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Abstract With the development of remote sensing image applications, sparse-based
representation classification approaches have been investigated for better classification
accuracy. This paper introduces an improved classification method based on sparse
representation by representing the test samples through a dictionary. The key components
of our proposed method rely on the feature dictionary construction, sparse representation
and image reconstruction. The dictionary is obtained by training samples according to
their class for a sparse linear combination. The sparse representation for the image is
expressed as sparse coefficients by solving an optimization problem. We describe the
method of constructing a dictionary by computing a best matrix to represent all data
vectors. We also describe the algorithm used to solve for the sparse representation.
Finally, we discuss the way of using the sparse vector to reconstruct the image for
classification. In the experiments, the proposed method is applied to two real high spatial
resolution images for the classification in comparison to Backpropagation Neural Net-
work, Support Vector Machine, Classification and Regression Trees and K-means. The
experimental results show that the proposed method performs better than the benchmark
methods in terms of classification accuracy.
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1 Introduction

The remote sensing imagery of high spatial resolution (HSR) provides useful geometric and
detailed information which can precisely represent the Earth’s surface. Due to the increasing
applications of HSR remote sensing imagery, a major issue of land-cover classification is how
to improve the accuracy of the image processing. The common HSR remote sensing imagery
is obtained from satellites, such as IKONOS, QuickBird, WorldView-2 and Pleiades. The
availability of HSR increases the possibility of accurate Earth observations [27] and makes it
possible to be widely used. However, urban landscapes become more complicated and have
many different objects with similar spectral features. The increasing resolution does not
facilitate improvement of the classification accuracy in the same level. Therefore, it is
necessary to explore more effective approaches and incorporate the spatial features to deal
with the HSR images.

This paper focuses on the problem of classification of a given high-resolution image
according to different objects. Our approach is motivated by those research works [9, 36,
39, 40] on sparse signal representation, which suggest that the linear relationship among high-
resolution signal elements. We propose an improved strategy to train a dictionary [36] by
utilizing the sparsity of the input samples and construct a sparse model to classify the pixels in
remote sensing image through adopting the error residual for sparse representation [9, 39]. The
sparse vector representing the atoms for the test spectral pixels can be recovered by solving an
optimization problem [40]. The classes of the test pixels can then be determined by the
characteristics of the recovered sparse vector.

The remainder of this study is organized as follows. In Section 3, the sparse-based
representation classification method is introduced. In Section 4, the results of our experiments
and the analyses are described, and the effectiveness of our proposed method is demonstrated.
Section 5 summarizes this work and draws the future work.

2 Related Work

Toward the classification, various classification approaches have been developed in order to
improve the accuracy of the classification, including Independent Component Analysis [30],
Artificial Neural Networks [15], Back Propagation Neural Network (BPNN) [4, 16, 45],
Hierarchical Hybrid Fuzzy-Neural Network [37], K-Nearest Neighbor [43], likelihood classi-
fier [31], Support Vector Machine (SVM) [3, 6, 25], Classification and Regression Trees
(CART) [8], K-means [23, 34] and decision tree classification [20]. Giacinto et al. [14]
proposed an approach to the automatic design of effective neural network ensembles, to select
the subset formed by the most error-independent nets. Conventional cluster technique such as
K-means [23, 34] has been used for image segmentation over years. Luo et al. [23] proposed a
spatial constrained K-means approach to solve the image segmentation problem. Back-
propagation neural network [16] algorithm, which is a gradient-based method, was explored
for classification of multispectral image data. A variation of the SVM-based algorithms [41]
put forward a set of tools for structured classification, and generalized the traditional non-
structured classification approaches.

However, the above traditional classifiers are inadequate for HSR imagery [17]. In this
context, the features [1, 11, 18, 19, 29, 32, 35] were used to enhance the spectral information
and raise the classification accuracy. Ouma and Tateishi [29] presented a pre-classification
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filtering method based on unsupervised multiresolution non-linear image filtering that com-
bines spectral and textural image characteristics. The local texture characteristics were extract-
ed via wavelet decomposition. Huang et al. [18] proposed some statistical measures to extract
some structural features and used different classifiers including maximum likelihood classifier,
BPNN, probability neural network based on expectation–maximization training, and SVM to
process the hybrid spectral-structural features after the steps of spatial feature extraction and
dimension reduction. Pingel et al. [32] developed the Morphological Filter algorithm to be
competitive with other ground filtering algorithms for LIDAR and established a baseline
performance for a progressive morphological filter implemented in its simplest form.

