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Abstract The extensive use of Voice over IP (VoIP) applications makes low bit-rate speech
stream a very suitable steganographic cover media. To incorporate steganography into low
bit-rate speech codec, we propose a novel approach to embed information during lin-
ear predictive coding (LPC) process based on Matrix Embedding (ME). In the proposed
method, a mapping table is constructed based on the criterion of minimum distance of
Linear-Predictive-Coefficient-Vectors, and embedding position and template are selected
according to a private key so as to choose the cover frames. The original speech data of the
chosen frames are partially encoded to get the codewords for embedding and then the code-
words that need to be modified for embedding are selected according to the secret bits and
ME algorithm. The selected codeword will be changed into its best replacement codeword
according to the mapping table. When embedding k (k > 1) bits into 2k − 1 codewords,
the embedding efficiency of our method is k times as that of LPC-based Quantization Index
Modulation method. The performance of the proposed approach is evaluated in two aspects:
distortion in speech quality introduced by embedding and security under steganalysis. The
experimental results demonstrate that the proposed approach leads to a better performance
with less speech distortion and better security.
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1 Introduction

Information hiding is the technique of covert communication via public channels. The basic
model of information hiding system dates back to the prisoners’ problem [24] and the sub-
liminal channel [25, 26] proposed by Simmons. Digital multimedia signals, like video,
images, and audio, are prevalent in our daily life, which expose a new avenue of covert com-
munication, namely, steganography. The Voice over IP (VoIP) applications are widely used
in real-time communication on the Internet. The network traffic of VoIP stream is gigantic,
and its growth rate has already been larger than that of Time Division Multiplexing systems
[27]. Ubiquitousness of VoIP stream makes itself a very suitable carrier for information
hiding.

In order to reduce redundancy in original speech stream, several low bit-rate speech
compression algorithms, such as G.723.1 and G.729, were specially proposed for VoIP by
International Telecommunication Union (ITU), leading to the extensive use of low bit-rate
speech codecs in VoIP applications. Therefore, it is essential to study information hiding
techniques in low bit-rate compressed speech streams.

However, it remains a challenging problem to embed information in low bit-rate VoIP
streams. Firstly, as mentioned before, redundancy in low bit-rate codec has already been
eliminated via advanced codec, but steganographic methods rely highly on such redundancy
to embed information. Secondly, few redundancy as there are, embedding information will
introduce discernible distortion in low bit-rate compression systems, which makes embed-
ding process vulnerable under corresponding steganalysis. Finally, VoIP based stegano-
graphic algorithms are different from image or video based steganographic algorithms, the
former has to fulfill real-time requirement of VoIP communications [6].

Existing steganography algorithms in low bit-rate VoIP streams can be divided into three
categories. Algorithms in the first category embed information by directly modifying bit
plane in the compressed speech streams. For example, both Hui et al.’s and Liu et al.’s
algorithms [8, 15] conducted Least Significant Bit (LSB) replacement method in VoIP
streams encoded by G.729 codec. In [9, 11, 28], LSB replacement steganography algorithms
were applied in G.723.1 and G.711 compressed streams, respectively. Huang et al. [7] and
Roselinkiruba et al. [23] embedded information in inactive frames of VoIP bit streams.
These algorithms have the same shortcoming, i.e. embedding process is independent of
speech encoding process, and thus result in discernible distortion in temporal domain. In
order to reduce distortion introduced in embedding process, algorithms in the second cat-
egory propose to embed information in the prediction process of the Long Term Predictor
(LTP) in the speech codec, and those in the third category conduct embedding in the Short
Term Predictor (STP). For example, the pitch modulation based steganography algorithms
[6, 33] embedded secret information when the encoder estimates the pitch of the speech
sub-frame, and the Quantization Index Modulation (QIM) based steganography [32] hided
the secret data during Vector Quantization (VQ) process of linear prediction coefficients.

Common low bit-rate VoIP speech codecs are mostly based on the Linear Predictive Cod-
ing (LPC) model. In addition, the linear predictive analysis-by-synthesis coding (ABS-LPC)
model is widely used in low bit-rate codecs which aims to further minimize the distortion
by decoding the encoded signal and choosing the codeword with the least error. Taking the
advantage of ABS, embedding in the vector quantization process of LPC coefficients will
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significantly decrease distortion in the follow-up encoding process. Therefore, this paper
focuses on the LPC-based steganography in low bit-rate speech streams.

Image steganography based on VQ process has been well studied in recent years [1, 12,
17, 19]. For example, Chang et al. [1] proposed a data hiding algorithms which achieved
high embedding capacity in VQ indices with neighboring correlations. Rahmani et al. [19]
suggested a reversible data hiding scheme for VQ-compressed images based on search
order coding. Comparatively, VQ-based steganography in low bit-rate speech streams is an
emerging topic. Being the first approach to embed secrets into VQ process of linear predic-
tion coding for low bit-rate speech codec, Xiao et al. [32] adopted the QIM steganography
method [2] to conduct embedding by modifying the quantization vectors. The whole code-
book was divided into two parts, representing ‘0’ or ‘1’, respectively. When a secret bit
was embedded, the corresponding part of the codebook was used. On the decoding side,
the secret bit was extracted by checking which part of codebook the codeword belongs to.
The core problem in QIM steganography algorithm is to find an ideal codebook partition
scheme so as to minimize the distortion. Chiang et al. [3] suggested a codebook partition
algorithm based on codeword clustering. In [14, 30], the authors introduced partition algo-
rithms based on a genetic algorithm. Lu et al. [16] proposed a method which used public
codeword group to reduce the distortion. Xiao et al. [32] proposed an algorithm called Com-
plementary Neighbor Vertices (CNV), which guaranteed that every codeword was separated
from its nearest neighbor and achieved less distortion than any other partition methods.

