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Abstract The knowledge of where a person is looking is useful in human computer inter-
action as well as human behavior analysis. Headpose estimation from low resolution images
is still a challenge problem due to noisy feature representation for low resolution images.
In this paper, we investigate transfer learning technique to conquer the weakness of the
apperance-based feature of humans head-pose when their relative locations to far-field cam-
eras are different. We evaluate our methods on public datasets which prove the efficiency of
our proposed method.

Keywords Headpose estimation · Low resolution images · Transfer learning

1 Introduction

Tracking of people and localizing their head orientation or gaze direction provides addi-
tional support to human behavior studies. For example, people nod to indicate that they
understand what is being said. Computing the direction of one’s head/eye orientation
enables the identification of who the intended target of a conversation is. However, most
contemporary methods, which estimated a person’s focus of attention employing head-
pose and eye-gaze cues, rely on high resolution images, close-range camera and a highly
constrained context.

From the visual analysis viewpoint, focus-of-attention (FOA) by estimating the head
pose in a dynamic environment is challenging due to its unstructured behavior, possiblity
of occlusion, low resolusion image, not linear relationship between headpose angle and the
target location, etc.
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In this work, a multi-cameras system is used to overcome the occulusion problem. Then
the robust Kullback Leibler Divergence [21] and Covariance Descriptor [29] features are
proposed for representing low resolusion images. Finally, we combine a tracker-based pose
estimator and an appearance-based head pose predictor to do head pose estimation which
would eventually lead us to estimate the personality of the participants.

Moreover, under a dynamic and unstructured setting, persons move freely which might
cause the changing in their appreance. The feature distribution changes dramatically with
respect to the relative location of far-field cameras. Therefore, the appearance-based feature
model of human head-pose needs to be updated according to their relative location with
the camera. Conventional machine learning algorithms perform poorly under this variant
distribution setting. Consequently, we introduce the transfer learning concept to conquer
this challenging problem. By doing this, we only need to collect a small number of samples
in different locations in the room and use transfer learning to estimate the head pose in all
other locations of the room.

The rest of this proposal is organized as follows. In Section 2, we review the state of the
art on head pose estimation, classification and transfer learning. We discuss of our method
in details in Section 3. Section 4 illustrates some results. Section 5 draws the concluding
remarks of this paper.

2 Related work

During the past decades, researchers modeled the human behaviour using multimodal
approaches based on video and audio. Generally speaking, most of the works firstly extract
some discriminant features from humans, especially visual features of humans’ head/face
and audio features of humans’ speaking activity. Then they fuse the data to model some
specific behaviours such as interest, puzzlement and frustration, etc.

2.1 Head pose estimation

For human head pose estimation, what we need to do is to estimate the three head rotations
with respect to the cameras which are represented by the yaw (or pan) angle, pitch (or tilt)
angle and roll angle (as seen in Fig. 1).

Several popular methods [7], such as Appearance template methods, Tracking methods,
Geometric methods are used in the research area of human head pose estimation. Appear-
ance template methods compare a new image of a head to a set of exemplars to find
the most similar view which is always the shortest distance between the new image and
the exemplars. Tracking methods combine the tracking of the person and estimating head
pose simultaneously from video frames. Geometric methods use the location of particular
features such as eyes and mouth to determine the pose from their relative configuration.

For high-resolution images, there have been already some effort to do head pose estimation
and gaze extraction. Perez and Cordoba [1] investigated gaze recognition through tracking
of the eyeballs. Gee and Cipolla’s [15] gaze recognition method was based on 3D geometric
relationship of facial features. However, all the features extracted for these methods are
based on the high-resolution image. Most cameras in public areas are subject to complex
condition and low-resolution images which make these methods unreliable in practise.

For low-resolution images, Robertson and Reid [25] proposed a skin and hair color based
feature using color histograms for head pose estimation. However, this approach relied crit-
ically on good segmentation of skin and non-skin regions of a head image. Ba and Odobez
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Fig. 1 Three degree-of-freedom
of a human head

[3, 4, 26] proposed a method for low-resolution head pose estimation. However, their meth-
ods used a fixed camera, which could not solve the occlusion problem. Also, they modeled
tracking and pose classification as two paired tasks in a single framework which has the
problem that the head pose estimation accuracy is affected by the accuracy of the tracking
results. Tosato et al. [28] proposed the array of variances feature and classified the feature
on Riemannian manifolds. The array of variance feature could describe visual object at low
resolution better than other methods. However, the classification on Riemannian manifold
rather than on Euclidean manifold is time consuming and probably could not be used in
real-time systems. Yan et al. [32, 33, 37] proposed multi-task learning and transfer learning
for headpose estimation.