Researchers proposed to exploit spatial information for complementing the spectral
feature space and enhancing separability of the spectrally similar classes [5, 11, 42].
Dópido et al. [11] developed a semisupervised self-learning framework in which the
machine learning algorithm itself selects the most useful and informative unlabeled
samples for hyperspectral image classification. However, this method was dependent
on the assumption that the pixels with similar spectral signature belong to the same class.
This might be possible for hyperspectral images, but not for multispectral images, since
they contain many spectral ambiguities (e.g., roofs and roads, water and shadow).
Bruzzone et al. [5] proposed a pixel-based system, which was aimed at obtaining
accurate and reliable maps both by preserving the geometrical details in the images
and by properly considering the spatial-context information, for the supervised classifi-
cation of high spatial resolution images. Tuia et al. [42] presented a classification method
for very high resolution images by exploiting efficient multisource information, both
spectral and spatial through the combination of SVMs and composite kernels. Fauvel et
al. [13] used kernel methods which deal with the joint use of the spatial and the spectral
information through a support vector machine formulation.

Moreover, this is meaningful for classification of land cover, but not sufficient for appli-
cations of urban mapping, since the impervious surfaces need to be elaborated into more
detailed objects (e.g., tree, residential area, and water). Therefore, it is desired to explore more
effective algorithms, such as sparse representation and compressive sensing. Sparse represen-
tation has been an extremely powerful tool in many classical signal processing applications.

For sparse representation, Chen and Donoho proposed the so-called Basis Pursuit (BP)
algorithm [7]. BP is a principle for decomposing a signal into an optimal super position of
dictionary elements, and optimal means to have the smallest l1 norm of coefficients among all
such decompositions. Mallat and Zhang [24] used an over-complete redundant dictionary for
signal representation. They gave rise to the Matching Pursuit (MP) algorithm for the sparse
reconstruction, and pointed out that the stronger a sparse signal is, the more accurate the
reconstruction will be. The MP algorithm is a greedy algorithm, but is different from the BP
algorithm. MP is a local optimization algorithm, of which the final result may not converge
and may not necessarily to find the global optimal solution. Differently, Tropp and Gilbert
presented the Orthogonal Matching Pursuit (OMP) algorithm [38] to deal with the conver-
gence problem to obtain the most matching signal. In optimization, OMP selects an atom set to
conduct the orthogonal optimization Gram-Schmidt in each iteration. In OMP, fewer samples
are required and less iterative times are needed to achieve the optimal result compared with
MP. Olshausen [28] pointed out that each image has a sparse nature.

Whereafter, the theory of the sparse theory developed rapidly. It has been adopted and
employed effectively in the field of image processing [2, 12]. Furthermore, a better
performance of sparse optimization algorithm [33] was proposed. Donoho and Candes
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presented the concept of compressive sensing [10] based on the sparse theory to further
develop the sparse signal representation theory.

In very recent years, sparse representation has been further studied in literature [21, 22, 26,
42, 44, 45]. A nonlocal weighted joint sparse representation classification method [46] was
proposed to improve the remote sensing image classification result, with different weights, for
different neighboring pixels around the central test pixel, and the simultaneous orthogonal
matching pursuit technique. Moody et al. [26] presented a technical method of land-cover
unsupervised classification in multispectral satellite imagery, using sparse representations in
learned dictionaries: clustering on sparse approximations and applying a Hebbian learning rule
to build multispectral, multi-resolution dictionaries. In [22], Zhang et al. proposed a
hyperspectral image anomaly detection approach using background joint sparse representation,
which adaptively selects the most representative background bases for the local region. Zhang
et al. [21] put forward a superpixel-level sparse representation classification resolution with
multitask learning for hyperspectral imagery. Their proposed algorithm exploited the class-
level sparsity prior for multiple-feature fusion, and the correlation and distinctiveness of pixels
in a spatial local region. Yu et al. [44] proposed a remote sensing image classification method
based on sparse component analysis, whose classification result is more reliable and more
accurate.