As QIM hides data by modulating the codewords, the distribution characteristics of the
codewords would be changed inevitably. Too many modifications introduced by QIMwould
make the steganography algorithm easily detected [13]. Therefore, it becomes an impor-
tant issue to reduce the amount of necessary alterations under the same embedding rate.
Matrix Embedding (ME) is a method of high embedding efficiency and imperceptibility,
which was introduced by Crandall [4]. ME has gained wide attention after Westfeld gave
the first implementation of matrix encoding in F5 algorithm [31]. Since higher embed-
ding efficiency translates into better hiding security, ME becomes a good choice for secrets
embedding. However, ME is based on scalar replacement, which cannot be applied to vec-
tor directly. Therefore, we propose a method that extends the scope of ME method to
vectors by combining it with a mapping table, called MEL (Matrix Embedding in LPC).
Extensive experimental results demonstrate that our approach outperforms other LPC based
embedding algorithms with regard to less speech distortion and better security.

The rest of the paper is organized as follows. Section 2 describes the information hid-
ing and extracting algorithms of the MEL method. Experimental results are discussed in
Section 3. Finally, Section 4 concludes with a summary.

2 Information hiding and extracting

This paper proposes to embed information through the replacement of the codewords asso-
ciated to the filter coefficients of the Linear Predictive Coding by other codewords from the
same codebook, under a minimum distance criterion. The block diagram is shown in Fig. 1.

In the embedding process, a mapping table is constructed based on the criterion of
minimum distance of Linear- Predictive-Coefficient-Vectors regained from the codewords
before and after embedding. Secondly, embedding position and template are selected
according to the private key so as to get the frames for embedding. Thirdly, the original
speech data of the chosen frames are partially encoded to get the codewords for embed-
ding. Then, codewords are translated into binary sequences based on the mapping table,
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Fig. 1 Block diagram of the proposed approach

and codewords that need to be modified for embedding are selected through ME and
changed according to the mapping table. Finally, compressed speech stream is achieved by
proceeding with the encoding.

In the decoding process, the original speech frames are partly decoded to obtain the
original codewords. Then decide whether this point is embedded or not according to the
embedding position and template. If so, secret information is extracted according to the
mapping table.

2.1 Construction of the mapping table

Linear predictive coding is one of the most useful speech analysis techniques for encoding
good quality speech at a low bit rate. It is used mostly in speech processing and audio signal
processing for representing the spectral envelope of a digital signal of speech in compressed
form, using the information of a linear predictive model. The m-th order LPC filter can be
described as follows:

H(z) = 1

A(z)
= 1

1 − ∑m
i=1aiz−i

. (1)
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Let a = {a1, a2, · · · , am} denotes the Linear Predictive Coefficient Vector (LPCV) of
the LPC filter. Usually, the LPC coefficients are converted to Line Spectral Pair (LSP)
coefficients or Line Spectral Frequency (LSF) coefficients for quantization, which can be
transformed to each other.

The basic idea of LPC-based speech coding is to quantify the LPCV into a code-
word set using the fixed codebooks of speech codec. In order to enhance the compression
efficiency, the codeword set is eventually represented by a LPC quantization index set
x = {x1, x2, · · · , xi, · · · , xn}, where xi points to the corresponding codeword of the i-th
fixed codebook. As for decoding, the LPCV a can be generated based on quantization index
set x and the fixed codebooks. Suppose that the decoding process from x to a can be denoted
by a function f , namely, a = f (x1, x2, · · · , xn), which is defined by codecs. For example,
in G.729 codec, the quantization is achieved through three fixed codebooks after the LPC
coefficients transforming into the LSF coefficients. Each LSF coefficient si can be obtained
from the sum of two codebooks

si =
{

C1i (x1) + C2i (x2) i = 1, · · · , 5
C1i (x1) + C3i−5(x3) i = 6, · · · , 10

(2)

where C1, C2, and C3 are the fixed codebook indices [10]. At last, the LPCV is obtained
by the transformation of LSF coefficients.

Assume that we need to modify the j-th quantization index in x from
{x1, x2, · · · , xj , · · · , xn} into {x1, x2, · · · , xj

′, · · · , xn}, 1 ≤ j ≤ n. In order to quantify
the difference of LPCV before and after embedding, a loss function is defined as

Ψ
(
x, j, xj

′) = ∥
∥f

(
x1, x2, · · · , xj , · · · , xn

) − f
(
x1, x2, · · · , xj

′, · · · , xn

)∥
∥ (3)

where Ψ
(
x, j, xj

′) reflects the impact on the carrier speech introduced by the information
embedding process. The smaller the Ψ

(
x, j, xj

′) is, the safer the steganography becomes.
Where ‖∗‖ stands for the Euclidean norm.

Suppose the codebook of the j-th quantization index xj is denoted as C. For any index
xj ∈ C, there exists an index y ∈ C and y �= xj satisfying that

y = argmin
xj

′∈C,xj
′ �=xj

Ψ
(
x, j, xj

′) . (4)

We define y as the best replacement choice for xj and further denote
{x1, x2, · · · , y, · · · , xn} as the best-replacement-set for {x1, x2, · · · , xj , · · · , xn} when
modifying the j-th quantization index. Each quantization index set has n different best-
replacement-sets at most.

