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Abstract Increasing solicitudes about security demand better, robust and effective solu-
tions. Security cameras are playing a vital role in this regard and the surveillance technology
is improving rapidly. However, these cameras are usually installed at obvious and visible
locations which are often exploitable by the criminals either by hiding themselves from
the camera, choosing an alternative path or deceiving the camera. This situation can be
overcome to a large extent if the cameras are installed at hidden places looking through nar-
row regions, e.g. camera fixed inside the building and looking through the window curtain
slits. However, this solution poses new challenges in terms of capturing the video through
slits and accumulating the information to a meaningful view. In this paper we propose an
effective and robust solution to this problem that automatically extracts the slit regions
and merges them over a large number of frames to construct a panoramic view. Moreover,
such a security surveillance system will be subjected to the sudden illumination variations.
We effectively handle such variations by incorporating robustness in the proposed frame-
work. A large number of experiments are performed on various indoor and outdoor real
video sequences. The results demonstrate the effectiveness of the proposed framework.
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Experiments are also performed to objectively assess the perceptual quality of the resulting
panoramic images. Our results are even better than the existing commercial software.

Keywords Security surveillance · Mosaicing · Scene stitching · Global flow ·
Illumination compensation

1 Introduction

Demand of better security and surveillance systems has undergone a fast growth in the
recent years. It is due to deteriorating political and economic stability in many parts of the
world. The number of cameras used for surveillance has been increasing with time. Surveil-
lance cameras were initially used to keep a check on robbers and shoplifters in large stores
and trade centers where it was not possible to keep a vigil on every one by a single per-
son. Surveillance by camera has gained gigantic popularity and now it has been used almost
everywhere from schools, colleges, hospitals, shopping malls to public places. Recording
in these cameras is also used to identify the thieves and robbers in homes, banks or at other
victim places. Placement of security camera is a crucial step in implementation of video
surveillance technology. Installing a camera on an inappropriate location may create a flaw
in the security system and a gap in the field of view and thus it may expose a facility to
outside threats and decreases the effectiveness of the security system.

Usually, the security cameras fail to capture the identity of an offender because the pres-
ence of cameras is often at obvious location and a suspect may easily take counter measures.
Visibility and detection of the security cameras may be exploited by the suspects to avoid
being captured by the camera by moving through uncovered corridors or alternatively cov-
ering them with big hats, black glasses, facial masks or sheets to avoid their identity being
captured. The best place for security cameras is the one that is not visible or accessible. If
cameras are fixed at hidden or secret locations, full field of view (FOV) may not be avail-
able and in extreme cases, only a part of the FOV will be captured. The small visible portion
of the scene in a frame may not yield sufficient useful information about the scene and the
objects. However, if the visible scene is mosaiced across a number of frames, sufficient
scene information may be obtained which can be used for better decision making. This
paper proposes a solution to the problem where a camera is capturing the scene through a
narrow region (referred to as slit in the rest of the text) with limited field of view (FOV)
which significantly limits the available information. An object passing through the FOV
may not be completely visible in a single frame. However, by combining information from
a group of successive frames one may obtain the complete view of the object. Stitching two
or more partially overlapped images into a single big picture is called image mosaicing in
which the correspondence between the images is estimated and used to merge them into a
single image.

Image mosaicing is indeed a complex task that involves not only an automatic cor-
respondence estimation of the input images but a seamless integration is also required.
Seamless integration permits the edge consistency across the mosaic that is the edges of the
objects in the mosaic must be connected for plausible results. Mosaicing from narrow slits
is a challenging task in many respects compared to simple image mosaicing as described
below:

– Limited Field of View (FOV): In the proposed scenario, a camera is installed at a hidden
place and a narrow region is available of the target view. In this case, a large part of the
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captured images is redundant and useless. The slit region must be extracted from the
images and integrated so that the complete view of an object can be obtained.

– Illumination Variation: Since we deal with the videos, the scene illumination may
vary over time resulting in images with different illumination. Integrating such images
would result in low quality, imperceptible picture. A viable solution would deem to fil-
ter the illumination variation in the video before merge. Illumination filtration will also
increase the image registration performance by enabling robust feature matching.

– Image Registration: Due to limited FOV image registration and alignment becomes a
difficult task. Most of the current mosaicing algorithms require significant overlapped
region for correct image registration and alignment. Therefore these algorithms cannot
be directly applied for the case of limited FOV.We propose an image integration method
to handle limited FOV for the purpose of image mosaicing.