2.2 Classification

Appearance-based head pose estimation can be translated into a machine learning problem.
There are several basic learning algorithms that are widely used in machine learning area,
such as K-Nearest-Neighbor (KNN), Boosting and Support Vector Machine (SVMs).

K-Nearest-Neighbor (KNN) algorithm is a method for classifying objects based on
closest training examples in the feature space. The training examples are vectors in a multi-
dimensional feature space, each with a class label. The training phase of the algorithm
consists only of storing the feature vectors and class labels of the training samples. In the
classification phase, k is a user-defined constant, and an unlabelled vector (a query or test
point) is classified by assigning the label which is the most frequent among the k training
samples nearest to that query point.

Boosting refers to an effective method of producing an accurate prediction rule by
combining rough and moderate inaccurate rules of thumb. Freund and Schapire [14] pro-
posed AdaBoost which solved many practical difficulties of earlier boosting algorithms.
AdaBoost calls a given weak or base learning algorithm repeatedly in a series of rounds
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t = 1, ..., T . Once the weak hypothesis ht has been received. AdaBoost chooses a parame-
ter αt according to the error. The final hypothesis H is a weighted majority vote of T weak
hypotheses where αt is the weight assigned to ht .

Support Vector Machines (SVMs) [13] consider a d-dimensional feature space F which
is a subset of Rd and is spanned by a mapping ϕ. In a support vector (SV) setting, any
ϕ corresponds to a Mercer Kernel k(x, x′) =< ϕ(x) · ϕ(x′) > implicitly computing the
dot product in F . The goal of SVMs is to find some separating hyperplane described by a
vector w in the feature space F . Given training set pairs (xi, yi), i = 1, . . . , l, xi ∈ Rd and
yi ∈ {−1, 1}, the classification requires the solution of the following optimization problem:

= min
w,b,ζ

1
2w

T w + C
l∑

i=1
ξi

s.t.yi(w
T ϕ(xi) + b) ≥ 1 − ξi

ξi ≥ 0

(1)

where ξi represents the slack variable and
l∑

i=1
ξi measures the total classification error. The

objective function seeks a decision boundary that achieves a small classification error and
meanwhile creates a large margin, with two goals balanced by the scalar cost factor C.

2.3 Transfer learning

Traditional machine learning approches already achieve significant success in computer
vision area including classification, regression and clustering. However, traditional machine
learning algorithms are based on the assumption that training and testing data share the same
feature space and the same distribution. When the training and testing data distributions are
different, the accuracy of classification drops significantly. In this case, transfer learning
between different domains is desirable. Transfer learning assumes that training and testing
data could be from different domains and distributions. It is motivated by the fact that people
can intelligently apply knowledge learning previously to solve new problems faster. The
target of transfer learning is to find some commom property which is shared between the
training (or source) and test (or target) domain. Some representative work used for event
detection, egocentric activity recognition and multiview action recognition are [34–36]

In transfer learning, we have three main research issues: (1) what to transfer, (2) how to
transfer, and (3) when to transfer [22]. “What to transfer” solves the problem of which part
of knowledge can be transferred across domains or tasks. After discovering which knowl-
edge can be transferred, learning algorithms are developed to do “how to transfer”. “When
to transfer” asks under which situation the knowledge could be transfered in case some
negative transfer could even hurt the performance of the target domain.