3 Image Classification Model

In this paper, we focus on classification of a given high-resolution image using DigitalGlobe’s
WorldView-2 satellite imagery. The main contribution of this paper is to develop an efficient
solution for image classification by using nearest neighbor joint sparse linear combination to
build the feature dictionary and applying pursuit algorithm joint sparse representation for
image reconstruction. In this section, we mainly introduce the key components of our proposed
method: the feature dictionary construction, sparse representation and image reconstruction.
The idea of constructing the dictionary is to find a best matrix to represent all data vectors
through extracting features directly from the data itself by nearest neighbor. We select
randomly the training data set to construct the feature dictionary according to their classes
by a sparse linear combination. So we describe the algorithm used to solve for the sparse
representation. In our method, the sparse coefficients of test samples are divided into several
groups, corresponding to the dictionary components representing specific classes. The test
samples of image are represented by the sparse representation. We then discuss how to
determine the class of the test pixel. The proposed classification model is shown in Fig. 1.
The proposed classification model mainly consists of three steps: (1) feature dictionary
construction, (2) sparse representation, (3) classification decision.

3.1 Sparse representation model

Let f be a pixel observation from an input signal with l − dimension for classification. In the
sparse representation model, test spectral pixels, which lie approximately in several subspaces,
are approximately represented by a few training examples. Suppose we have T distinct classes,
and any one training sample for each class have n training data. This training sample can be
trained to k dictionary elements. And test samples can be modeled to the T subspaces according
to the T classes from the dictionary D. If the pixel f belongs to the ith class, we can represent f
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through these training data as a linear combination for the ith class. Thus, the test pixel f can be
expressed as

f ¼ Dα ¼ di1 ⋯dij⋯ din
h i αi

1
⋮
αi
n

2
4

3
5 ¼ di1α

i
1 þ di2α

i
2 þ⋯þ dinα

i
n; 1≤ i≤T ; 1≤ j≤n; ð1Þ

where D = {dj
i}j = 1,i = 1
n,T is a feature dictionary which totally has n training data from the input

sample of ith class and αi is a sparse vector. The coefficients of the sparse representations α
can be decomposed to T pieces, each αi is a sparse vector which has only a few nonzero
entries. Therefore, the sparse representation of the test pixel f can also be expressed as a linear
combination of only the K dictionary atoms αk (k = 1, . . . , K) which is a vector with K
(K = ‖α‖0) nonzero entries. Thus, f can be written as

f ¼ Dα ¼ di1 ⋯ diK
� � αi

1
⋮
αi
K

2
4

3
5 ¼ di1α

i
1 þ di2α

i
2 þ⋯þ diKα

i
K ; 1≤ i≤T ð2Þ

where K denotes the number of nonzero elements in the vector α. Next, we will train a
dictionary from a set of input samples. And we also will introduce how to obtain the sparse
vector α and how to classify test samples from the sparse vector α.

3.2 Feature space construction

We consider a method for constructing the dictionary that produces sparse representa-
tions for the training examples. For sparse representation, it is a procedure of computing
the representation coefficients based on the given examples and dictionary. Here, we will
construct the feature dictionary from the input examples. In the proposed model, assume

Fig. 1 Proposed classification model
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that the pixels of spectral features belonging to the same class approximately lie in the
same subspace. The construction strategy of the feature dictionary is to model the best
centers based on the training examples to express the most distinct characteristics of the
presented objects.

Given a remote sensing image with Q channels and N ×M pixels as an input signal be such
a set F = {fi,j

l }l = 1,i = 1,j = 1
Q,N,M (1 ≤ l ≤Q, 1 ≤ i ≤N, 1 ≤ j ≤M), where l = 1, 2,⋯,Q, and N,M is the

number of rows and columns respectively. Suppose there be T distinct classes contained in the
image in accordance with different plants or objects, and any one class has n training data. We
select T types of representative samples from the training dataset, and input them into a sample
set, S = (s1,⋯, si,⋯, sT) (1 ≤ i ≤ T), where si is a subset corresponding to the ith class. It
contains n data points [x1

i , x2
i ,⋯, xn

i ] with l bands, where xi is a data point in the subset si. Then,
we construct the feature vector D = [d1, d2,⋯, dK], which can be viewed as a dictionary
including a total of K (K < <NM) elements, where D ∈ℝQ ×K. In addition, associated with
this feature matrix, we have a class index table W = [I1,⋯, Ii,⋯ IK], where 1 ≤ Ii ≤ T, and Ii
records the class label of the feature pixel i, i = 1, 2,⋯,K, that is, Ii indicates the class which
the dictionary element di belongs to. For the given training set of image patches, each is
reshaped as a two-dimensional vector. For better description, this image is rewritten as
F = {fj

