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Abstract This paper presents a new method for the interpolation of a full high-definition (HD)
image based on the dual-tree complex wavelet transform (DT-CWT) and hidden markov
model (HMM). In the proposed method, the DT-CWT is used to decompose the low-
resolution image into different subbands. In wavelet domain interpolation, given image is
assumed as the low frequency LL subband of the wavelet coefficients of a high-resolution
image. The proposed method estimates the higher band coefficients by learning the correlation
between the coefficients across the scale. In this paper, the relationship between the wavelet
coefficients across the scale is described by HMM, and each wavelet coefficient is modeled by
a Gaussian mixture having multiple means and variances. Experimental results show that the
proposed algorithm yields images that are sharper compared to several other methods that we
have considered in this paper.

Keywords Image interpolation . Dual tree complexwavelet transform .Hiddenmarkovmodel .

Expectationmaximization

1 Introduction

Image interpolation is a process that is often used to perform an image zoom or simply to
increase the resolution of an original image from its down-sampled version [10]. Interpolation
has been widely used in many image processing applications such as facial reconstruction,
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multiple description coding (MDC), super resolution and digital high-definition television
(HDTV) [3, 9, 18]. The rapid advancements in hardware and display devices have made it
possible to process high-resolution digital color images as shown in Fig. 1. In order to
efficiently utilize the display power of these state of-the-art viewing devices, input signals
from a lower-resolution source must be upscaled to higher resolutions through interpolation.
However, the multichannel nature of color images demands efficient signal processing algo-
rithms that take into account the existing inter-channel correlations when performing image
size expansion. In this work, we propose a new technique that generates sharper super-resolved
images. Various techniques have been proposed in order to scale the image from low resolution
to high resolution and its reverse. Fundamentally, they can be classified into three categories:
isotropic interpolation-based, edge-directed, and transform-based methods. The isotropic
interpolation method [3, 9, 10, 18] considers the source image as a sub-sampled discrete
version of the original Bcontinuous^ image. Nearest-neighbor, bilinear, and bi-cubic interpo-
lation are some of the examples of this method. In the nearest-neighbor method, the source
image is scaled by sampling the nearest pixels in the source image. This is also known as zero-
order interpolation. It is a computationally efficient algorithm; however, the up-scaled image
quality is degraded owing to the aliasing effect. In the bilinear and the bi-cubic interpolation
methods, image quality is improved compared to the nearest neighbor method; however, the
high-frequency content of the image still suffers from a blurring effect. Edge directed
interpolation (EDI) [4, 11, 12, 19] uses statistical sampling to ensure quality while scaling
the image instead of averaging the pixels, as in a bilinear interpolation average of the
covariance of pixels. Hence, the sharpness and the continuity of the edges are preserved. Li
[12] proposed an EDI using the statistical and geometrical properties of the pixel to interpolate
the unknown pixel. A covariance of the pixel in a local block is required for the computation of
the prediction coefficient. This algorithm works well for preserving the sharpness and conti-
nuity of edges. However, only four pixels are taken from the source image; hence, the
prediction error is obvious in this algorithm. A modified training window structure has been
proposed [16, 17] in order to overcome this shortcoming.

The training window in the second step of NEDI is modified to the form of sixth order linear
interpolation with a 5×9 training window. M. Li [11] suggested the Markov random field (MRF)-
based model. The image is modeled withMRF, and edge estimation is extended in other directions
by increasing the neighboring pixels in the kernel. Similarly, an improved edge-directed image
interpolation algorithm with low time complexity which is the combination of Newton’s method
and edge-directed method is proposed by Wang Xing-Yuan and Chen Zhi-Feng [20].
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Fig. 1 High resolution display video wall
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This algorithm is able to preserve the sharpness of edges in the interpolated image. Transforms
like DCT and wavelet transform are efficient for compressing the energy into a few transformed
coefficients. As a result of multiplying these transformed coefficients, a scaled image can be
obtained. The algorithm in [17] is based on the use of orthogonal wavelets as preconditioning
transforms. Lama et al. in [8] suggested the adaptive directional to interpolate the image. In this
method, directional lifting based wavelet is applied. The theory of projection onto convex sets
(POCS) is the basis for the iterative technique proposed byK. Ratakonda in [14]. In this algorithm,
scaling is accomplished in two steps. First the initial image is obtained by the conventional
bilinear technique, then the iterative algorithm is applied on the initial image to obtain the final
magnified image. Additionally, Chun-Ho Kim [5] proposed the winscale algorithm which is
based on an area pixel model and domain filtering, and it uses a maximum of four pixels from the
original image to calculate the pixel of a scaled image. The winscale algorithm uses the same
hardware as the bilinearmethod; however, it is more complex in terms of the number of operations
per pixel. Limitations of winscale in described in detail by E. Aho et al. [1].