In proposed framework first the slit region is extracted from each frame in the input video
sequence to remove the useless redundant frame regions. In the second step, illumination
filtration is performed on the slit to filter out any sudden variations in the illumination.
In the third step, the geometrical relationship between the slits is estimated and iteratively
refined. In the forth step, the slits are stitched together by using the geometric transformation
recovered in the third step. The main contributions of this paper are as follows:

– Proposal of a novel security surveillance system where camera is placed at a non-
obvious hidden location with a limited field of view;

– A framework is proposed to extract important content in the form of a pano-ramic view
from this limited context video;

– It is noted that due to limited FOV the impact of illumination variation is noticeable in
the mosaiced image. To this end, a frequency based illumination filtering is performed
before image alignment;

– Global affine warp model is used for image alignment. The model parameters are
estimated through an iterative multi-scale algorithm;

– The proposed framework is tested on real sequences captured with limited FOV as well
as on synthetic data to analyze the performance both visually and numerically. The
results are also compared with the well-known commercial mosaicing tools.

The rest of the paper is organized as follows. In Section 2 a review of the related liter-
ature is presented. Section 3 gives an overview of the proposed security system. The slit
extraction and illumination filtration is described in Section 4, Slit registration and integra-
tion are described in Sections 5 and 6 respectively. The experimental evaluation is presented
in Section 7 and the conclusions are drawn in Section 8.

2 Related work

In this section we briefly review the state-of-the-art literature related to security surveillance
and image mosaicing. Video camera based security surveillance systems are being used
everywhere: in law enforcement agencies, at homes, shopping malls, markets, airports, etc.
Last decade has witnessed a tremendous growth in security surveillance systems [29]; high
quality surveillance devices have been introduced and robust computer vision algorithms
realized them into efficient security systems.

The existing security surveillance systems use a single or multiple video cameras that
exploit the full field of view to monitor the target area. The videos displayed on monitors
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are being observed by a human to detect any unusual, suspicious event. However, automatic
surveillance is paramount and has attracted a significant research in the recent years. The
surveillance system proposed in [38] extracts motion trajectories from video and analyze
them to detect the events. It exploits support vector machines (SVM) and propose kernel
boundary alignment (KBA) algorithm for effective leaning and recognition. Video based
surveillance system in [22] is proposed for monitoring the movements of aircraft, ships and
other commercial vehicles on the ground or in port. In addition to video, the audio is also
used to provide a robust surveillance. A wireless based surveillance system for homes was
proposed in [13]. It detects the suspicious event and informs the monitors through text and
multimedia messages. An automated video surveillance system Knight is proposed in [30].
It detects and classifies the objects moving in the field of view without human intervention
and reports the important activities in the form of key frames.

Image mosaicing is a challenging problem in respect of seamless integration of the
images. A minor unavoidable gray level difference in frames boundaries gains consider-
able visibility in panoramic mosaic. Furthermore, when objects are moving the mosaicing
results in a blurry or ghosted panoramic picture.During the stitching process a composi-
tion of the overlapped regions is computed in order to create smooth transition between
spatially consecutive regions. Ghosting and exposure are two common artifacts in dynamic
mosaics. Uyttendaele et al. [35] proposed a weighted vertex cover algorithm to remove the
blur effect visible due to moving objects. The block based adjustment algorithm adjusts the
scenes where a single change in exposure would result in an under or overexposed image.
To avoid ghosting in the integrated view, the pixel values should be selected from only one
of the contributing images. The exposure difference occurs due to change in exposure set-
ting of automatic camera while capturing the sequence of images for mosaic construction.
To compensate the exposure effect, a full radiometric camera calibration is performed. Suen
et al. [33] proposed an optimization method based on image derivatives to limit the ghost-
ing effect by achieving better image alignment. To minimize the ghosting effect Combined
SIFT [19] and Dynamic Programming (CSDP) technique is proposed in [42]. It uses SIFT
based matching and dynamic programming with edge-enhanced weighting intensity differ-
ence operator to limit the ghosting effect the in the mosaic image. The recent ghost detection
and removal methods are reviewed in [32].

