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Abstract Layout problem is a kind of NP-Complete problem. It is concerned more and more
in recent years and arises in a variety of application fields such as the layout design of
spacecraft modules, plant equipment, platforms of marine drilling well, shipping, vehicle
and robots. The algorithms based on swarm intelligence are considered powerful tools for
solving this kind of problems. While usually swarm intelligence algorithms also have several
disadvantages, including premature and slow convergence. Aiming at solving engineering
complex layout problems satisfactorily, a new improved swarm-based intelligent optimization
algorithm is presented on the basis of parallel genetic algorithms. In proposed approach, chaos
initialization and multi-subpopulation evolution strategy based on improved adaptive cross-
over and mutation are adopted. The proposed interpolating rank-based selection with pressure
is adaptive with evolution process. That is to say, it can avoid early premature as well as benefit
speeding up convergence of later period effectively. And more importantly, proposed PSO
update operators based on different versions PSO are introduced into presented algorithm. It
can take full advantage of the outstanding convergence characteristic of particle swarm
optimization (PSO) and improve the global performance of the proposed algorithm. An
example originated from layout of printed circuit boards (PCB) and plant equipment shows
the feasibility and effectiveness of presented algorithm.
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1 Introduction

Layout problems [4, 12] study how to put objects into limited space reasonably under given
constraints (for example, no interference, increasing space utilization ratio). There are also lots
of complex problems in various engineering fields, such as layout design of spacecraft
modules and plant equipment. As for complex layout problems, some additional behavioral
constraints need to be taken into account, such as the requirements for equilibrium, connec-
tivity and adjacent states. These layout problems are of great importance. But unfortunately,
due to their NP-Complete complexity, it is hard to solve them satisfactorily.

Relevant references [1, 4, 34] summarized the common approaches to solving layout
problems, including mathematical programming and criterion methods, heuristic algorithms,
graph theory, expert systems and algorithms based on swarm intelligence and natural laws.
Mathematical programming and criterion methods possess relatively well-developed theoret-
ical systems. Since these methods usually have the property of local convergence, it is rather
difficult for them to solve large-scale problems. As a rule, we can obtain satisfactory
solutions by heuristic algorithms. But every heuristic algorithm has its own scope of
application and it is only effective for a restricted kind of problems. Some spatial
relationships such as Badjacent^ and Bdistance^ are used in graph theory. These
relationships can be adopted to cut out some search branches and relax Bcombination
explosion^ in search space. But several new questions (e.g., incomplete solution
space) appear. Besides, the descriptive method of the solution space by graph theory
is quite complicated. The limitation on solving complex layout problems by expert
systems lies in that it is not easy to acquire expert knowledge and create inference
engines. In accordance with the algorithm trend and solution quality, the robust
universal algorithms based on swarm intelligence have significant advantages. They
are particularly fit to solve medium or large-scale complex layout problems, compared
with other traditional methods [35, 46]. Meanwhile, these algorithms also have several
defects with regard to themselves, including premature and slow convergence rate. In
this paper, some measures are taken and a novel swarm-based intelligent optimization
algorithm is presented on the basis of PGA [9, 20]. We hope our work can benefit
solving complex layout problems satisfactorily.

2 Presented Swarm-Based Intelligent Optimization Algorithm

2.1 Chaos Initialization

The purpose of adopting chaos initialization is to improve the quality of initial individuals.
Chaos is a nonlinear phenomenon, which extensively exists in nature [33, 36]. Chaos systems
possess the characteristics, such as randomness, ergodicity and sensibility to initial conditions
[24]. By means of these characteristics, we can initialize population superiorly. The basic idea
of chaos initialization can be stated as follows. First of all, generate the same number of chaos
variables as many as decision variables. Then introduce chaos into decision variables and map
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the ergodic range of chaos variables onto the definition ranges of decision variables. Here we
select the following Logistic mapping as chaos generator.

Zkþ1 ¼ f μ; Zkð Þ ¼ μZk 1−Zkð Þk ¼ 0; 1; 2;… ð1Þ

where μ is a control parameter and the system is in chaotic state when μ=4.
The concrete procedure of chaos initialization is as follows. Assume that the number of decision

variables is n. Firstly assign n original values Zi0 (i=1, 2,…, n) to Zk in formula (1), which are all
between 0 and 1. So it can generate n different sequences of chaos variables, i.e., {Zik, i=1, 2,…,
n}. Then introduce every chaos variable into its corresponding decision variable by (2).

xik ¼ ai þ bi−aið ÞZik ð2Þ

where bi and ai are the upper and lower bounds of decision variable xi respectively.
For a given k, decision vector Xk=(x1k, x2k,…, xnk)

T represents a solution (an individual) to
the problem. Along with increase in the value of k, we can obtain a series of initial individuals.
Finally, we calculate the fitness of every obtained individual, select superior individuals to
form initial population and divide it into initial subpopulations.