Quantization index space consists of all possible quantization index. The mapping table
can be constructed by two steps. Firstly, go through every point in quantization index space
and get all the corresponding best-replacement-sets. Secondly, assign each point with a label
of ‘0’ or ‘1’ and make sure that each point has different labels with the points corresponding
to its best-replacement-sets. This process involves four steps:

1. Let V be the set of points in quantization index space and E be the set of edges.
Initialize a graph G = (V ,E) with isolated points belonging to V .

2. For every point P ∈ V , insert undirected edges between P and the points corresponding
to its best-replacement-sets into E.

3. Delete duplicated edges between any two points.
4. Color the graph with 2 colors, so as two points of an edge have different color, and each

color corresponds to a label of ‘0’ or ‘1’ .
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For example, for a codec with three fix codebooks, we use (0, 0, 0) as the origin to estab-
lish a three dimensional Cartesian coordinate space. Quantization index set {x1, x2, x3} can
be seen as a point (x1, x2, x3) in this space. According to graph theory [29], the points with
two identical coordinates in G(V,E) are 2-colorable. So we make the origin as a starting
point, and color the points on the x-axis direction, as shown in Fig. 2a. Then we color along
the y-axis direction with the colored points as starting points, as shown in Fig. 2b. Finally
do it along the z-axis direction, as shown in Fig. 2c.

Since the crux of the mapping algorithm is to calculate the value of loss function. We
will take G.729 and G.723.1 codecs as examples to introduce the solving process.

– Loss Function in G.729
In G.729, the difference between the predicted and computed LSF coefficients is

quantized into three codewords and a flag L0 that defines which MA (Moving Average)
predictor to use. The order of the linear prediction filters is 10. The LSP coefficients s
for the current frame m can be obtained from the weighted sum of previous quantizer
outputs qm−k and the current quantizer output qm by

sm
i =

(

1 −
4∑

k=1

ci,k

)

qm
i +

4∑

k=1

ci,kq
m−k
i i = 1, · · · , 10 (5)

Fig. 2 Illustration of coloring process



Multimed Tools Appl (2017) 76:2837–2859 2843

where ci,k is the coefficient of the switched MA predictor. Since the weighted sum of
previous quantizer outputs qm−k will not be changed by the replacement of the current
quantizer output qm, the LSF coefficients sm

′
obtained from the embedded codewords

can be calculated by

sm′
i =

(

1 −
4∑

k=1

ci,k

)

qm′
i +

4∑

k=1

ci,kq
m−k
i i = 1, · · · , 10 (6)

where qm′
denotes the coefficients obtained from the embedded codewords.

Since LPC coefficients and LSF coefficients can be transformed to each other, we
use sm here to calculate the distortion. Hence, the calculation of the distance of LPC
coefficient vectors are equivalent to calculating ‖sm − sm

′ ‖, where sm′
denotes the LSF

coefficient vector obtained from the embedded codewords. ‖sm−sm
′ ‖ can be calculated

by

∥
∥
∥sm − sm

′∥∥
∥ =

√
√
√
√

10∑

i=1

(sm
i − sm′

i )2

=

√
√
√
√
√

10∑

i=1

[(

1 −
4∑

k=1

ci,k

)
(
Im
i − Im′

i

)
]2

. (7)

One thing to note is that there are two MA predictors in G.729 codec, so we should
calculate a mapping table for each predictor and choose the corresponding mapping
table according to L0 for embedding.

– Loss Function in G.723.1
In G.723.1, the order of the linear prediction filters is 10. The codewords are mapped

to the residual coefficients e according to the codebooks. The LSP coefficients p can
be obtained by

pi = ei + pDC + p̄i i = 1, · · · , 10 (8)

where pDC is the long-term direct current component, p̄ denotes the predicted
coefficients.

Since LPC coefficients and LSP coefficients can be transformed to each other, we
use p here to calculate the vector distance. Hence, the calculation of the distance of
LPC coefficients are equivalent to calculating ‖pm − pm′ ‖, where pm′

denote the LSP
coefficients obtained from the embedded codewords. ‖pm − pm′ ‖can be calculated by

∥
∥
∥pm − pm′∥∥

∥ =
√
√
√
√

10∑

i=1

(ei − e′
i )
2 (9)

where e′
i denotes the i-th coefficient obtained from the embedded codewords.

2.2 Embedding and extracting algorithms

The constructed mapping table can be denoted by mapping function Map(x, j, t), where t

represents the operation type. When t = 0, Map(x, j, 0) returns the binary sequences cor-
responds to x. By this time, j is not used. When t = 1, Map(x, j, 1) returns the codeword
which is used to replace the j-th codeword in x. Once the mapping table is constructed, the
embedding algorithm of MEL method involves the following procedure:
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1. Map the codewords for embedding into binary sequences according to the mapping
table. Suppose xm

j represents the j-th codeword in the m-th frame. Q(xm
j ) denotes the

binary value which xm
j corresponds to. Thus,Q(xm

j ) can be obtained byMap(xm, j, 0),
where xm is the codeword set of the m-th frame.

2. Determine the position that needs to be modified for embedding by ME [31] . Given a
set of n = 2k − 1, (k > 1) embedding coefficients, ME method can embed k bits by
modifying 1 bit at most.

