and the best
individual classifier

worst performing reliability estimate was the accuracy, which only outperformed the base-
line systems in 8 out of 33 experiments. It must be noted that, although the F-score reliability
estimate is defined as a combination of rPR and rRE, its performance was poorer than those
obtained by these reliability estimates individually.

Observing the results in function of the number of audio segmentation strategies included
in the ensemble, it can be seen that, in general, the fusion of two systems is only suc-
cessful when using the precision and recall reliability estimates. The experiment e3&e4 is
specially noticeable, as in this case the two worst-performing systems are fused, and an
improvement of the performance of the individual systems is only achieved with rPR. The
experiments where three systems are fused show a clear pattern; almost all the combinations
of two good segmentation strategies, namely e1 and e2, with one of the worst-performing
systems are successful no matter which reliability estimate is used; however, when the
two worst performing systems are fused with one of the best-performing systems, ensem-
ble performance is worst than individual performance in two out of three experimental
frameworks (an improvement is obtained in Albayzin 2010 when using some reliability
estimates). The fusion of four systems is generally successful, except in the case of the accu-
racy based reliability estimate, which only outperformed the baselines in Albayzin 2010
scenario.

Figures 5, 6 and 7 show the error matrices obtained when performing the fusion of four
audio segmentation systems, both when using the individual systems and the fusion strate-
gies. The first conclusion extracted from these matrices is that the majority voting strategy,
which did not outperform the best individual system in any experimental framework, is not
able to improve the accuracy of the overlapping classes when the accuracy of the individ-
ual systems is poor. The accuracy-based reliability obtained a remarkable improvement of
accuracy of class sp+mu+no in Albayzin 2012 and Albayzin 2014 experiments but, in the
latter scenario, the deterioration of the performance in other classes led to the overall perfor-
mance to be below the baseline. The strategies that obtained the best overall performance,
namely rPR and rRE, achieved noticeable improvements in some classes, which compensate
slight reductions of accuracy in other classes.
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Fig. 5 Classification errors (%) between groundtruth and estimations in Albayzin 2010 ASE cross-validation
experiments when classifying the target classes speech (sp), music (mu), speech with music (sm) and speech
with noise (sn). The different error matrices correspond to the audio segmentation results obtained using the
individual audio segmentation strategies e1, e2, e3, e4, and when performing fusion of these four systems
using the majority voting strategy (MV) and the proposed fusion strategy with different reliability estimates
rF, rMI, rPR, rRE, rAC. Note that each row is normalized to 100 %
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Fig. 6 Classification errors (%) between groundtruth and estimations in Albayzin 2012 ASE cross-validation
experiments when classifying the target classes speech (sp), music (mu), speech with music (sm), speech
with noise (sn) and speech with music and noise (smn). The different error matrices correspond to the audio
segmentation results obtained using the individual audio segmentation strategies e1, e2, e3, e4, and when
performing fusion of these four systems using the majority voting strategy (MV) and the proposed fusion
strategy with different reliability estimates rF, rMI, rPR, rRE, rAC. Note that each row is normalized to 100 %
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Fig. 7 Classification errors (%) between groundtruth and estimations in Albayzin 2014 ASE cross-validation
experiments when classifying the target classes speech (sp), music (mu), speech with music (sm), speech
with noise (sn) and speech with music and noise (smn). The different error matrices correspond to the audio
segmentation results obtained using the individual audio segmentation strategies e1, e2, e3, e4, and when
performing fusion of these four systems using the majority voting strategy (MV) and the proposed fusion
strategy with different reliability estimates rF, rMI, rPR, rRE, rAC. Note that each row is normalized to 100 %
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8.2 Evaluation experiments

Table 6 shows the results achieved when performing the evaluation experiments of Albayzin
2010, 2012 and 2014 ASE. The SER for the train and test datasets is shown in the Table
in order to find out whether the top-performing reliability estimate in the training dataset is
also the top-performing in the test dataset, which would allow to decide which reliability
estimate is more suitable for a given database. It must be noted that the train experiments
are slightly biased, as the reliability estimates are applied in the same data that was used
to compute them. Nevertheless, the Table shows that the results obtained on the training
dataset succeed at predicting which reliability estimate would achieve the best performance
in the test dataset. It must be noted that, in the Albayzin 2010 experiment, rPR achieves the
best performance in train but it is rRE the one that achieves the best performance in test;
however, the difference in SER between these two reliability estimates is negligible in both
datasets, so any of them would be suitable for this experiment.