2.2 Interpolating rank-based selection with pressure

In traditional rank-based selection operator of genetic algorithms, a probability assignment
table should be preset. But there is no deterministic rule for design of the table. And it is
difficult for traditional rank-based model to make the selection probabilities of individuals
adaptively changed along with evolution process. So some research works have been devoted
to the improvement of traditional rank-based selection for these years [3, 37]. In this paper,
based on the mathematical concept of interpolation method, we introduce interpolating rank-
based selection with pressure and its relevant formulas. It can overcome the above-stated
shortcomings of traditional rank-based selection operator.

2.2.1 Parameter decision

There are three control parameters in this kind of selection. They are selection pressure,
distribution of interpolation points corresponding to individuals and probabilistic interpolating
function.

Selection pressure α denotes the ratio of the maximal individual selection probability Pmax

to the minimal individual selection probability Pmin within a generation, i.e., Pmax=αPmin. This
parameter indicates the priority that the better individuals are reproduced into the next
generation during selection process and it is changeable along with the evolution process of
the algorithm. Because the fitness values of individuals within a population are usually not
much different from one another in the final stage of genetic algorithms and traditional
proportional selection model can’t assign higher selection probability values to superior
individuals, it usually takes a long time to converge to final results for genetic algorithms.
However the proposed concept of changeable selection pressure α can overcome this difficulty
effectively. In the early stage, lesser selection pressure α can keep population diversity and
avoid early premature; while in the late stage, greater selection pressure α helps to speed up
algorithm convergence.
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Let α=f (K), K and f denote the generation number and an increasing function respectively.
f can be multiple forms and we adopt linear increasing function for the sake of simplicity. Let
αmax and αmin denote the maximum and minimum of selection pressure respectively, then

α ¼ K−1ð Þ αmax−αminð Þ
Kmax−1

þ αmin ð3Þ

whereKmax is the maximal generation number set in a algorithm. And our numerical experiments
show that αmax and αmin may be chosen in the interval [38, 46] and [1.5, 5] respectively [21].

To calculate the selection probability of every individual, we should arrange all the
individuals within a population in descending order based on their fitness values at
first. And then determine every interpolation point corresponding to every individual.
Interpolation points can be denoted by xk+1=xk+hk, k=1, 2, …, M-1, where M is the
population size. xk is the kth interpolation point corresponding to the kth individual
within the descending order arrangement. hk is the step size of interpolation. If hk=c
(k=1, 2, …, M-1), c is a constant, then the distribution of individual interpolation
points is equidistant. Otherwise, it is inequidistant. The concrete distribution types
should be determined according to the requirement of actual computational condition.
For example, under the circumstances of the same α and P(x) (see the next para-
graph), comparing the equidistant distribution shown in Fig. 1a to the inequidistant
distribution with more compact ends shown in Fig. 1b, we know that the latter lays
more emphasis on the function of the superior individuals with greater fitness values.

P(x) is called probabilistic interpolating function and it is a decreasing function. The
selection probability of the kth individual is Pk=P(xk). And there exist Pmin=P(xM) and
Pmax=P(x1). Pmax and Pmin are the maximal and minimal selection probability respectively.
P(x) can be linear or nonlinear functions.

2.2.2 Realization process

Assume that the probabilistic interpolating function is linear and the distribution of individual
interpolation points is equidistant. We present derived formulas of calculating selection
probabilities of individuals in this case as follows. The relevant formulas in other cases can
be derived similarly.

As it’s shown in Fig. 1a, let δk=P(xk)-P(xk+1), k=1,2,…,M-1. And assume that the difference
between Pmax and Pmin isΔ=(α-1)Pmin. Because P(x) is a linear function and hk=xk+1-xk=c (k=1,

(a) Equidistant distribution (b) Inequidistant distribution
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Fig. 1 Distribution types of individual interpolation points
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2, …, M-1), δk(k=1,2,…, M-1) is a constant, denoted by δ. And there exists δ=Δ /(M-1)=
[(α-1)Pmin]/(M-1). Therefore the selection probability of the kth individual is

Pk ¼ αPmin þ 1−αð ÞPmin k−1ð Þ½ �
.