3. Suppose that we need to modify xm
j . Modify it to Map(xm, j, 1).

Table 1 shows the implementation of MEL method in G.723.1 codec, where n = 3, k =
2, and the codeword set is {xm

1 , xm
2 , xm

3 }. Without loss of generality, let Q1 = Q(xm
1 ),Q2 =

Q(xm
2 ),Q3 = Q(xm

3 ) The symbol ⊕ means XOR operation.
The extracting algorithm of MEL method involves two steps. Firstly, determine the code-

words used for embedding. Secondly, map the codewords into binary sequences according
to the mapping table using the mapping function Map(xm, j, 1). The time complexity of
MELmethod isO(1), which can satisfy the real-time requirement of VoIP communications.
For example, when n = 3 and k = 2 , it only needs twice XOR operations and once table-
mapping operation to embed two secret bits into three cover vectors. As for extracting the
two secret bits, one table-mapping operation is enough.

2.3 Embedding positions and templates

2.3.1 Embedding positions selection

In LPC-based speech coder, the original speech stream is encoded frame by frame using
LPC analysis. Therefore, the compressed speech stream can be seen as a filter sequence.

Table 1 An implementation of secrets mapping in G.723.1

Secrets to embed Embedding conditions Embedding rule

w = 00 Q1 ⊕ Q3 = 0,Q2 ⊕ Q3 = 0 No change

Q1 ⊕ Q3 = 1,Q2 ⊕ Q3 = 0 Change xm
1 to Map (xm, 1, 1)

Q1 ⊕ Q3 = 0,Q2 ⊕ Q3 = 1 Change xm
2 to Map (xm, 2, 1)

Q1 ⊕ Q3 = 1,Q2 ⊕ Q3 = 1 Change xm
3 to Map (xm, 3, 1)

w = 01 Q1 ⊕ Q3 = 0,Q2 ⊕ Q3 = 0 Change xm
2 to Map (xm, 2, 1)

Q1 ⊕ Q3 = 1,Q2 ⊕ Q3 = 0 Change xm
3 to Map (xm, 3, 1)

Q1 ⊕ Q3 = 0,Q2 ⊕ Q3 = 1 No change

Q1 ⊕ Q3 = 1,Q2 ⊕ Q3 = 1 Change xm
1 to Map (xm, 1, 1)

w = 10 Q1 ⊕ Q3 = 0,Q2 ⊕ Q3 = 0 Change xm
1 to Map (xm, 1, 1)

Q1 ⊕ Q3 = 1,Q2 ⊕ Q3 = 0 No change

Q1 ⊕ Q3 = 0,Q2 ⊕ Q3 = 1 Change xm
3 to Map (xm, 3, 1)

Q1 ⊕ Q3 = 1,Q2 ⊕ Q3 = 1 Change xm
2 to Map (xm, 2, 1)

w = 11 Q1 ⊕ Q3 = 0,Q2 ⊕ Q3 = 0 Change xm
3 to Map (xm, 3, 1)

Q1 ⊕ Q3 = 1,Q2 ⊕ Q3 = 0 Change xm
2 to Map (xm, 2, 1)

Q1 ⊕ Q3 = 0,Q2 ⊕ Q3 = 1 Change xm
1 to Map (xm, 1, 1)

Q1 ⊕ Q3 = 1,Q2 ⊕ Q3 = 1 No change
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Each coefficient of LPC filter needs to be encoded by Vector Quantization (VQ). Split
vector quantization is commonly used to improve the coding efficiency, which contains the
procedure of VQ several times. After each VQ process, one codeword is obtained. All of
the codewords in the compressed speech stream constitute a steganography space.

Let matrix A denote the steganography space. Suppose the number of frames contained
in compressed speech stream is n and each frame contains m codewords. Then matrix A

can be represented as below

A =

⎡

⎢
⎢
⎢
⎣

a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m
...

...
. . .

...

an,1 an,2 · · · an,m

⎤

⎥
⎥
⎥
⎦

n×m

. (10)

Usually, there is no need to embed in all of the cover frames. Therefore, the selection of
embedding positions is needed. Since the length of speech stream is indeterminate, in order
to ensure the embedding rate, we partition matrix A into blocks with length of p and embed
in each sub-block according to the embedding rate. Each sub-block is p × m order matrix,
where p is a preset value. So we can get the partitioned matrix A = [a1, a2, · · · , am]T .

Firstly, select i cover frames from each sub-block according to the desired embedding
rate. So we can get the matrix for embedding as

B =

⎡

⎢
⎢
⎢
⎣

b1,1 b1,2 · · · b1,m
b2,1 b2,2 · · · b2,m
...

...
. . .

...

bi,1 bi,2 · · · bi,m

⎤

⎥
⎥
⎥
⎦

i×m

. (11)

Secondly, partition matrix B = [b1, b2, · · · , bm]T into blocks. Each sub-block is a q×m

order matrix, where q is a preset value. Each sub-block is called the Smallest Embedding
Unit (SEU). We use matrix U to denote a SEU. The acquisition process of a SEU is shown
in Fig. 3.