Finally, we present a new algorithm that interpolates the image with consideration of
preserving the original image edge and computational cost. The proposed technique uses
(DT-CWT) to decompose the low-resolution image into different sub-band coefficients. We
assume that a given image is the LL band of the wavelet coefficients of a high-resolution
image as shown in Fig. 2. In order to predict the coefficients on the finest scale, we model the
statistical relationship between the coefficients at coarser scales using a hidden markov tree
(HMT). Finally, the magnified image is obtained combining the predicted high-frequency sub-
band images and input image by using inverse discrete complex wavelet transform (ID-CWT).

2 Dual tree complex wavelet transform

The DT-CWT is an enhancement to the traditional critically sampled DWT to overcome the
shortcomings with important additional properties: it is nearly shift invariant and offers higher
directional selectivity [7]. There are six directional subbands capturing features along the lines at
angles of ±15°, ±45°, and ±75°. The DT-CWTallows the characterization of images by providing
explicit information about singularities in a broad range of orientations. The DT-CWTof a signal
X(n) is implemented by using 2 critically sampled DWTs in parallel on the same data, as shown in
Fig. 3. Since for N point signals, they generate 2 N DWT coefficients, the transform is doubly
expansive. The filters are designed in a specific way such that the sub-band signals of the upper
DWTcan be interpreted as the real part of a complex wavelet transform, and the sub-band signals
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Fig. 2 Interpolation using DT-CWT and HMM
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of the lower DWT can be interpreted as the imaginary part. When designed in this way, the DT-
CWT is nearly shift invariant, in contrast to the classic DWT.

2.1 Statistical modeling of complex wavelet transform

The main idea of the wavelet domain interpolation is to exploit the properties of wavelet
coefficients for estimating the extreme points in the higher frequency bands [13]. First, the
intra-scale characteristic of coefficients is studied. Within the same scale, coefficients
representing the smooth region in an image have small magnitudes while large magnitudes
represent singular regions. Each wavelet coefficient is modeled by a gaussian mixture model
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Fig. 3 Dual-tree complex wavelet transform a Analysis b Synthesis
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(GMM) that has multiple means and variances. The overall marginal probability distribution
function (PDF) is given by a two-state model with hidden states (Si= 1/2), where one Gaussian
is used to model the coefficients around zero for small region, while another is used for the
higher-magnitude coefficients which constitute the singularities. These two states are illustrat-
ed in Fig. 4. Similarly, the PDF plot of wavelet coefficients of Lena image is shown in Fig. 5.
Each coefficient is assumed to fall into one of these distributions, and HMT model is trained
by the expectation maximization (EM). Then, the overall density function is given by:

f wið Þ ¼ p Si ¼ mð Þ f wi=Si ¼ mð Þ; ð1Þ

where, p(Si=m) is obtained using the EM. Given the state Si, the conditional probability f(wi |
Si=m) of the coefficient value wi corresponding to the Gaussian distribution is obtained as:

f wi=Si ¼ mð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

i;m

q exp −
wi

2

2σ2
i;m

 !
ð2Þ

Second, the unknown high-frequency coefficients are estimated by using the inter-scale
relationship, which is defined by the Markov stochastic model [2]. This model uses both the
persistency and non-Gaussianity properties of the wavelet coefficients. For any image, each
parent wavelet coefficient in the HMT hierarchy has four children. Owing to persistence, the
relative size of the coefficients propagates across the scale. To describe these dependencies, the
two-state HMT model uses the state transition probabilities f(Si =m| Sp(i)= n) between the
hidden states Si of the children, given that of the parent Sp(i):
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Fig. 4 Two state Gaussian model
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f Si ¼ m=Sp ið Þ ¼ n
� � ¼

f Si ¼ 1jSp ið Þ ¼ 1
� �

f Si ¼ 1jSp ið Þ ¼ 2
� �

f Si ¼ 2jSp ið Þ ¼ 1
� �

f Si ¼ 2jSp ið Þ ¼ 2
� �� � ð3Þ

where according to the persistence assumption, f(Si=1|Sp(i) = 1)≫ f(Si=2|Sp(i) = 1) and

f Si ¼ 2jSp ið Þ ¼ 2
� �

≫ f Si ¼ 2jSp ið Þ ¼ 1
� � ð4Þ

Therefore, the associated probabilities P are

P Si ¼ 2jSp ið Þ ¼ 1
� � ¼ 0

P Si ¼ 1jSp ið Þ ¼ 1
� � ¼ 1

ð5Þ

The probability that the large coefficient changes into the small coefficient converges to 0.5
across scales.

P Si ¼ 1jSp ið Þ ¼ 2
� � ¼ 1=2

P Si ¼ 2jSp ið Þ ¼ 2
� � ¼ 1=2

: ð6Þ

Therefore, state transition probabilities ε can be approximated by following the model of
universal HMT [15].