Table 6 also shows a comparison between the proposed strategies, the best individual
classifier, and other well known ensemble classification techniques; the Table shows that
the ensemble classifiers based on reliability estimates outperform these other approaches.
These results suggest that assigning reliabilities in function of the class performs better
than assigning a weight to the individual systems without taking into account the individual
results achieved for each class as in the WMV scheme. NB takes into account the perfor-
mance of each class but, theoretically, this method is only optimal when it is assumed that
all the classes are equiprobable [19], and this assumption is not correct in this specific case.

Table 7 shows the SER achieved by the different systems that participated in Albayzin
2012 and 2014 ASE. Comparing the results achieved with the proposed fusion techniques
to those obtained by the participants in the evaluation, it can be seen that both the individual
audio segmentation systems and the ensemble strategies proposed in this work obtain state-
of-art performance. Indeed, the SER achieved in Albayzin 2012 ASE is much lower than
those obtained by the participants in the evaluation; results achieved by the fusion strategies

Table 6 SER (%) on Albayzin 2010, 2012 and 2014 ASE evaluation experiments using the proposed relia-
bility estimates, the best individual system (Best), majority voting (MV), weighted majority voting (WMV)
and Naive Bayes (NB)

Ensemble Albayzin 2010 Albayzin 2012 Albayzin 2014

train test train test train test

Best 18.03 20.08 14.32 20.39 21.36 24.23

MV 19.12 21.86 13.72 19.27 21.85 25.35

WMV 16.88 18.78 13.70 19.90 21.13 24.12

NB 17.00 20.46 12.97 19.06 20.09 22.95

rF 18.56 21.65 12.39 19.04 21.14 24.76

rMI 17.50 20.76 11.93 18.91 20.93 24.68

rPR 15.83 18.61 12.10 18.98 19.23 22.84

rRE 16.01 18.49 13.38 19.29 20.23 23.14

rAC 17.22 19.21 13.85 19.36 21.22 23.66

Results in boldface show the top performing strategy for each experiment
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Table 7 SER (%) achieved by
the participants in Albayzin 2012
and 2014 ASE

System Albayzin 2012 Albayzin 2014

1 26.34 20.68

2 33.30 31.59

3 40.01 33.93

4 39.55 20.80

5 26.53 29.13

6 28.12 22.52

7 30.67

in Albayzin 2014 ASE do not outperform the best systems submitted by the participants,
but still they achieved better results than most of the participants’ systems.

Results achieved by participants in Albayzin 2010 cannot be compared with those
obtained in these experiments because, as mentioned in Section 7.4, the metric used in
Albayzin 2010 ASE was not the SER, so results are not comparable. Nevertheless, accord-
ing to [4], the best-performing system of this evaluation obtained a SER of 19.3 %,
which is below the performance obtained by the precision-based and recall-based reliability
estimates.

9 Discussion

The experimental results presented in Section 8 left some issues to take into consideration.
As defined in Section 4, rF is defined as the harmonic mean of rPR and rRE, expecting

rF to have a better performance than rPR and rRE, as it takes two types of error into account
at the same time. However, the experimental validation showed that precision and recall
achieve better results when used individually, suggesting that the F-score is not the most
suitable strategy to combine precision and recall in this ensemble classification scenario.

The results shown in Table 6 show that it is possible to select the best reliability estimate
performing a previous fusion experiment in the training data, as in general the reliability
estimate that obtained the best performance in the training dataset was the one that obtained
the best performance in test as well. This did not happen in Albayzin 2010 evaluation experi-
ment but, as mentioned above, the difference in performance between the reliability estimate
selected in train and the one that performed better in test is negligible. Another mismatch in
the results can be observed in Albayzin 2012 experiments, as this was the only experiment
in which the top performing reliability estimate was not the same in the cross-validation
and in the evaluation experiment. This might be caused by the distribution of the classes in
the different folds of the cross-validation experiment because, as shown in Fig. 3, it is very
changeable.

As mentioned in Section 2, the diversity of the classifiers, which represent how different
the individual classifiers are when classifying the different examples, is an important fact to
be taken into account when designing ensembles of classifiers [26]. The idea behind quan-
tifying the diversity of the ensembles of classifiers is that there is no point in combining
classifiers that make the same error on the same examples. Nevertheless, what actually has
a paramount importance in the proposed ensemble strategy is the diversity of the reliability
estimates for the different classes and individual systems. Let us consider an ensemble of
classifiers and a reliability estimate; if the reliability of all the individual classifiers ei when
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classifying an example of class cj is very similar, we have a system that tends to a majority
voting strategy (which is equivalent to always having the same weight). Hence, what mat-
ters when dealing with reliability estimates is how diverse the reliabilities of the different
classifiers and weights are. In fact, when performing a qualitative analysis of the proposed
reliability estimates obtained from the confusion matrices of the individual classifiers, it can
be observed that reliabilities are more diverse, both in terms of classifiers and classes, when
using the precision estimate; this can explain why, in these specific experimental frame-
works, performance is, in general, better when using the reliability estimate based on the
precision. Nevertheless, in other scenarios or when using different individual classifiers, it
is likely that other reliability estimate leads to a greater diversity and, hence, obtains a better
performance.