2.3.2 Embedding templates selection

In order to further enhance the security of the steganography algorithm, we design eight
embedding templates in this paper. Each embedding template corresponds to a selection
approach of the embedding sequence from matrix U . The black dots in Fig. 4 denote the
starting position for each embedding sequence. The arrows represent the direction of extrac-
tion. Besides, the dashed lines are used to indicate the connecting relations of arrows. After
the embedding template is determined, we can get one or more codeword sequences for
embedding. For example, when q = 7 and m = 3, we can get the SEU as below:

U =

⎡

⎢
⎢
⎢
⎣

u1,1 u1,2 u1,3
u2,1 u2,2 u2,3

...
...

...

u7,1 u7,2 u7,3

⎤

⎥
⎥
⎥
⎦

7×3

. (12)

The embedding codeword sequences correspond to different selection templates are
shown in Table 2. The parameters p and q, embedding position, and template can be selected
by a private key using a pseudorandom number generator [31] or other algorithms, which is
not the focus of this paper.
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Fig. 3 The acquisition process of a Smallest Embedding Unit

3 Results and discussion

The performance of the proposed algorithm is evaluated in two aspects: distortion in speech
quality introduced by embedding and security under steganalysis. This paper focuses on
the LPC-based steganography in low bit-rate speech streams. The comparison is conducted
between the proposed algorithm and LPC-QIM method [32].

3.1 Introduction of test samples

The same dataset used in [13] was used to conduct the experiments. These samples are
classified into four groups, Chinese Speech Man (CSM), Chinese Speech Woman (CSW),

Fig. 4 Eight selection templates for embedding in SEU
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Table 2 The embedding codeword sequences corresponding to different selection templates

Selection template Corresponding codeword sequences

0
(
u1,1, u1,2, u1,3

)
, · · · ,

(
u7,1, u7,2, u7,3

)

1
(
u1,1, u2,1, · · · , u7,1

)
, · · · ,

(
u1,3, u2,3, · · · , u7,3

)

2
(
u1,1, u1,2, u1,3, u2,1, u2,2, · · · , u7,1, u7,2, u7,3

)

3
(
u1,1, u2,1, · · · , u7,1, u1,2, u2,2, · · · , u6,3, u7,3

)

4
(
u1,1, u2,1, u1,2, u3,1, · · · , u3,3, u6,1, u5,2, · · · , u6,3, u7,3

)

5
(
u1,3, u2,3, u1,2, u3,3, · · · , u3,1, u6,3, u5,2, · · · , u6,1, u7,1

)

6
(
u1,1, u1,2, · · · , u4,2, u4,3

) (
u5,1, u5,2, · · · , u7,2, u7,3

)

7
(
u1,1, u2,1, · · · , u6,2, u7,2

) (
u1,3, u2,3, · · · , u6,3, u7,3

)

English Speech Man (ESM), and English Speech Woman (ESW). The duration of each
sample in these groups is 10 seconds and each speech is stored in PCM format. The detailed
information is shown in Table 3.

We choose two speech codecs, G.729 and G.723.1, to implement the embedding. Before
the experiments, we firstly prepare the stego files of the two methods with the Embedding
Rate (ER) of 20, 40, 60, 80 and 100 %. We use template 0 as the selection for MEL. For
G.729, the parameter p is set to 1000 and q is set to 5. For G.723.1, the parameter p is set to
333 and q is set to 3. In order to keep the same data embedding rate, as for the embedding
process of LPC-QIMmethod, two of the three embedding positions in each frame are chosen
randomly for embedding. The secret messages are chosen from the ‘Etymology’ section in
Wikipedia [5]. After the above processing, we obtain 80 groups of stego speech files and 8
groups of cover files.

3.2 Influence of steganography on speech quality

Speech quality evaluation methods can be classified into two categories: subjective meth-
ods and objective methods. The most common approach to conduct subjective quality
assessment is the so-called Mean Opinion Score (MOS) method, which is defined by the
International Telecommunication Union (ITU) in the ITU-T P.800 [18]. In this method, a
group of listeners are asked to score the general quality of a given set of speech samples and
the average result indicates the quality of signals. This method is such widely recognized
that even the after-coming objective methods turn their evaluation results into MOS scores.
In this paper, we take MOS method to conduct the subjective test.

Objective speech quality evaluation methods can be mainly categorized as time-domain
parameter based methods, spectrum-distance based methods, hearing-model based methods,

Table 3 The information of test samples

Samples Content Number Format Sampling frequency Digitalizing bit

CSM Reading 500 PCM 8KHz 16bit

CSW Reading 532 PCM 8KHz 16bit

ESM Report 818 PCM 8KHz 16bit

ESW Report 824 PCM 8KHz 16bit
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judgment-model based methods. Among them, the methods based on time-domain parame-
ter are the simplest and most straight-forward ones and the methods based on hearing-model
have the best evaluation performance. Consequently, our paper uses these two kinds of
methods to conduct the objective speech quality evaluation. Signal-to-Noise Ratio (SNR)
and Peak Signal-to-Noise Ratio (PSNR) are two representative time-domain parameter
based evaluation methods. We apply the PSNR because PSNR can intuitively compare the
differences between the original signal and the embedded signal, compared to SNR. The
most widely used hearing-model based methods are proposed in ITU-T P.862 [22] and
ITU-T P.563 [20]. ITU-T P.862 defines an end-to-end speech quality assessment named
Perceptual Evaluation of Speech Quality (PESQ), which is used to evaluate the quality
of experience of communication system while taking end-to-end network delay, noise and
packet-loss into consideration. ITU-T P.563 is the newest single-end speech quality evalu-
ation method. In a practical application, listeners will never have the knowledge from both
ends and single-end test is conducted in the subjective test. In coordinate with the subjective
test, single-end test method followed P.563 criterion is applied in objective evaluation.