M−1ð Þ ð4Þ

The sum of all the individual selection probability is 1, i.e.,

XM

k¼1

α⋅Pmin þ 1−αð Þ⋅Pmin⋅ k−1ð Þ
M−1

� �
¼ 1 ð5Þ

Therefore we obtain

Pmin ¼ 2

M αþ 1ð Þ ð6Þ

Substituting above formula into formula (4), it is easy to find that

Pk ¼ 2α⋅ M−kð Þ þ 2 k−1ð Þ
M ⋅ αþ 1ð Þ⋅ M−1ð Þ k ¼ 1; 2;…;M ð7Þ

Proposed selection operation can be described as follows. We first reproduce the best
individual of current generation and put its copy into the next generation directly based on
elitist model. Then calculate selection probabilities of all the individuals according to formula
(7). Finally generate the other M-1 individuals of the next generation by fitness proportional
model. The advantage of proposed selection operation is that it can conveniently change the
selection probabilities of individuals by changing selection pressure during the evolution
process. Therefore, the selection operation can be more adaptive to the algorithm run.

2.3 Improved adaptive crossover and mutation

To avoid early premature of genetic algorithms effectively and protect superior individuals
from untimely destruction, the idea of adaptive crossover and mutation is proposed by Srinivas
and Patnaik [38], see (8) and (9) and shown in Fig. 2. Here Pc and Pm denote crossover and
mutation rate respectively.

Pc
k1 Fmax−Fð Þ= Fmax−Favg

� �
; F 0 ≥ Favg

k3; F 0 < Favg

�
ð8Þ

Pm
k2 Fmax−Fð Þ= Fmax−Favg

� �
; F 0 ≥ Favg

k4; F 0 < Favg

�
ð9Þ

Favg Fmax0 F

Pc

k3

k1

Favg Fmax0 F

Pm

k4

k2

(a) Value curve of Pc (b) Value curve of Pm

Fig. 2 Adaptive crossover &
mutation operators by Srinivas and
Patnaik [38]
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In formula (8) and (9), Fmax and Favg denote the maximal and average fitness of current
population. F′ denotes the greater fitness of the two individuals that participate in crossover
operation. F denotes the fitness of the individual under mutation operation. k1, k2, k3, k4 are
constants. And there exist 0<k1, k2, k3, k4≤1.0, k1<k3, k2<k4.

But according to these operators, crossover and mutation rate of the best individual among a
population are both zero. It may lead to rather slow evolution in the early stage. To avoid its
occurrence, it’s better to let the individuals have due crossover and mutation rates, whose
fitness values are equal or approximate to the maximal fitness. Therefore, improved adaptive
crossover rate Pc and mutation rate Pm are presented as follows and shown in Fig. 3.

Pc
k1exp

Fmax−F 0ð Þ
Fmax−Favg

lnk3−lnk1ð Þ
� �

; F 0 ≥ Favg

k3; F 0 < Favg

8<
: ð10Þ

Pm
k2exp

Fmax−Fð Þ
Fmax−Favg

lnk4−lnk2ð Þ
� �

; F ≥ Favg

k4; F < Favg

8<
: ð11Þ

The basic idea of the improved adaptive operators can be described as follows. When the
fitness value of an individual is less than the average fitness of the whole population, this
individual is assigned greater crossover and mutation rates. It contributes to further exploration
of solution space and prevention the algorithm from premature. While when the fitness value
of an individual is greater than the average fitness of the whole population, the crossover and
mutation rate of this individual decline exponentially with the increase of its fitness value. It
can help the algorithm to enforce the exploitation ability and consolidate local search around
superior individuals.

2.4 Multi-subpopulation evolution

It is well known that both exploration and exploitation are necessary for the optimization
algorithms of swarm intelligence. Exploration denotes the ability to investigate the various
unknown regions in the solution space; while exploitation refers to the ability to apply the
knowledge of the previous good solutions to find better solutions. In order to achieve excellent
performance, the two abilities of one swarm-based algorithm should be well balanced.
Therefore, we classify subpopulations of proposed algorithm into two classes (named class
A and B) according to their crossover and mutation rates (Pc and Pm). Suppose that there is

Pc

k3

k1

O FFavg Fmax

Pm

k4

k2

O Favg Fmax F

(a) Value curve of Pc (b) Value curve of Pm

Fig. 3 Improved adaptive
crossover & mutation operators
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only one subpopulation within every class, named class A and B subpopulation respectively.
Their parametric features are shown in Table 1.

In the light of their properties of initial fitness as well as crossover and mutation rates, we
can see that it is easier for class A subpopulation to explore new parts of solution space and
guard against premature. Class B subpopulation is mainly to consolidate local search around
superior solutions. Obviously, class A subpopulation is for exploration and Class B subpop-
ulation is for exploitation. After chaos initialization, presented algorithm arranges all the
generated individuals according to their fitness values. The initial individuals with greater
fitness are allocated to class B subpopulation; the initial individuals with smaller fitness are
allocated to class A subpopulation.