Global warping methods e.g. similarity, affine and projective are used to align the
images [6, 11, 15, 44] to create a panorama picture. However, these warpings may not pro-
duce accurate alignment resulting in shape and area distortions in the stitched image [17]. To
address this problem a number of local warping methods have been proposed. A smoothly
varying affine (SVA) model [17] computes local affine warps for overlapping regions to
improve the alignment accuracy. Moving Direct Linear Transformation (Moving DLT)
under projective warp is proposed in [41] to minimize the local inconsistencies in the over-
lapped regions under the global transform. Projective and similarity warps are combined [4]
that uses global projective warping for improved warping accuracy and exploits similarity
warp to preserve the local objects’ shapes. A robotic setpoint control technique for limited
FOV of microscope is proposed in [16] for optical manipulation with unknown trapping
stiffness. The research in [14] applies video surveillance for user behavior recognition in
workflows. Cristofaro et al. [5] presented a study of minimum time trajectories for a dif-
ferential drive robot with a fixed and limited field-of-view. Risk assessment is an important
activity in video surveillance systems which helps to detect the threats and vulnerabilities in
the system and to devise the mitigation strategies. A risk assessment model based on fuzzy
cognitive maps is proposed in [34]. Affine warp parameters are recursively computed and
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augmented with Kalman filter in [39] to improve the alignment accuracy for video mosaic-
ing. A computationally efficient graph based image mosaicing approach is proposed in [7].
Some recent research in video surveillance with field-of-view constraints can be found
in [34].

A variational method for image blending is proposed in [36]. It improves the quality of
the blended image by computing a weighting mask for each of the multiple input images. A
similar technique using image gradients is proposed in [24]. A nonlinear weighting fusion
of input images is also proposed in [43] for seamless integration. Nonuniform exposures
may result in visible seams in the mosaic. Litvinov et al. [18] exploited the camera non-
uniformity and radiometric response to overcome this problem. A Fourier transform based
image blending is proposed in [9] where different level frequencies of the input images
are mixed together to obtain seamless integration. Seamless stitching in aerial images [20]
is obtained by decomposing the partially overlapped images into high and low frequency
images and different mosaicing schemes are used for each frequency component. For low
frequencies simple weighted blending is used; for high frequencies an improved seam
searching strategy is devised for seamless blending. A good review of state of the art image
blending techniques can be found in [27].

For better stitching Fu and Wang [10] proposed to use Harris operator [12] to find the
corner features in the input images which are used for matching with RANSAC method
to estimate the transformation matrix for registration to compute the panorama image.
SIFT and RANSAC algorithms are also utilized in [31] for seamless stitching to create
a panoramic image. The Harris operator with region based matching is proposed in [40]
for efficient mosaicing. In particular, they showed that regions matching results in better
estimates of rotation, scaling and translation between the two successive images.

3 The proposed security surveillance system

We propose a novel security surveillance system that allows the installation of video
cameras at non-obvious, hidden locations so that they cannot be tricked by the suspects.
Moreover, the camera is capturing the target with a limited filed of view. Due to limited
FOV the target may not be completely visible in a single video frame; the proposed system
exploits the video stream in temporal direction and leverages on image mosaicing to collect
the information in a single picture.

The proposed system works in four steps starting from the slit region extraction from
the input video. In the second step, the slits are filtered to remove illumination variations
in the video which is imperative for good quality of integrated image and also improves
the registration step. In the third step, the global geometrical relationship between the input
slits is estimated. The estimated relationship is refined through a multi-resolution iterative
procedure. The final step is to warp the input slits to a selected reference view and merge
them into a single larger image. These steps are described in detail in the following sections.
Figure 1 shows the block diagram of the proposed algorithm.

Camera setup We assume a single camera setup - the camera is fixed and capturing the
scene through a narrow view. The orientation of the view (visible region) can be configured
in multiple ways e.g. horizontal or vertical rectangular slit, circular or square hole, etc. This
orientation depends on the position of the camera with respect to the target region. Here
we assume that camera is installed at a hidden location parallel to the target with a vertical
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Fig. 1 Block diagram of proposed framework

rectangular exposure. Figure 2 shows two sample frames from test video sequences S1 and
S2 (see Table 1 for details) captured in this setup through a narrow region exposed between
the barriers.

4 Slit extraction and illumination filtration

Slit extraction refers to the process of segmenting the region of interest (ROI) from the
video frames. As described previously, slit is a narrow target region in the image between
the obstacles or barriers. This can be achieved by marking the four corner coordinates of
the ROI manually at the system setup time and then use them for slit extraction in the video
stream. The vertical lines between the left-top, left-bottom and right-top, right-bottom points
are plotted by joining the four input points and used to define the ROI in the image. The
method is simple and require minimum user interaction, just once at the system setup time.