3.2.1 Subjective test

In this test, 28 randomly selected subjects with normal hearing took necessary training at
first. The overall 88 groups of speech data have 58,828 samples with a total time length
over 163 hours, which is too much for the subjects. Thus, in our subjective test, we choose
30 samples from each group with total time duration of 26,400 seconds. We conducted
the test in a quiet laboratory and let the subjects score these samples using the five-point
absolute category rating listening quality scale [18] where 1 denotes the lowest perceived
audio quality, and 5 denotes the highest perceived audio quality.

Tables 4 and 5 show the Mean Opinion Score - Listening Quality Subjective (MOS-
LQS) assessment results for the stego speech files and the cover speech files with data
embedding by MEL method, processed by G.729 and G.723.1 respectively. The group with
0 % embedding rate denotes the results of the cover files. Table 4 shows that the absolute
value of Change Rate (CR) of MOS-LQS value increases with the increasing of embedding
rate. It can be seen that the distortion introduced by MEL method is 2.44 % at most.

Table 5 shows that the absolute value of change rate of MOS-LQS value generally
increases with the increasing of embedding rate, but the trend is not as obvious as that in
Table 4. This is because the frame length in G.723.1 is longer than G.729. 10-second speech
sample can be coded into 1000 frames by G.729 codec but only 333 frames by G.723.1.
Under the same embedding rate, fewer frames translate into fewer alterations which will

Table 4 MOS-LQS test results of samples processed by G.729

ER CSM CSW ESM ESW

(%) Value CR (%) Value CR (%) Value CR (%) Value CR (%)

0 3.375 0 2.97738 0 2.87024 0 2.90119 0

20 3.36724 −0.23 2.96875 −0.29 2.86106 −0.32 2.89887 −0.08

40 3.36353 −0.34 2.95803 −0.65 2.85905 −0.39 2.88523 −0.55

60 3.34564 −0.87 2.95118 −0.88 2.84670 −0.82 2.87334 −0.96

80 3.33619 −1.15 2.94076 −1.23 2.82690 −1.51 2.85825 −1.48

100 3.31189 −1.87 2.91456 −2.11 2.80021 −2.44 2.83591 −2.25



Multimed Tools Appl (2017) 76:2837–2859 2849

Table 5 MOS-LQS test results of samples processed by G.723.1

ER CSM CSW ESM ESW

(%) Value CR (%) Value CR (%) Value CR (%) Value CR (%)

0 3.41786 0 3.05477 0 2.93929 0 2.94643 0

20 3.41991 0.06 3.03644 −0.60 2.93841 −0.03 2.94584 −0.02

40 3.41478 −0.09 3.04499 −0.32 2.94135 0.07 2.94466 −0.06

60 3.41239 −0.16 3.04377 −0.36 2.93753 −0.06 2.94466 −0.06

80 3.41239 −0.16 3.03919 −0.51 2.93870 −0.02 2.94142 −0.17

100 3.40966 −0.24 3.04102 −0.45 2.93694 −0.08 2.93965 −0.23

lead to less distortion. The results shown in Tables 4 and 5 clearly indicate that the distortion
introduced by MEL method is small.

Tables 6 and 7 illustrate the comparison between MEL and LPC-QIM method based
on MOS-LQS values, processed by G.729 and G.723.1 respectively. In order to compare
the two methods, the MOS-LQS test results of LPC-QIM method are used as benchmark.
Table 6 shows that theMOS-LQS values increase in every group, which means the distortion
introduced by MELmethod is less than that of LPC-QIM. Table 7 shows that the MOS-LQS
values increase in 19 out of 20 groups. The Observable differences are not obvious. This is
because the linear predictive analysis-by-synthesis coding (ABS-LPC) model is used in low
bit-rate codecs, which will minimize the distortion by decoding the encoded signal. Due to
its higher embedding efficiency, the MEL method is better than the LPC-QIM method in
that lower average probability of changing for each bit when embedding secret message into
cover vectors, especially when the number of frames is higher. From the analysis above, it
is clear that MEL method has less impact on the quality of cover speech than the LPC-QIM
method.

3.2.2 Objective test

PSNR is an approximation to human perception of reconstruction quality. It is an expression
for the ratio between the maximum possible power of a signal and the power of distorting
noise. The signal in this case is the original speech data, and the noise is the error introduced
by compression and steganography. To make the plot much clearer, we show only part of
the samples. PSNR test results are shown in Figs. 5 and 6. The embedding rate of the stego

Table 6 The change in MOS-LQS value on samples processed by G.729

ER %Change in MOS-LQS

(%) CSM (%) CSW (%) ESM (%) ESW (%) AVERAGE (%)

20 0.15 0.28 0.26 0.04 0.18

40 0.36 0.37 0.33 0.29 0.34

60 0.38 0.51 0.31 0.53 0.43

80 0.38 1.15 0.42 0.77 0.68

100 0.63 1.22 0.45 1.32 0.91
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Table 7 The change in MOS-LQS value on samples processed by G.723.1

ER %Change in MOS-LQS

(%) CSM (%) CSW (%) ESM (%) ESW (%) AVERAGE (%)

20 0.06 0.03 0.05 0.12 0.07

40 0.09 0.14 0.12 0.15 0.13

60 0.25 0.19 0.18 0.23 0.21

80 −0.02 0.21 0.26 0.21 0.17

100 0.18 0.43 0.45 0.38 0.36

files is 100 %. It is clear in the figures that the PSNR of MEL method is larger than that of
the LPC-QIM method.