l}l = 1,j = 1
Q,NM , (1 ≤ l ≤Q, 1 ≤ j ≤NM), which can be represented as a sparse linear combination

of these feature vectors. The representation of F may be approximate, that is F ≈Dα, which
satisfies the constrain ‖F −Dα‖2 ≤ ε . The vector α involves the representation coefficients of
the image F. We can write fj =Dαj, where αj = ej is a vector from the trivial basis, with all zero
elements except the one in the pth position. The index p is selected such that

∀p≠q f i−Dαp

�� ��2
2
≤ f i−Dαq

�� ��2
2
: ð3Þ

For the sparse representation of the data set F, the minimization of error is computed in
order to search the best possible dictionary D with K items. And it could alternatively be met
by considering

< D;W ;α >¼ argmin
α

F−Dαk k22 s:t ∀ j; α j ¼ e j: ð4Þ

Algorithm 1 (Training a dictionary).

Task: Find a best matrix to represent all data vectors for constructing a dictionary by nearest neighbor.
Input: A remote sensing image with Q channels and N ×M pixels F = {fi,j

l }l =1,i= 1,j =1
Q,N,M , 1 ≤

l ≤Q, 1 ≤ i ≤N, 1 ≤ j ≤M.
Initialization: Randomly select k (k =K/T) data points from a sample subset si as

the initial representatives φi = [φ1
i ,φ2

i ,⋯,φk
i], set i = 1 and repeat it until i

reaches T.
1: Compute the k best centers from these n data points for each training sample si,

and wj
i records the index of the best possible point for each data sample,

wj
i = {p| ∀ p ≠ q, ‖xj

i −φp
i
‖2 < ‖xj

i −φq
i
‖2}, 1 ≤ p, q ≤ k, 1 ≤ j ≤ n, 1 ≤ i ≤ T.

2: The representatives [ψ1
i ,ψ2

i ,⋯,ψk
i] is obtained by the following formula:

ψi = {xp
i| ∀ p ≠ q, ‖xp

i − xm
i
‖2 < ‖xq

i − xm
i
‖2}, xp

i, xq
i, xm

i ∈φi.
3: Update φi by φi =ψi.
4: Go back to step 2. Repeat it until ψi is equal to φi.
Output: A dictionary and a class vector.
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3.3 Reconstruction and classification

We describe the way we use the sparse vector α for a test sample fj (1 ≤ j ≤NM) when
reconstruct and classify it. At the moment, the dictionary D is obtained and known. Every
image patch fj could be represented sparsely over this dictionary. And the representation αj

satisfying Dαj = fj is obtained by solving the following optimization problem:

α̂ j ¼ arg min α j

�� ��
0
s:t Dα j ¼ f j: ð5Þ

In order to solve the problem of searching the sparsest representation of fj, the equality
constraint in (5) can be formulated to an inequality one as

α̂ j ¼ arg min α j

�� ��
0
s:t Dα j− f j

�� ��
2
≤ε; ð6Þ

where ε is the error. The above problem can also be considered as minimizing the approxi-
mation error within a certain sparsity level. We can compute the error residual as rj = fj −Dαj.
Notice that the above optimization problem can be replaced by

α̂ j ¼ arg min Dα j− f j

�� ��
2
s:t α j

�� ��
0
≤L; ð7Þ

where L express the sparsity level for the approximation error. Compute the residual for the ith
class, that is, the error between the test sample fj and the reconstruction from training samples
in the ith class. The class of fj can be determined by the recovered sparse vector α̂ j as

c f j

� �
¼ arg max

i
jDiα̂i

jj; s:tmin∥ f j−D
iα̂i

j∥2
; ∀i; 1≤ i≤T ; ð8Þ

where α̂i
j denotes the portion of the recovered sparse coefficients corresponding to the training

samples in the ith class.
Eventually, we can obtain the final classification result F̂ for the image F as (9).

F̂ ¼ f j f j

�� ¼ colorW j0ð Þ;∀c f j

� �
∈W j0ð Þ; 1≤W j0ð Þ≤T ; 1≤ j≤NM

n o
ð9Þ

Algorithm 2 (Reconstruction and Classification).