ε11i;p ið Þ ε12i;p ið Þ
ε21i;p ið Þ ε22i;p ið Þ

" #
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� �
: ð7Þ

Fig. 5 PDF plot of wavelet coefficient in Lena image
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Once the state of the child coefficient is confirmed, we generate corresponding coefficient
values based on different infterpolation methods [6]. The state value of coefficients clearly
indicates the pixel characteristics around the location i,e, the state value Si=1, indicates the
coefficient blongs to low frequency region while the high Si=2 corresponds to high frequency
regions. In the proposed method unknown coefficients values belonging to the high frequency
region are generated using a linear interpolation instead of random values based on the
variance. Coefficients along the direction yielding the lowest high frequency energy among
all the directions are selected for interpolation. While, in case of low frequency region, pixel
intensity of neighboring pixels are almost identical. Thus we generate the child coefficients
based from the variance same as its parents.

In this paper, the DWT wavelet coefficients are modeled using three independent HMT
models. In this way, we tie together all trees belonging to each of the three detail subbands to
decrease the computational complexity and prevent overfitting to the data.

For the DT-CWT coefficients, the complex wavelet coefficient comprise real and complex
components w= (wr, wc). Thus, the conditional probability for the complex coefficient f(wi |
Si=m) is expressed as:

f wi=Si ¼ mð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

i;m

q exp −
wri2

2σ2
i;m

 !
exp −

wci2

2σ2
i;m

 !
ð8Þ

Scale-to-scale Markov transitions of the complex wavelet HMT and real DWT HMT have
almost identical structures. The differences will be the use of six subband trees instead of three.

3 Experimental results

In this section, we present experimental results of evaluating the performance of the
proposed algorithm using different test images, one of which is shown in Fig. 5. The
performance is compared with several standard methods, such as bilinear interpolation,
edge directed interpolation and in [12] and adaptive directional lifting based interpola-
tion. We consider two types of performance metrics, which are visual quality and peak
signal to nosie ratio (PSNR). The visual comparison is performed using two images. We
have selected gray scale Lena image of size 512 × 512 and high resolution color image of
size 1920 × 1080. Figure 6 shows the interpolation of Lena image using different
interpolation method. Figure 6a shows the original image. Figure 6b shows an interpo-
lated image using new edge directed interpolation (NEDI) [12]. Figure 6c shows a
magnified image using the bilinear method. Figure 6d shows a magnified image using
the adaptive directional lifting (ADL) based method. Finally, Fig. 6e shows the image
upscaled using the proposed method. Visually, experiments from the three different
filters yield very similar results and conclusions, but the PSNR tells quite a different
story. In order to obtain PSNR measurement, we take the 2 N× 2 N and downsample it to
obtain N × N image. PSNR values of reconstructed images are shown in Table 1. The
reconstructed images generally attain most of their quality in few iterations and practi-
cally do not change after 5–6 iterations of EM, both in visual quality and in PSNR
measurements. The log likelihood of high frequency coefficients estimated during ex-
pectation maximization remains constant after 5–6 iterations as shown in Fig. 7. Since
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we obtain the variances and mean of coefficients using only few iterations, the use of EM
does not make the overall system more complex. Although the PSNR is not a good
indication of image quality, it is nevertheless frequently used, and the results are
tabulated in Table 1 for the bilinear interpolation, NEDI methods and ADL method.
The highest PSNR values among the different methods are highlighted in bold. From this

(a)

(b)         (c) (d) (e)

Fig. 6 Experimental results: a Original image Lena, b Interpolated image using the NEDI method, c Bilinear
method, d ADL-based method, and e proposed method

Table 1 Competitive results

Image Bilinear [dB] NEDI [12] [dB] ADL-based method [8] [dB] Proposed method [dB]

Rocket 27.01 27.36 28.00 28.19

Flower 27.60 27.35 27.98 28.10

Lena 30.16 30.12 30.65 30.81

Barbara 24.33 23.85 24.53 24.65

Boat 27.50 27.18 27.73 29.23

The highest PSNR values among the different methods are highlighted in bold. From this table values, the
proposed method outperforms the conventional algorithms in terms of PSNR
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table values, the proposed method outperforms the conventional algorithms in terms of
PSNR. Similarly, In Fig. 8, we demonstrate the interpolation of high resolution color
image using different methods and their comparison with the proposed method. One can
see that the proposed algorithm resizes the high-frequency component better without the
ringing artifacts present in bilinear and other methods. We used a half-size downsampled
image using nearest neighbor method to interpolate to the original size and compute the
PSNR.

(a) (b)

Fig. 7 Log-likelihood vs number of iterations a Real HH coefficients b Imaginary HH coefficients

(a)

(b)         (c) (d) (e)

Fig. 8 Experimental results: a Original image, b Interpolated image using the NEDI method, c Bilinear method,
d ADL-based method, and e proposed method
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4 Conclusions

In this paper, we proposed an efficient up-sampling algorithm based on the DT-CWT and
HMM method. The proposed up-sampling method yields much better visual quality in high
resolution color images and better PSNR for both the color and gray scale images compared to
current state of the art in the literature of high-resolution display systems. The better perfor-
mance comes at the expense of increase in complexity. However it is not a significantly high.
We believe, many modifications can be done on the proposed method that can further improve
its performance and reduce computational complexity. Finally, owing to the combined DT-
CWT and HMM concept of the proposed method, it can be efficiently used for the interpo-
lation of HD images.
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