In order to evaluate the noise introduced by the message embedding process for different
embedding rates, we calculate the average PSNR for each situation, as shown in Figs. 7
and 8. We can see that the average PSNR of MEL method is clearly higher than that of the
LPC-QIM method for every embedding rate. Thus, we can safely draw the conclusion that
the MEL method has less time domain distortion than the LPC-QIM method according to
the experimental results.

We used the Mean Opinion Score - Listening Quality Objective (MOS-LQO) value to
assess the quality of the stego speech samples followed ITU-T P.563 criterion. The auto-
mated MOS-LQO test software [20] provided by ITU-T is used to conduct the test. Tables 8
and 9 show the MOS-LQO test results for the cover speech files and the stego speech
files with data embedding by MEL method, processed by G.729 and G.723.1 respectively.
The group with 0 % embedding rate denotes the results of the cover files. Table 8 shows
that the absolute value of change rate of MOS-LQO value increases with the increasing of
embedding rate. It can be seen that the distortion introduced by MEL method is 4.44 % at
most.

Table 9 shows that the absolute value of change rate of MOS-LQO value generally
increases with the increasing of embedding rate, but the trend is not so obvious as that in

Fig. 5 PSNR test results of samples processed in G.729
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Fig. 6 PSNR test results of samples processed in G.723.1

Table 8. This is because, under the same embedding rate, fewer frames translate into fewer
alterations which will lead to less distortion. The results shown in Tables 8 and 9 clearly
indicate that the distortion introduced by MEL method is small.

Tables 10 and 11 illustrate the comparison between MEL and LPC-QIM method based
on MOS-LQO values, processed by G.729 and G.723.1 respectively. In order to compare
the two methods, the MOS-LQO test results of LPC-QIM method are used as benchmark.
Table 10 shows that the MOS-LQO values increase in every group, which means the dis-
tortion introduced by MEL method is less than that of LPC-QIM. Table 11 shows that the
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Fig. 7 Average PSNR test results of samples processed in G.729
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Fig. 8 Average PSNR test results of samples processed in G.723.1

MOS-LQO values increase in 18 out of 20 groups. This is because the ABS-LPC model is
used in low bit-rate codecs. It will minimize the distortion introduced by embedding. Due
to its higher embedding efficiency, the MEL method is better than the LPC-QIM method
especially when the number of frames is higher. From the analysis above, it is clear that
MEL method has less impact on the quality of cover speech than the LPC-QIM method.

3.3 Security analysis

To evaluate the security of the proposed steganography algorithm, we employ the effective
steganalysis method proposed in [18]. It combines the Derivative Mel-Frequency Cepstral
Coefficients-based feature of speech sample together with the Support Vector Machine to
detect audio steganography. Figure 9 shows the detection accuracy on the speech samples

Table 8 MOS-LQO test results of samples processed by G.729

ER CSM CSW ESM ESW

(%) Value (%) CR (%) Value (%) CR (%) Value (%) CR (%) Value (%) CR (%)

0 3.28891 0 2.95443 0 2.76324 0 2.86536 0

20 3.26178 −0.82 2.93882 −0.53 2.75566 −0.27 2.84106 −0.85

40 3.24752 −1.26 2.90321 −1.73 2.73654 −0.97 2.82974 −1.24

60 3.20346 −2.60 2.87576 −2.66 2.71979 −1.57 2.80133 −2.23

80 3.18253 −3.23 2.85234 −3.46 2.69786 −2.37 2.78436 −2.83

100 3.16028 −3.91 2.82322 −4.44 2.67731 −3.11 2.75489 −3.86
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Table 9 MOS-LQO test results of samples processed by G.723.1

ER CSM CSW ESM ESW

(%) Value (%) CR (%) Value (%) CR (%) Value (%) CR (%) Value (%) CR (%)

0 3.35346 0 2.96471 0 2.78193 0 2.71836 0

20 3.35178 −0.05 2.94682 −0.60 2.78389 0.07 2.71643 −0.07

40 3.34113 −0.37 2.95514 −0.32 2.78271 0.03 2.71462 −0.14

60 3.33755 −0.47 2.94775 −0.57 2.77918 −0.10 2.71776 −0.02

80 3.32852 −0.74 2.93813 −0.90 2.78082 −0.04 2.70825 −0.37

100 3.32771 −0.77 2.95102 −0.46 2.78533 0.12 2.70675 −0.43

processed by G.729. We can see that the detection accuracy of MEL is significantly lower
than that of LPC-QIM method.

Figure 10 shows the detection accuracy on the speech samples processed by G.723.1. We
can see that the results are mostly concentrated in the vicinity of 50 %. This is because the
number of alterations in the frames coded by G.723.1 is too small for effective detection.
With the increasing of embedding rate, the detection rate of LPC-QIM method increases
significantly higher than that of MEL method. Lower detection rate proves better security
of MEL method.

3.4 Embedding efficiency analysis

Experimental results listed above prove that our method has better security and less influ-
ence on speech quality compared with the LPC-QIM method. Here we will discuss the
underlying causes. Some evaluation parameters for scalar replacement are given in [31],
which motivates us to define the corresponding parameters for vector replacement.