Task: Construct the image and determine the class of the test pixels.
Input: A normalized feature dictionary D, class vector W and sparsity level L.
Initialization: Set j = 1 and repeat it until j reaches NM.

1: Choose the index j0, 1 ≤ j0 ≤K, such that φ j0
T r j0

���
��� is maximized. We say that j0 is the

index of the maximum value of the product of the residual rj and the atom φj, j = 1,
2,⋯,NM, from the class index table W, i.e. j0 = argmaxj = 1…NM|〈rj,φj〉|.

2: Update the index set by Ij = Ij − 1 ∪ {j0} and the size incremental matrix by

Aj ¼ Aj−1∪ φ j0

n o
, when the product of the residual rj and the atom φj is the maximum

value. Then, remove the current column vector φ j0
from the dictionary D, denoted

by D ¼ Dn φ j0

n o
.

3: In this step, first, decompose Aj by Aj =UZVT. Then we can obtain the orthogonal
vectors U and VT, and the singular value vector Z whose diagonal elements are
called singular value. In addition to the diagonal elements, the value of its
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elements is zero. Therefore, we calculate the sparse coefficient by α j ¼ V � 1
Z

�UT and recompute αj by αj =αj × fj.
4: The residual is updated by the formula as r j ¼ f j−Dj0α j, s. t ‖αj‖0 ≤ L.
5: The class of fj can be determined by the recovered sparse vector α̂ j as

c f j

� �
¼ argmax

i
Diα̂i

j

���
���, s. t min f j−D

iα̂i
j

���
���
2
, ∀ i, 1 ≤ i ≤ T.

6: The final classification result F̂ for the image F is obtained as

F̂ ¼ f jj f j ¼ colorW j0ð Þ;∀c f j

� �
∈W j0ð Þ; 1≤W j0ð Þ≤T ; 1≤ j≤NM

n o
.

7: j = j + 1
Output: The coloured classification image .

4 Experimental results and analysis

In this paper, we focus on classification using DigitalGlobe’s WorldView-2 satellite imagery.
The sensor provides the highest resolution commercially available multispectral data and has
eight multispectral bands: four standard bands (red, green, blue, and near-infrared 1) and four
new bands. Ordered from shorter to longer wavelength, the list of bands is coastal blue, blue,
green, yellow, red, red edge, near-infrared 1 (NIR1), and near-infrared 2 (NIR2).

In this section, two data sets are applied for the experiment. We adopt just three bands (Red,
Green, and Blue) shown in Fig. 2. We illustrate the effectiveness of the proposed classification
method by comparing it with other traditional classifiers, which can be divided into two
categories: supervised methods and unsupervised methods according to the previous works of
researchers in this field. The first category is supervised method which focuses on learning
feature representation and whose training samples with identity labels are required, for
example, BPNN, SVM and CART. The second category is unsupervised method, which
mainly focuses on feature extraction, such as K-means. The experiments aim to compare the
performance of the proposed method with the other four classifiers. Thus, the average accuracy
(AA), overall accuracy (OA), Kappa (Ka), producer’s accuracy (PA), and user’s accuracy (UA)

Fig. 2 The employed remote sensing images: (a) image 1 and (b) image 2
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are used as the accuracy statistical parameters. For each image, we quantitatively and visually
compare and evaluate the classification results of these methods.

4.1 Experiment I for the image 1

The first dataset in our experiments was obtained from DigitalGlobe, which was acquired on
17 May 2010, as shown in Fig. 2a. It contains eight typical classes, including the bare land,
residential area, grass, tree, and four different crops, which are labeled as: 1-bare land, 2-
residential area, 3-grass, 4-tree, 5-crop1, 6-crop2, 7-crop3, and 8-crop4, respectively. Please
refer to Fig. 3a. We randomly select around 11 % samples with ground truth class labels to
train the classifiers, and use the rest as testing samples for evaluation. The number of training
and testing samples for each class is shown in Table 1.