There are several approaches to transfer learning. Instance-transfer [8, 17, 23, 27, 39, 40]
is to re-weight some labeled data in the source domain for using in the target domain due to
the assumption that certain parts of the data in the source domain can be reused for the target
domain. Feature-reperesentation-transfer [2, 9] is to find a “good” feature representation
that reduces the difference between the source target domains and the error of classification
and regression models. Parameter-transfer [5, 12] is to discover shared parameters or pri-
ors between the source domain and target domain models which can benefit from transfer
learning. Relational-knowledge-transfer [20] is to build a mapping of relational knowledge
between the source domain and the target domain.
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For our situation, we wish to minimize the difference among the changes of appearance
features when people stand in different locations relative to the cameras. We use an adaptive
multiple kernel learning method which belongs to the instance-transfer learning category.
Specifically, for each type of local features, we train a set of SVM classifiers based on a
combined training set from the two domains by using multiple base kernels of different
kernel types and parameters, which are further fused with equal weights to obtain an average
classifier. The objective function minimizes the structural risk functional and the mismatch
of data distributions between the source and the target domain simultaneously. The next
section presents our solution in detail.

3 Transfer learning for head pose estimation

The head-pose estimation process in the party scenario involves four steps. (i) Head feature
representation. (ii) Head pose classification.

3.1 Head feature representation

Face crops for the four camera views, obtained from the head localization procedure are
used for head pose prediction. We focus more attention on where are the persons looking at,
especially for the humans’ head horizontal rotation. Therefore, we discretized the space of
possible head rotations into 24 classes, 8 classes for pan (horizontal rotation) and 3 classes
for tilt (vertical rotation). We resize the head pose image to 20× 20 pixels for one cropping
and make four image as one panorama image. A template matching method is used for
the head pose estimation. In order to solve the problem of occlusion, we combine four
camera images as a panorama image to extract features and feed into the classifier to do the
prediction. This method improves the accuracy of estimation compared with using only one
camera output.

For low-level feature representation, there are two kinds of representation methods. The
first category is a sparse representation which consists of a set of representative local regions
obtained by an interest point detection algorithm. Reliable interest points should contain
valuable information about the local image content and should remain stable under changes,
such as viewpoint and illumination changes. Histogram-based representations of gradients,
such as scale-invariant feature transform descriptors (SIFT) [19] and shape contexts belong
to this category.

The second category is a dense representation which consists of a set of representative
regions obtained inside a detection window. The entire image is scanned densely and a
learned classifier of object model is evaluated. Intesity templates and principal component
analysis (PCA) coeffients belong to this category.

We present two kinds of low-level features for human head representation which are
Kullback Leibler Divergence [21] and Covariance Descriptor [29].

It is critical to represent the head pose based on the good separation of background, hair
and skin/non-skin pixels. The idea is to compute each input image pixel to a set of mean
appearance regardless pose. We compute the Kullback Leibler divergence (KL) distance
[21] between the input test image and the mean template image for every pose. We choose
the maximum value of KL distance for each pixel in RGB channel as the feature.

θi,j = max
c

{

max
RGB

{

pc
i,j ∗ log

pc
i,j

qc
i,j

}}

(2)
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where i, j represents each pixel, pc
i,j and qc

i,j are the mean image and test image pixel
intensity value. θi,j is the maximum coefficient from all 24 classes and RGB channels for
each pixel.

We also investigate another feature representation called covariance descriptor [29]. For
low resolution images, the number of features that can be extracted are relatively small and
quite unreliable.

Let I be a digital image and F be the W × H × d dimensional feature image extracted
from I

F (x, y) = ϕ(I, x, y) (3)

where ϕ can be any mapping such as intensity, color, gradients, filter responses, etc. The
region R in the image can be represented with a d × d convariance matrix of the feature
points

CR = 1

S − 1

S∑

i=1

(zi − μ)(zi − μ)T (4)

{zi}i=1..S are the d-dimensional feature points inside a region, μ is the mean of the points.
Figure 2 shows the covariance descriptor of a region in the image.

Integral images are intermediate image representations used for the fast calculation of
region sums [30]. Let P be the W × H × d tensor of integral images

P(x′, y′, i) =
∑

x≤x′,y≤y′
F(x, y, i) i = 1...d (5)

and Q be the W × H × d × d tensor of second-order of integral images

Q(x′, y′, i, j) =
∑

x≤x′,y≤y′
F(x, y, i)F (x, y, j) i, j = 1...d (6)

Then Px,y is the d-dimensional vector and Qx,y is the d × d dimensional matrix

Px,y = [P(x, y, 1)...P (x, y, d)]T (7)

Qx,y =
⎡

⎣
Q(x, y, 1, 1)...Q(x, y, 1, d)

...