Definition 1 (Hiding Rate) Hiding rate (HR) denotes the average number of secret bits that
embedded in each cover bit. When k secret bits are embedded into n cover bits, the hiding
rate can be calculated by

HR = k

n
. (13)

It reflects the usage rate of the cover. The method with higher data embedding rate can
carry more secret bits. For G.729 codec, an embedding throughput of 300 bits/s can be

Table 10 The change in MOS-LQO value on samples processed by G.729

%Change in MOS-LQO

ER (%) CSM (%) CSW (%) ESM (%) ESW (%) AVERAGE (%)

20 0.27 0.52 0.41 0.18 0.35

40 0.72 0.32 0.32 0.42 0.45

60 0.34 0.77 0.27 0.66 0.51

80 0.26 1.30 0.28 0.83 0.67

100 0.83 1.31 0.47 1.41 1.01
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Table 11 The change in MOS-LQO value on samples processed by G.723.1

%Change in MOS-LQO

ER (%) CSM (%) CSW (%) ESM (%) ESW (%) AVERAGE (%)

20 0.32 −0.12 0.05 0.21 0.12

40 −0.01 0.10 0.18 0.19 0.12

60 0.34 0.13 0.21 0.28 0.24

80 0.06 0.18 0.22 0.16 0.13

100 0.07 0.77 0.59 0.43 0.47

achieved with a hiding rate of 100 %. However, for G.723.1 codec, only 99 bits/s can be
achieved with a hiding rate of 100 %.

Definition 2 (Codeword-Change Rate) Codeword-change rate (CCR) denotes the average
probability of changing for each bit when embedding secret message into cover codewords.
When k′ out of n cover codewords are changed for embedding, the codeword-change rate
can be calculated by

CCR = k′

n
. (14)

It reflects the impact on the host by the information embedding process. The smaller
CCR is, the safer steganography becomes. For example, when CCR is 0, the embedding
process makes no impact on host. In this case, the steganography is absolutely safe.

Fig. 9 Detection accuracy of samples processed in G.729
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Fig. 10 Detection accuracy of samples processed in G.723.1

Definition 3 (Embedding Efficiency) Embedding efficiency (EE) denotes the expected
number of secret bits embedded with one embedding change. When k secret bits are
embedded by changing k′ cover codewords, the embedding efficiency can be calculated by

EE = k

k′ . (15)

Table 12 shows the comparison of the two methods with the maximum hiding rate.
Table 13 shows the comparison of the two methods with the same hiding rate. From Table 12
and Table 13, we can see that:

1. The codeword-change rate of the MEL method is less than that of LPC-QIM method,
which means the MEL method has smaller influence on host.

Table 12 The comparison of the two methods with the maximum data embedding rate

Parameter CCR HR EE

k MEL (%) LPC-QIM (%) MEL (%) LPC-QIM (%) MEL LPC-QIM

3 25 50 66.67 100 2 1

7 12.5 50 42.86 100 3 1

15 6.25 50 26.67 100 4 1

31 3.13 50 16.13 100 5 1

63 1.56 50 9.52 100 6 1

127 0.78 50 5.51 100 7 1
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Table 13 The comparison of the two methods with the same data embedding rate

Parameter CCR HR EE

k n MEL (%) LPC-QIM (%) MEL (%) LPC-QIM (%) MEL LPC-QIM

2 3 25 33.33 66.67 66.67 2 1

3 7 12.5 21.43 42.86 42.86 3 1

4 15 6.25 13.33 26.67 26.67 4 1

5 31 3.13 8.06 16.13 16.13 5 1

6 63 1.56 4.76 9.52 9.52 6 1

7 127 0.78 2.76 5.51 5.51 7 1

2. MEL method is more efficient than LPC-QIM method under the same data embedding
rate. Since MELmethod can embed bits by vector replacement at a time, the embedding
efficiency of our method is times as that of LPC-QIM method.

4 Conclusion

The main contribution of this paper is to propose an information hiding method for low bit-
rate VoIP speech codecs based on matrix embedding. It can be used in all the LPC-based
speech codecs. We embed secret information during the VQ process of linear predictive
coefficients by codeword replacements. And the replacements are conducted based on the
criterion of minimum distance of LP-Coefficient-Vectors regained from the codewords
before and after embedding. The embedding efficiency of our method is k (k > 1) times as
that of LPC-QIM method under the same data embedding rate.

Two criteria were adopted to evaluate the performance of the proposed algorithm: influ-
ence of steganography on speech quality analysis and security analysis. In the influence of
steganography on speech quality analysis, we compared the two steganographic methods
based on subjective speech assessment and objective speech assessment. The experimen-
tal results show that our steganographic method introduces less distortion. In the security
analysis, we employed the effective steganalysis method proposed in [18] to detect both our
steganographic method and the LPC-QIM steganographic method. The experimental results
prove that our method has lower probability of being detected. Algorithm proposed in this
paper can be applied in independent covert communication system based on VoIP, or modify
current VoIP applications via hooking techniques, without modifying corresponding clients,
to construct integrated covert communication system, such as compressed speech payload
in G-talk.

The future work is to further improve the embedding efficiency so as to minimize the
distortion introduced by embedding. The steganalysis methods have also been develop-
ing rapidly in recent years, so we need to further enhance the security of the proposed
method. The application of our steganographic method is promising. One can directly use
our method to hide information in the real-time speech streams in VoIP.
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