In order to verify the superiority of our proposed method, we make classification to
this image by employing the proposed method, BPNN, SVM, CART and K-means.
Figure 3 shows the classification results of the five classifiers. Thereafter, we analyze
and compare their experimental results. The classification maps are shown in Fig. 3b-f. It
is clear that in the K-means map, shown in Fig. 3f, all kinds of objects are grievously

(a) (b) (c)

(d) (e) (f)

Fig. 3 Classification map for the image 1: (a) ground truth, (b) the proposed method, (c) SVM, (d) CART, (e)
BPNN and (f) K-means. (Objects are labeled as: 1-bare land, 2-residential area, 3-grass, 4-tree, 5-crop1, 6-crop2,
7-crop3, and 8-crop4. And the upper legend is for Fig. 3b-e, the lower for Fig. 3f.)
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misclassified; as for the BPNN method, shown in Fig. 3e, the objects illustrated with
highlight colors, such as the bare lands, residential areas, and crops2, are very easy to
recognize, whereas the green-colored objects, such as the crops1, crops2, crops3, crops4,
and especially the grasses and trees, are seriously misclassified; also, many crop4 pixels
are wrongly labeled as grasses in the classification map; for the SVM and CART
classification result in Fig. 3c, d, it can be clearly seen that there is severe misclassifi-
cation among these classes. Relatively, through the comparison of our proposed method
with the other four methods, our proposed method has achieved a great improvement,
namely, the better distinction of objects, particularly the bare lands, residential areas,
grasses, trees, crops3, and crops4. Only crops1 and crops2 have been classified with
confusions. The result of the proposed method is shown in Fig. 3b.

The classification accuracies for each class using different classifiers are provided in
Table 2. In this Table, AA, OA, Ka, PA, and UA are the statistics of the confusion

Table 1 The training and testing
sets for each class (labeled as 1-bare
land, 2-residential area, 3-grass, 4-
tree, 5-crop1, 6-crop2, 7-crop3, and
8-crop4 in Fig. 3a)

Class Samples (pixels)

No Name Train Test

1 Bare land 4,612 39,487

2 Residential area 2,399 21,846

3 Grass 2,986 26,519

4 Tree 2,612 23,353

5 Crop1 5,978 54,604

6 Crop2 2,254 21,088

7 Crop3 905 8,264

8 Crop4 4,436 40,801

Total 26,182 235,962

Table 2 The classification accuracies for different methods in Fig. 2a

Class Proposed method BPNN SVM CART K-means

PA UA PA UA PA UA PA UA PA UA

1 0.9875 0.9899 0.8775 0.9564 0.4725 1 0.4300 0.8431 0.4900 0.8750

2 0.9150 0.9734 0.8350 1 0.2400 0.2400 0.0600 0.0937 0.4500 0.2571

3 0.8750 0.8413 0.6600 0.3419 0 0 0.0900 0.0643 0.5200 0.5977

4 0.9300 0.9538 0.6900 0.4395 0 0 0 0 0.4500 0.3600

5 0.8750 0.8454 0 0 0 0 0.1100 0.0833 0.4900 0.4712

6 0.8350 0.7840 0.6400 0.4076 0.1300 0.1340 0.0600 0.0380 0 0

7 0.8950 0.9521 0.6800 0.7556 0 0 0.0500 0.0394 0.6800 0.4503

8 0.9100 0.9010 0.2100 0.6364 0 0 0 0 0.7500 0.3521

AA 0.9028 0.5741 0.1053 0.1000 0.4788

OA 0.9122 0.6717 0.2055 0.1000 0.5127

Kappa 0.8984 0.6038 0.0785 0.0286 0.3929

The abbreviations in the table are the average accuracy (AA), overall accuracy (OA), producer’s accuracy (PA),
user’s accuracy (UA)
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matrix. Table 3 lists the confusion matrix of the proposed method. AA is the mean of the
eight class accuracies. OA is computed as the ratio between the correctly classified
testing samples and all the testing samples. Ka coefficient is a quantitative analysis for
the classification precision and degree of agreement between the classification map and
the ground truth based on the confusion matrix.

Combining the classification maps in Fig. 3b-f with the accuracy statistics in Tables 2
and 3, we can see that according to the ground truth, some pixels of crop2 are wrongly
labeled as crop1, while some pixels of crop1 are misclassified as crop2 and residential
area in the classification map of the proposed method; crop1 and crop4 cannot be
identified in the BPNN map; there are several colors for each object in the SVM, CART
and K-means map, for example, some pixels of the bare land are misclassified as tree and
crop3 in the SVM map, and some pixels of tree are wrongly labeled as residential area,
crop1 and crop2 in the CART map.