Q(x, y, d, 1)...Q(x, y, d, d)

⎤

⎦ (8)

for a region R. We could fast calculate the covariance of a region R(x′, y′; x′′, y′′) using
integral image as

CR(x′,y′;x′′,y′′)
= 1

S−1 [Qx′′,y′′ + Qx′−1,y′−1 − Qx′′,y′−1 − Qx′−1,y′′
− 1

S
(Px′′,y′′ + Px′−1,y′−1 − Px′′,y′−1 − Px′−1,y′′)

(Px′′,y′′ + Px′−1,y′−1 − Px′′,y′−1 − Px′−1,y′′)T ]
(9)

Fig. 2 Covariance descriptor
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where (x′, y′) and (x′′, y′′) are the upper-left and bottom-right coordinator of a region in an
image and S = (x′′ − x′ + 1) · (y′′ − y′ + 1). Therefore, after constructing integral images,
the covariance of any rectangular region can be computed in O(d2) time.

The benefit of covariance descriptor is that it could combine several different features
such as color, texture in a single descriptor.

3.2 Transfer learning on head-pose estimation

Assume Pr(x, y) and Pr ′(x, y) are two different distributions, the objective of learning
method is to minimize the expected risk

R[Pr, θ, l(x, y, θ)] = E(x,y)∼Pr[l(x, y, θ)] (10)

of a loss function l(x, y, θ) which depends on a parameter θ . Here, the notation (x, y) ∼ Pr

means (x, y) belongs to the distribution Pr(x, y).
In practice, we only observe examples (x, y) drawn from Pr(x, y) which means we use

empirical average

Remp[Pr, θ, l(x, y, θ)] = 1

m

m∑

i=1

l(xi, yi, θ) (11)

To avoid overfitting, we add a regularizer �(θ) and minimize the following equation

Rreg[Pr, θ, l(x, y, θ)] = Remp[Pr, θ, l(x, y, θ)] + λ�(θ) (12)

where λ is the trade-off coefficient between loss function and regularizer.
Importance sampling is a general technique for estimating properties of a particular dis-

tribution, while only having samples generated from a different distribution rather than the
distribution of interest. If we use importance sampling,

R[Pr′, θ, l(x, y, θ)] = E(x,y)∼Pr′ [l(x, y, θ)]

= E(x,y)∼Pr′ [Pr(x, y)
Pr′(x,y)
Pr(x,y)

l(x, y, θ)]

= E(x,y)∼Pr[Pr′(x,y)
Pr(x,y)

l(x, y, θ)]

= R[Pr, θ, β(x, y)l(x, y, θ)]

(13)

where β(x, y) = Pr′(x,y)
Pr(x,y)

is a reweighting factor for the training example. However,
coefficients β(x, y) are usually unknown, which means we need to estimate β(x, y).

Sugiyama et. al [27] propose a least-squares approach to directly estimate this impor-
tance coefficients β(x, y). They model the importance coefficients β(x, y) by the linear
model

β̂(x) =
m∑

i=1

αiφi(x) (14)

where α = (α1...αm) are the parameters learned from data samples and φi(x) are the
basis functions we need to choose. They use a least-squares approach to minimize J (α) =
1
2

∫ (
β̂(x, y) − β(x, y)

)2
Pr(x)dx.

Then they formulate the problem as an optimization problem

min
α

1

2
αT Ĥα − ĥT α + λα, s.t. α ≥ 0 (15)
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where Ĥi,j = 1
ntr

ntr∑

i=1
φi(x

tr
i )φj (x

tr
i ) and ĥl = 1

nte

nte∑

i=1
φl(x

tr
i ), and ntr and nte represent the

number of training and test samples. This method gives a closed-form solution.
Huang et. al [17] propose the Kernel Mean Matching method which does not need to

estimate the density of the function directly. Let � : X → F be a mapping into a feature
space F and μ : P → F be the expectation operateor

μ(Pr) = Ex∼Pr(x)[�(x)] (16)

Then we can infer a suitable β by solving the following optimization problem

min
β

∥
∥μ(P r ′) − Ex∼Pr(x)[β(x)�(x)]∥∥

s.t. β(x) ≥ 0

Ex∼Pr(x)[β(x)] = 1

(17)

In practice, we use empirical means instead of density distribution, then we have
∥
∥
∥
∥
∥

1
m

m∑

i=1
βi�(xi) − 1

m′
m′∑

i=1
�(x′

i )

∥
∥
∥
∥
∥

2

= 1
m2 β

T Kβ − 2
m2 κ

T β + C

(18)

Here Kij = k(xi, xj ) and κi = m
m′

m′∑

j=1
k(xi, x

′
j ), and C is a const factor.