The next step after slit extraction is to eliminate the illumination variations in the slits
of the video. Illumination filtering is performed through homomorphic filtering in fre-
quency domain on logarithm transformation of the slit. We assume Lambertian object
surfaces where pixel intensity in an image is the product of source illumination and surface
reflectance [25]. Let I t be image at time t of size m × n, the intensity of pixel (x, y) is:

I t (x, y) = I t
i (x, y) · I t

r (x, y) (1)

where I t
i (x, y) is the illumination component and I t

r (x, y) is the reflectance component
of the surface. To eliminate the illumination variation the illumination component I t

i (x, y)

must be filtered out. The low frequencies of the image mainly contribute to the illumina-
tion whereas the mid to high frequencies form the reflectance component [1]. Logarithm

Fig. 2 Sample frames from test video sequence S1 (a), and S2 (b)
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Table 1 Dataset details

Seq. No. No. Frames Slit Size Video Type

S1 140 30 × 480 Outdoor

S2 238 63 × 480 Indoor

S3 98 91 × 480 Outdoor

S4 48 31 × 480 Outdoor

S5 52 74 × 480 Outdoor

S6 35 31 × 480 Outdoor

S7 64 66 × 480 Outdoor

S8 99 74 × 480 Outdoor

transform has been used in contrast enhancement [2]. To separate the reflectance and illu-
mination the image is transformed in logarithm domain and is thresholded with a predefined
value. From (1):

log
(
I t (x, y)

) = log
(
I t
i (x, y)

) + log
(
I t
r (x, y)

)
(2)

To separate the two components we transform the resultant image log
(
I t (x, y)

)
in fre-

quency domain and apply the appropriate filters (low-pass and high-pass) to get the desired
frequencies. We use Fourier transform to represent the image in frequency domain:

Ĩ t = F
[
log(I t (x, y))

]
(3)

where F (·) is Fourier operator.
To extract the high ( or low) frequencies from the transformed image various filters e.g.

Ideal, Butterworth, Gaussian are available. We choose Gaussian filter as it does not exhibit
the ringing effect [8]. To remove the low frequencies we apply Gaussian high-pass filter
Hhp:

Hhp(u, v) = 1 − Hlp(u, v)

= 1 − 1

2πσ 2
e
− u2+v2

2σ2 (4)

where 1 ≤ u ≤ m, 1 ≤ v ≤ n and σ is the standard deviation of the Gaussian distribution.
The illumination and reflectance components are computed as:

I t
i = exp

(
Ḟ (Hlp ∗ Ĩ t )

)
(5)

I t
r = exp

(
Ḟ (Hhp ∗ Ĩ t )

)
(6)

where Ḟ (·) represents the inverse Fourier. Finally, the obtained reflectance component I t
r

represents the illumination compensated image. Figure 3 shows two slits from test sequence
S1 with significant illumination difference. Figure 3c shows the illumination component
obtained by applying the low-pass filter Hlp with σ = 0.1 to transformed image. Figure 3d
shows the reflectance component of the image obtained using the corresponding high-pass
filter Hhp (4).

5 Slit registration

After slit extraction and normalization the next step is to estimate the geometrical relation-
ship between the slits with respect to a reference slit. With our assumption that camera is
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Fig. 3 a 1st slit of sequence S1,
b 48th slit of sequence S1. The
red circles show the regions with
significant illumination variation.
c Illumination component
obtained by after applying
proposed filtration, d The
illumination filtered image
(reflectance component)

fixed the relationship between the slits must be a homography (affinity transformation).
The homography between two slits is computed using a multi-resolution iterative method.
To compute the affine warp between two adjacent slits we use Bergen et.al. [3] hierar-
chical model. Let I (x, y, t) be the pixel intensity of the image (in this section, terms
image and slit will be used interchangeably) at time t which has moved by displacement
[u v]� = [�x �y]� at time t + �t . The relationship can be written as:

u = a1x + a2y + b1

v = a3x + a4y + b2 (7)

or [
u

v

]
=

[
a1 a2
a3 a4

] [
x

y

]
+

[
b1
b2

]
(8)

=⇒

[
u

v

]
=

[
x y 1 0 0 0
0 0 0 x y 1

]