From Table 2, we can observe that the proposed method has achieved the highest PA and
UA, and performed better in AA, OA, and Kappa coefficient. The best classification results for
different objects are achieved by the proposed method. Moreover, we can see that the proposed
method performs well in many aspects. The highest accuracies are achieved for the proposed
method. The OAvalues of the proposed method, BPNN, SVM, CART and K-means are 91.22
%, 67.17 %, 20.55 %, 10 % and 51.27 %. The Ka values are 0.8984, 0.6038, 0.0785, 0.0286
and 0.3929. The AA values are 90.28 %, 57.41 %, 10.53 %, 10 % and 47.88 %. Compared
with the BPNN, SVM, CART and K-means classifier, the PA values of the proposed method
for each class are increased by at least 8 %, 51.5 %, 55.75 %, and 16 % respectively, and the
UA values for each class are increased by at least 3.35 %, 65 %, 14.689 %, and 11.49 %
respectively. Besides, the PA values of the proposed method for all classes are increased
averagely by 32.88 %, 75.75 %, 80.28 %, and 42.41 % respectively, and the UAvalues for all
classes are increased averagely by 33.79 %, 73.34 %, 75.99 %, and 48.47 %. The best
classification results of different objects are achieved for the proposed method. Table 3 shows
the confusion matrix of Fig. 2a.

Table 3 The confusion matrix for the proposed method in Fig. 2a

Confusion Matrix

Class 1 2 3 4 5 6 7 8 NUM UA

1 395 4 0 0 0 0 0 0 399 0.9900

2 5 183 0 0 0 0 0 0 188 0.9700

3 0 0 175 6 10 6 0 11 208 0.8400

4 0 0 9 186 0 0 0 0 195 0.9500

5 0 7 0 0 175 18 0 7 207 0.8500

6 0 6 4 0 15 167 21 0 213 0.7800

7 0 0 0 0 0 9 179 0 188 0.9500

8 0 0 12 8 0 0 0 182 202 0.9000

NUM 400 200 200 200 200 200 200 200 1800

PA 0.9875 0.9150 0.8750 0.9300 0.8750 0.8350 0.8950 0.9100

OA 0.9122

Kappa 0.8984
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4.2 Experiment II for the image 2

In order to verify the stability of the proposed classification method, we select another HSR
image shown of WorldView-2 in Fig. 2b. We consider the WorldView-2 true-color image with
1.8-m spatial resolution of a suburban area, which has eight bands. We adopt just three bands
(Red, Green, and Blue). This image contains six main kinds of objects: 1-lake, 2-tree, 3-short
bush, 4-road, 5-grass, and 6-residential area, as shown in Fig. 4a. The training and testing
samples are chosen from the reference data.

We also apply the proposed method, BPNN, SVM, CART and K-means classifier to
classify the image 2. The classification maps are shown in Fig. 4b-f. By comparing the
classification map in Fig. 4b-f with the original image in Fig. 4a, we can see that some pixels
of residential area and grass are misclassified as road in Fig. 4b; some pixels of lake, short bush
and residential area are labeled as tree, some pixels of road are labeled as residential area, and
some pixels of residential area are labeled as road in Fig. 4c; some pixels of lake and grass are
labeled as tree, some pixels of lake and road are labeled as residential area, and some pixels of

(a) (b)

(d) (e) (f)

(c)

Fig. 4 Classification map for the image 2: (a) ground truth, (b) proposed method, (c) SVM, (d) CART, (e)
BPNN and (f) K-means. (Objects are labeled as: 1-lake, 2-tree, 3-short bush, 4-road, 5-grass, and 6-residential
area. And the upper legend is for Fig. 4b-e, the lower for Fig. 4f.)
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residential area are labeled as road in Fig. 4d; the obvious error is the misclassification of grass
as residential area, some pixels of road are misclassified as residential area, and the lake and
bush are both misclassified as tree in Fig. 4e. In Fig. 4f, the tree and residential area are
obviously muddled, some pixels of bush are misclassified as the grass, some pixels of grass are
misclassified as the lake, and the tree is seriously misclassified as the lake.