The optimatization problem can be reformulated as a quadratic problem as following

min
β

1
2β

T Kβ − κT β

s.t. βi ∈ [0, B],∣
∣
∣
∣

m∑

i=1
βi − m

∣
∣
∣
∣ ≤ mξi

(19)

where B is the upbound of β and ξi is a slack variable.
Due to the hardness of kernel parameter choosen of SVM model, Rakotomamonjy et. al

[24] proposed a multiple kernel method to simultaneously learn a kernel and the associated
predictor in a supervised learning setting. They address the multiple kernel learning problem
through a weighted 2-norm regularization formulation with an additional constraint on the
weights that encourages sparse kernel combinations.

They define the kernel as a linear combination of M base kernels as

K(x′, x) =
M∑

m=1
dmKm(x, x′)

s.t. dm ≥ 0,
M∑

m=1
dm = 1

(20)

Then they formulate the optimization problem as

min
d

T (d)

s.t. dm ≥ 0,
M∑

m=1
dm = 1

(21)
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where

T (d) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min{f },b,ξ

1
2

∑

m

1
dm

‖fm‖2 + C
∑

i

ξi

s.t. yi

∑

m

fm(xi) + yib ≥ 1 − ξi

ξi ≥ 0

(22)

Here fm is them-th decision function,
∑

i

ξi measures the total classification error, b is a con-

stant factor, and T(d) is a traditional SVM format which can be solved by the optimization
problem using a gradient method.

Recently, several adaptation methods for support vector machine (SVM) classifier were
proposed in the video retrieval literature [18, 31, 38]. In order to make the SVM classifier
adaptive to new domain, we formulate the target decision function for any sample x as

f T (x) =
P∑

p=1

γpfp(x) +
M∑

m=1

dmw′
mφm(x) + b (23)

Where fp(x) are the prelearned classifiers trained based on the labeled data from both
domains. γp and dm are coefficients of prelearned classifiers and multiple kernels, respec-
tively.

For transfer learning [10, 11], the first objective is to reduce the mismatch between the
source and the target domain. Gretton et al. [16] propose a measurement method of two
different distributions. The mismatch is measured by Maximum Mean Discrepancy(MMD)
based on the distance between the means of sample from source domain and target domain
in the Reproducing Kernel Hilbert Space(RKHS) namely:

DIST (DS,DT ) = �(d) =‖ 1

nS

nS∑

i=1

φ(xS
i ) − 1

nT

nT∑

i=1

φ
(
xT
i

)
‖H (24)

where xS
i and xT

i are the samples from the source and target domains, respectively.
The second objective is to minimize the structural risk functional. If we combine these

two objectives, the optimization problem is given by

min
d

G(d) = 1

2
�2(d) + θJ (d) (25)

where

J (d) = min
wm,γ,b,ξi

1
2

(
M∑

m=1
dm ‖wm‖2 + λ ‖γ ‖2

)

+ C
n∑

i=1
ξi

s.t. yif
T (xi) ≥ 1 − ξi, ξi ≥ 0

(26)

Here, γ = [γ1, ..., γP ]′ and λ, C ≥ 0 are the regularization parameters. If we define

w̃m =
[
w′

m,
√

λγ ′
]′
, ṽm = dmw̃m and �̃m(xi) =

[
�m(xi)

′, 1√
λ
f (xi)

′
]′
, where f (xi) =

[f1(xi), ..., fP (xi)]. Then we can derive the following equation

J (d) = min
ṽm,b,ξi

1
2

M∑

m=1

‖ṽm‖2
dm

+ C
n∑

i=1
ξi

s.t. yi

(
M∑

m=1
ṽm

′�̃(xi) + b

)

≥ 1 − ξi, ξi ≥ 0

(27)
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Table 1 Adaptive Multiple Kernel Learning Algorithm

Initialization: d = 1/M

for t = 1, ..., Tmax do

1 Solve the dual variable αt by the dual of SVM

using LIBSVM with the kernel matrix
M∑

m=1
dmK̃m.