10 Conclusions and future work

This paper presented a framework to perform decision-level fusion of audio segmentation
outputs, based on the premise that there is strength in numbers, so a fusion strategy would
help to dim the weaknesses of the different systems as well as enhancing their strengths.
The fusion approach we proposed consisted in estimating the reliability of each audio seg-
mentation strategy when classifying each of the possible classes, and using this reliability
estimate as weights in a weighted majority voting fusion strategy. The estimation of the
reliability was carried out by computing the confusion matrices of the different audio seg-
mentation systems when classifying a set of examples from a development dataset. We
proposed different reliability estimates, namely precision, recall, F-score, accuracy and
mutual information.

The validity of the proposed fusion technique for audio segmentation was assessed in
three different experimental frameworks based on radio and television programmes, which
were defined for Albayzin 2010, 2012 and 2014 audio segmentation evaluations. The exper-
imental results showed that an improvement of the audio segmentation results can be
obtained by using this fusion paradigm, and a comparison to a majority voting scheme
proved that the use of the reliability estimates as weights is advantageous for this task.

The reliability estimate that showed the best performance of the five proposed in this
paper was the one based on the precision, followed by the one based on the recall. The relia-
bility estimates based on accuracy, F-score and mutual information were able to outperform
the baseline systems in some of the experiments, but they did not achieve a good overall
performance when compared to precision and recall. Nevertheless, the mutual information-
based reliability estimate showed promising results, so its formulation will be revisited in
future work in order to try to improve the results presented in this paper.

The experimental validation suggested that, although not all the reliability estimates per-
form the same in different datasets, it is possible to select the most suitable one by perform-
ing a fusion experiment in the training data. This allows to empirically predict which relia-
bility estimate will have the best performance beforehand. Nevertheless, the theoretical for-
mulation of the proposed fusion strategy suggests that variability of the reliability estimates
for different classifiers and classes is crucial in this fusion framework: if the reliabilities of
the different classifiers and classes are very similar, our fusion strategy tends to a major-
ity voting scheme, strategy that showed a poor performance in the experimental validation.
Moreover, as mentioned in Section 9, the precision based reliability estimate seemed to be
the most diverse in these experiments, fact that reinforces the assumption “more diversity
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in the reliabilities leads to a better performance”; hence, in further work we will try to define
a metric to quantize the goodness of different reliability estimates according to the data to
be fused, in order to be able to know beforehand which reliability estimate will give the best
fusion results without having to select it empirically.

The proposed experimental validation consisted in computing the confusion matrix using
the training data of a given database and then using it to fuse the test outputs of the same
database; nevertheless, it would be interesting to find out if it is possible to obtain the con-
fusion matrix in a dataset and using it in a different one. In this way, the amount of training
data as well as the variability of the data itself would increase, leading to a confusion matrix
that reflects the performance of the audio segmentation strategy in a more general scenario.
Thus, in future work, cross-corpus experiments will be performed in order to explore this
possibility.

Lastly, we would like to emphasize the fact that the fusion strategy proposed in this
paper is not only a strategy to fuse audio segmentation systems but a framework to design
different fusion strategies that can be used for any classification task or pattern recognition
problem. The two design decisions to be made in this system are which reliability estimate
to use, as they can be different to the ones we proposed, and how to combine the different
classifiers. We proposed a fusion strategy based on weighted majority voting, but in the
future we plan to assess other strategies that make use of the reliability estimates in order to
make a common decision.
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30. Rybach D, Gollan C, Schlüter R, Ney H (2009) Audio segmentation for speech recognition using
segment features. In: Proceedings of IEEE international conference on acoustics, speech and signal
processing (ICASSP), 4197–4200

31. Schuller B, Metze F, Steidl S, Batliner A, Eyben F, Polzehl T (2010) Late fusion of individual engines
for improved recognition of negative emotion in speech - learning vs. democratic vote. In: Proceedings
of IEEE international conference on acoustics, speech and signal processing (ICASSP), 5230–5233

32. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464
33. Seyerlehner K, Pohle T, Schedl M, Widmer G (2007) Automatic music detection in television

productions. In: Proceedings of the 10th international conference on digital audio effects (DAFx-07)
34. Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton
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