From the results in Tables 4 and 5, we can see that the highest accuracies are also achieved
for the proposed method. The OAvalues of the proposed method, BPNN, SVM, CARTand K-
means are 92.5 %, 83.86 %, 65.71 %, 65.21 % and 66 % respectively. The Ka values are
0.9082, 0.8030, 0.5896, 0.5853 and 0.5872 respectively. The AAvalues are 91.88 %, 82.89 %,
64.17 %, 72.17 % and 64.08 % respectively. Compared with the BPNN, SVM, CART and K-
means classifiers, the PAvalues of the proposed method for each class are increased by at least
1.5 %, 3.5 %, 11 % and 11.5 %, respectively. Moreover, compared with the BPNN, SVM,
CART and K-means, the PA values of the proposed method for all objects are increased
averagely by 8.99 %, 23.71 %, 19.71 % and 27.79 % respectively, and the UA values for all
classes are increased averagely by 9.95 %, 18.42 %, 20.52 % and 33.06 % respectively. The

Table 4 The classification accuracies for different methods in Fig. 2b

Class Proposed method BPNN SVM CART K-means

PA UA PA UA PA UA PA UA PA UA

1 0.9625 0.9722 0.8950 0.9702 0.5100 0.9623 0.4500 1 0.7750 0.9422

2 0.9200 0.9634 0.8150 0.8446 0.8300 0.4049 0.8100 0.4682 0 0

3 0.9300 0.9163 0.8100 0.7397 0.8200 0.5777 0.8150 0.5850 0.815 0.5470

4 0.8550 0.9048 0.7582 0.6571 0.8200 0.8039 0.7250 0.6842 0.725 0.6776

5 0.9450 0.8630 0.9300 0.775 0.4600 1 0.7900 1 0.79 0.6723

6 0.9000 0.8911 0.7650 0.9272 0.6500 0.6566 0.7400 0.5422 0.74 0.6884

AA 0.9188 0.8292 0.6417 0.7217 0.6408

OA 0.9250 0.8386 0.6571 0.6521 0.6600

Kappa 0.9082 0.8030 0.5896 0.5853 0.5872

Table 5 The confusion matrix for the proposed method in Fig. 2b

Confusion Matrix

Class 1 2 3 4 5 6 NUM UA

1 385 2 2 2 0 5 396 0.9722

2 3 184 4 0 0 0 191 0.9634

3 4 2 186 0 11 0 203 0.9163

4 0 5 0 171 0 13 189 0.9048

5 7 3 8 10 189 2 219 0.8630

6 1 4 0 17 0 180 202 0.8911

NUM 400 200 200 200 200 200 1400

PA 0.9625 0.9200 0.9300 0.8550 0.9450 0.9000

OA 0.9250

Kappa 0.9082
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best classification results of different objects are also obtained for the proposed method. Table
5 shows the confusion matrix of Fig. 2b.

Finally, we compare the different methods in terms of computational cost, which is the CPU
time computed by Matlab function and used to evaluate those methods. As can be seen from
Table 6 and Fig. 5, the proposed method takes about 112 s in the first dataset and about 48 s in
the second dataset to train the dictionary and make a decision; the computational cost of the
proposed method is almost the same as SVM, more than the method of BPNN and CART, but
far less than K-means.

5 Conclusion and Future Work

In this paper, we tackle the problem of the classification of the HSR remote sensing image
using the proposed method based on sparse representation by representing the test samples
through a dictionary. The dictionary is obtained by training samples according to their classes
for a sparse linear combination. We discuss the specific idea of constructing the dictionary.
That is how to compute a best matrix to represent all data vectors by nearest neighbor. We also
describe the algorithm used to solve for the sparse representation. We then discuss how to
construct the image and how to determine the classes of the test pixels. The experimental
results indicate that our method has performed better and achieved higher accuracies in the
verified four real remote sensing images.

In the future work, we plan to explore more properties as feature and work toward
combining the proposed approach with spectral and spatial features, both at the feature
and decision levels, to improve classification accuracy. And we also need to speed up the
proposed method. The end goal of this work is to detect yearly and seasonal changes in
vegetation cover. Additionally, we also explore how to construct dictionaries to expand
to images from the same area in different seasons, and make use of them for change
detection.

Table 6 Computational cost (CPU time) of the different methods in Fig. 5

Proposed CART SVM BPNN K-means

Image1 111.5279 0.2700 106.2532 83.1489 362.3897

Image2 48.0666 0.2237 49.0674 23.5600 298.5017

Fig. 5 Computational cost (CPU
time) of the different methods
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