2 Update the base kernel coefficients dt by

dt+1 = dt − ηtgt .

end for

By introducing the Lagrangian multipliers α, the dual form of the optimazition is:

J (d) = max
α

α′ − 1

2
(α · y)′

(
M∑

m=1

dmK̃m

)

(α · y) (28)

This is the same form as the dual form of primary SVMwith kernel matrix
M∑

m=1
dmK̃m. Then

the optimization problem can be solved by an existing SVM solver [6] .
It was proven in [24] that this optimization problem is jointly convex with respect to

d, ṽm, b and ξi . For the multiple kernel learning parameter d could be updated by dt+1 =
dt−ηtgt , where gt = (∇2

t G)−1∇ tG according alternative coordinate descent method shown
in Table 1.

4 Results

In this section, we evaluate our proposed method by testing head-pose estimation accuracy
and transfer learning between two datasets.

4.1 Head pose estimation accuracy

We evaluated the performance of the pose estimation framework on the UcoHead and
DPOSE dataset, for which pan, tilt and roll head rotation measurements are available with
the datasets. Upon resizing the face crops to 20 × 20 pixels, and computing the appearance
templates (of size 80 × 20) for each class, we performed three-fold cross validation, with
two parts used for training and one for testing. The mean accuracy obtained from the three

Table 2 Head-pose classification accuracy using SVM.

KL distance feature Covariance descriptor feature

Ucohead 71.2 % 79.4 %

DPOSE 83.4 % 87.5 %
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Table 3 Head-pose classification results of using transfer learning technique. (A - UcoHead, B - DPOSE)

Source A, Target B Source B, Target A

Test B Test A

Transfer 71.2 % 54.4 %

Not-transfer 43.4 % 36.5 %

runs is presented in Table 2. We can observe that covariance descriptor feature is better than
KL-distance feature for these two datasets.

4.2 Transfer learning between two datasets

We evaluate transfer learning benefit between the UcoHead dataset and the DPOSE dataset.
We discretized the space of possible head horizontal rotations (Pan) into 8 classes as we
propose above. For each pan class, we randomly select images from the dataset and repeat
the experiments 5 times to calculate mean results. We evaluate our methods by two exper-
iments. One is using UcoHead dataset as source domain (471 images) and DPOSE dataset
(60 images). Then we use 610 images from DPOSE dataset, which is not included in the
training set, as testing set. The other experiment is using party data (610 images) we record
as source domain and UcoHead (80 images) as target domain for training dataset. Then
we use 629 images from UcoHead dataset, which is not included in the training set, as
testing set. Here the image number for source domain is nearly 8 times larger than target
domain in training set which is reasonable for transfer learning. We use 5 base Gaus-
sian kernels ( i.e., K(xi, xj ) = exp(−γD2(xi, xj )) ) with different kernel parameters
γ = {−2, −1, 0, 1, 2} respectively. Table 3 illustrates the classification results for head-
pose estimation between two different dataset with transfer learning and without transfer
learning.

From Table 3, we could observe that the classification accuracy is relatively low if we do
not use transfer learning technique between two datasets. With transfer learning, we could
actually extract some useful information from the source dataset to help classify on target
dataset which increases the classification accuracy a lot.

4.3 Comparison

At last, we also compare with other low-resolution headpose estimation methods. Table 4
shows the comparison with other state-of-the-art methods.

Table 4 Comparison with other low-resolution headpose estimation methods

Methods UcoHead, DPOSE

Ours 71.2 % 83.4 %

[32] 63.4 % 73.5 %

[28] 67.4 % 76.5 %
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5 Conclusion

Human head pose is the first step in understanding the behaviors of human. We propose a
framework to do the head pose estimation in low resolution images. We propose an adaptive
multiple kernel transfer learning technique to overcome the weakness of apperance-based
feature representation. Experimental results on public dataset prove the efficiency of our
proposed method.
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