⎡

⎢⎢
⎢⎢⎢
⎢
⎣

á1
a2
b1
a3
á4
b2

⎤

⎥⎥
⎥⎥⎥
⎥
⎦

=⇒
u = Xa (9)
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After illumination filtration (Section 4), we assume that the brightness constancy holds,
that is:

I (x, y, t) = I (x + �x, y + �y, t + �t) (10)

Assuming that the pixel intensity remains constant and motion is very small, the first order
Taylor expansion of (10) gives:

I (x + �x, y + �y, t + �t) = I (x, y, t) + δI

δx
�x + δI

δy
�y

+δI

δt
�t + H.O.T (11)

Ignoring the higher-order terms (H.O.T), from (11) we obtain:

δI

δx
�x + δI

δy
�y + δI

δt
�t = 0 (12)

or
δI

δx

�x

�t
+ δI

δy

�y

�t
+ δI

δt

�t

�t
= 0 (13)

where �x
�t

= u and �y
�t

= v are the x and y velocity components. δI
δx
, δI

δy
and δI

δt
are the x, y

and t derivatives of image intensity I (x, y, t) respectively. Equation (13) can be written as:

fxu + fyv + ft = 0 (14)

which can be represented as: [
fx

fy

]
[u v] = −ft (15)

Let,

fX =
[

fx

fy

]
and u = [u v]

The error in estimation of u is calculated as:

E(u) =
∑

∀x∈f (x,y)

(
ft + f �

X u
)2

(16)

where f (x, y) is a small patch around each pixel in which u = [u v] remains constant. By
replacing u with Xa in (16) from (9), the error term is:

E(a) =
∑

∀x∈f (x,y)

(
ft + f �

X Xa
)2

The estimation process is iteratively repeated and the incremental parameters δa are
computed as:

E(δa) =
∑

∀x∈f (x,y)

(
ft + f �

X Xδa
)2

Ideally, we want error to be zero, that is:

∑

∀x∈f (x,y)

(
ft + f �

X Xδa
)2 = 0

=⇒
∑

ft +
∑

f �
X Xδa = 0

=⇒
∑

f �
X Xδa = −

∑
ft
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Fig. 4 a I t−1 (31 × 480), b I t

(31 × 480), cWarped Ī t , d
Integrated image (35 × 480)

For pseudo inverse, multiplying with X�fX on both sides:

[ ∑
X�(fX)(fX)�X

]
δa = −

∑
X�fXft (17)

which is of the form:

Aa = B (18)

To obtain the best estimates the estimation process is implemented in multi-scale fashion
using image pyramids. The process is iteratively repeated starting from the top level down-
sampled image to refine the estimated affine parameters. Figure 4 shows an example where
the homography between two slits I t−1 and I t is computed and used to warp I t−1 to I t and
integrate the resultant images. Figure 4d shows the resultant stitched image.
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Fig. 5 Sequence: S1, From left to right Few intermediate mosaics, the last image shows the final mosaic

6 Mosaic composition

The slit integration process starts from the second slit which is expected to contain novel
information than the preceding slit. Extending the same notation used in the previous sec-
tion, the homography between the image I t−1 and I t is computed and the image I t−1 is
warped to I t . The warped image Ī t may contain some holes (empty pixels) compared to
I t and the region corresponding to these holes in image I t is the novel region appeared in
the image and is denoted by �t . The mosaic M at time t is obtained by concatenating the
mosaic at time t − 1 with �t . This process is described by the following equations:

Mt =
{

I 0 if t = 0[
Mt−1|�t

]
if t ≥ 1

where Mt−1 and Mt are mosaics at time t − 1 and t respectively. Mosaic is initialized with
first image I 0 at time 0 in the sequence. The black region in Fig. 4c represents the holes and
the corresponding region in the image I t is �t which is integrated with the Fig. 4a to obtain
the updated mosaic Mt shown in Fig. 4d.

An important question about the mosaic composition is to decide the condition of ter-
mination of integration process. The termination criterion indeed can be based upon many
attributes e.g. mosaic size, amount of significant novel information in the current image
with respect to previous image. The simplest approach is to define the size of the mosaic
and when the size of the integrated image reaches that threshold a new mosaic is started. An
alternative strategy could use a scene change detection algorithm [23, 28] to find the amount
of change in two consecutive images and in case the change is significant, more than a pre-
defined value, a new mosaic may be started. This decision has large impact on the size of
the mosaiced video; too frequent terminations will increase the video size.

Fig. 6 Sequence: S2, From left to right Every 25th image and the last image. The last image shows the final
mosaic
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Fig. 7 Sequence: S4, Left to right Every 5th image from the sequence and the last image resultant mosaic

7 Experiments and results

The proposed algorithm is tested for accuracy and scalability on 13 video sequences includ-
ing eight real world videos and five synthetic sequences. The results are compared with
the well known Microsoft Image Composite Editor [21]. To the best of our knowledge no
video dataset matching the proposed framework requirements is publicly available; to this
purpose we created a dataset comprising of 8 video sequences. The dataset contains both
indoor sequences captured under constant illumination and outdoor videos shot with vary-
ing illumination. Slit size is also varied to assess the accuracy of the proposed algorithm at
different resolution images. It is observed from experiments that increasing the video res-
olution improves the matching between the consecutive slits that results in better quality
mosaic; however, it may also increase the computational time. Table 1 describes the details
of the each test video sequence.

In all experiments the illumination filtering is performed through Gaussian low-pass fil-
ter with σ = 0.1. The number of levels κ and the number of iterations at each level τ

Fig. 8 Sequence: S7, Left to right Every 5th image from the sequence and the last image resultant mosaic
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Fig. 9 Sequence: S8, Left to right Every 5th image from the sequence and the last image resultant mosaic

performed in affine warp estimation may vary depending on the image resolution and the
required amount of alignment accuracy. The value of τ varies from 1 to 5 whereas κ is set
to 3 in all experiments. Figure 5 shows the first experiment in which the hidden camera
has captured a car passing through the target field of view. Camera is looking through the
narrow slit of only 30 pixels wide. The multi-scale iterative registration is performed at 3
levels of pyramid with 5 iterations at each level. The size of the resultant mosaic image is
622 × 480 pixels constructed from the sequence of 140 slits. Figures 6, 7, 8 and 9 show the
results of four more experiments. Each figure shows few slits from the sequence and the
final mosaiced image. Figure 10 shows the final mosaics obtained in other 3 experiments.
These experiments show that the visual quality of the mosaics constructed through proposed
method is fairly good.

The proposed algorithm is implemented in Matlab. For each experiment the execu-
tion time is also computed which includes the alignment time, mosaic construction and
file I/O time. The execution time of slit segmentation is not included as it is performed
just once at camera setup time. The reported time is based on Intel(R) core-i3 CPU 2.53
GHz, on 64-bit operating system with 4GB RAM. Table 2 presents the details of the
experiments.

Fig. 10 Left to right Final mosaic obtained in sequence S3, S5 and S6
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Table 2 Experiment Details. κ is the number of levels, τ is the number of iterations at each level. Time
represents the execution time per frame

Seq# κ τ Mosaic size Time(sec)

S1 3 5 622 × 480 0.30

S2 3 1 774 × 480 0.19

S3 3 3 382 × 480 0.32

S4 3 1 219 × 480 0.11

S5 3 2 269 × 480 0.26

S6 3 1 167 × 480 0.11

S7 3 5 318 × 480 0.30

S8 3 1 477 × 480 0.24

7.1 Objective quality assessment and comparison

To quantitatively evaluate the quality of the integrated image we performed 5 experiments
on synthetic dataset. Each image is divided into a number of slits with different amount
of overlapped region. Figure 11 shows such an example where an image is divided in
to overlapped slits, which are then stitched together to reconstruct the image. The recon-
structed image is compared with the original image considered as ground truth to estimate
the quality of the reconstruction. Since, all the slits belong to the same image illumination is
constant across them therefore illumination filtering is not applied. Moreover, we compare
the results with well known mosaicing tool ‘Microsoft Image Composite Editor’ (ICE Ver-
sion 1.4.4.0) [21] to assess the accuracy and visual quality of the obtained mosaic. We also
tried to use Autostitch1 and Panorama Maker2 tools for comparison however they failed
to construct panorama from such small size slits. In fact most of the algorithms for image
panorama construction require significantly larger sized images to be stitched. For very
small sized slits as in our case, the performance of these algorithms deteriorate.

To objectively assess the quality of the mosaic it is compared with the original image
using Peak Signal to Noise Ratio (PSNR) metric and well-known visual quality metric
‘Structural SIMilarity’ index (SSIM) [37]. PSNR estimates the statistical difference between
the two images whereas SSIM is widely used for perceptual image quality assessment.
SSIM is considered to produce better estimates due to its high correlation with human visual
system (HVS). Therefore, we use both metrics in objective quality assessment of the pro-
posed algorithm. The PSNR between panorama image I ′ and the corresponding original
image I is computed as follows:

PSNR = 10 log10

(
255√
MSE

)
(19)

where MSE is ‘mean square error’ computed as:

MSE(I ′, I ) = 1

MN

M∑

i=1

N∑

j=1

[
I ′(i, j) − I (i, j)

]2

1http://www.cs.bath.ac.uk/brown/autostitch/autostitch.html
2http://www.arcsoft.com/panorama-maker/

http://www.cs.bath.ac.uk/brown/autostitch/autostitch.html
http://www.arcsoft.com/panorama-maker/
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Fig. 11 A test image (the leftmost) with few slits obtained by divided into it into overlapped images

where M × N is the size of the images. The SSIM index is computed as:

MSSIM(I ′, I ) = 1

W

W∑

i=1

SSIM(xi, yi) (20)

where xi and yi are local windows of images I ′ and I . W is the number of total local
windows of the image. The similarity index between the local windows pair xi and yi is
computed as:

SSIM(x, y) = (2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ 2
x + σ 2

y + c2)
(21)

Here,μx,μy are the means, σ 2
x , σ 2

y are the variances of the windows x and y respectively.
σxy is the covariance of x and y.

In each experiment the mosaics are computed using the proposed technique and
Microsoft ICE and compared with the corresponding original image to compute PSNR and
SSIM scores. The obtained quality scores are listed in Table 3. In each experiment the pro-
posed technique achieved better score in both quality metrics. In test sequence T3 and T4,
the difference in PSNR is between 2 to 4 dB however, this difference is more significant
in T1, T2 and T5. Similar results can be noted in SSIM values. This poor performance of
ICE in these three experiments is due to the shape and area distortions. This can be visually
observed in the respective mosaics shown in Fig. 12. From this we note that the mosaicing
techniques that use feature based matching like SIFT and RANSAC may not produce plau-
sible panoramas in the scenario at hand; due to very small size slits they get few matching

Table 3 Objective Evaluation and Comparison with ICE. NS is total number of slits, S-Size is slit size,
M-Size the final mosaic size. In all experiments κ = 1 and τ = 2 is used

Seq. NS S-Size M-Size Proposed ICE [21]

PSNR SSIM PSNR SSIM

T1 237 40×384 512×384 21.93 0.8761 14.22 0.2828

T2 236 41×384 512×384 28.54 0.9728 12.81 0.3822

T3 143 21×450 447×450 19.71 0.5446 15.22 0.5221

T4 105 21×330 327×330 17.14 0.3712 14.65 0.3129

T5 208 19×545 640×545 37.07 0.9926 10.00 0.1183
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Fig. 12 Visual quality comparison. In each row original image (left), Microsoft Image Composite Editor
result (middle) and Proposed technique result (right)
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points which turns in poor alignment. The proposed technique that relies on flow estima-
tion to compute the warp parameters performs better alignment resulting in reasonably good
quality mosaics. Figure 12 shows the results of proposed technique and ICE on the synthetic
dataset. The first two images in this dataset are taken from TID2008 database[26], while
others are publicly available on internet. Both the objective and visual evaluation show the
ability of the proposed framework to produce superior quality mosaics.

8 Conclusion

In this paper a novel security framework is proposed that leverages on mosaicing in the con-
text of hidden security and surveillance video cameras. The proposed framework permits
the construction of a larger view from small images referred as ‘slits’ captured by a hidden
camera with a limited field of view to meet the increasing demands of effective security
surveillance systems. The slits are extracted from the video and are registered through a
multi-scale iterative algorithm. The registered slits from a number of frames are integrated
to obtain a panoramic view. Moreover, to limit the effect of instant illumination variations
homomorphic filtering in frequency domain is applied to slits prior alignment. The illu-
mination compensation on one hand improved the registration accuracy and on the other
hand it helped to produce a perceptually better quality panorama picture. Large number of
experiments were performed to measure the subjective as well as objective quality of the
integrated images. The results show the effectiveness of the proposed solution. In future,
we plan to extend the proposed approach for more challenging scenarios, e.g., surveillance
with moving cameras.
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