The individual migration strategy between subpopulations of presented algorithm is as
follows. At intervals of given migration cycle, the algorithm copies the best individuals in class
A and saves them into class B subpopulation, then update class B subpopulation (eliminate the
inferior individuals from it) and keep the same subpopulation size. Meanwhile, it selects some
individuals from class B subpopulation and makes them migrate to class A subpopulation
respectively. The migration individuals will replace inferior individuals in above subpopula-
tions respectively as well. This migration strategy can accelerate convergence. In addition, we
set control parameter Km. When generation number K is multiples of Km, the algorithm merges
all the subpopulations together and arrange all individuals according to their fitness. Then it
reallocates individuals to two subpopulations respectively according to their fitness values.

2.5 PSO update operators

Particle Swarm Optimization (PSO) was originally developed by Kennedy and Eberhart [19].
In PSO, each particle as an individual in genetic algorithms represents a potential solution.
There are mainly two forms of PSO at present, i.e., global version and local version.

With regard to global version of PSO, in the n-dimensional search space, M particles are
assumed to consist of a population. The position and velocity vector of the ith particle are
denoted by Xi=(xi1, xi2, . . ., xin)

T and Vi=(vi1, vi2, . . ., vin)
T respectively. Then its velocity and

position are updated according to the following formulas.

vkþ1
id ¼ w⋅vkid þ c1⋅randðÞ⋅ pkid−xkid

� �þ c2⋅randðÞ⋅ pkgd−x
k
id

� �
ð12Þ

xkþ1
id ¼ xkid þ vkþ1

id ð13Þ
where i=1,2,…, M; d=1,2,…, n; k and k+1 are iterative numbers. pi=(pi1, pi2,…, pin)

T is the
best previous position that ith particle searched so far and pg=(pg1, pg2, …, pgn)

T is the best
previous position for whole particle swarm. rand() denotes a uniform random number between

Table 1 Parametric features of two classes of subpopulations

Subpopulation Class A Class B

Crossover rate k1 = 0.6; k3 = 1.0 k1 = 0.1; k3 = 0.5

Mutation rate k2 = 0.2; k4 = 0.4 k2 = 0.05; k4 = 0.2

Initial fitness Smaller Greater
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0 and 1. Acceleration coefficients c1 and c2 are positive constants (usually c1=c2=2.0). w is
inertia weight and it showed that w decreases gradually along with iteration can enhance entire
algorithm performance effectively [32].

It is usually set limitation to a particle velocity. Without loss of generality, assume that
relevant following intervals are symmetrical. There exists vkid ∈ [−vd,max, +vd,max]. vd,max
(d=1,2,…, n) determine the resolution with which regions between present position and target
position are searched. If vd,max is too high, particles may fly past good solutions. While, if it is
too small, the algorithm may be stuck to local optima. Suppose that the range of definition for
the dth dimension of a position vector is [−xd,max, +xd,max], i.e., x

k
id ∈ [−xd,max, +xd,max].

Usually let±vd,max=± kxd,max, 0.1≤k ≤1.
In local version of PSO, particle i keeps track of not only the best previous position of itself,

but also the best position pli=(pli,1, pli,2,…, pli,n)
T attained by its local neighbor particles rather

than that of the whole particle swarm. Typically, the circle-topology neighborhood model is
adopted [11]. Its velocity update formula is

vkþ1
id ¼ w⋅vkid þ c1⋅randðÞ⋅ pkid−xkid

� �þ c2⋅randðÞ⋅ pkli;d−x
k
id

� �
ð14Þ

And its position update formula is same as that of the global version of PSO. Compared
with global version of PSO, local version of PSO has a relatively slower convergence rate but
it is not easy to be stuck to local optima.

In addition to global and local version of PSO, we propose an additional new
version, named random version of PSO. In random version, the neighborhood Ni of
particle i is composed of s particles. Apart from particle i itself, the other s-1 particles
are randomly selected from the whole population. That is to say, particle i keeps track
of the best previous position of itself and the best position attained within its random
neighborhood Ni. In the broad sense, random version PSO can be regarded as a
special kind of local version PSO. Merely its topology structure of neighborhood is
dynamic and stochastic. Therefore it helps to explore solution space thoroughly and
prevent from premature. The position update formula of random version is also same
as that of the global version of PSO.

PSO has been applied to many fields and results are satisfactory [18]. It is easy to be
implemented and has quite fast convergence rate among evolutionary algorithms. We noticed
that both genetic algorithms and PSO are based on swarm intelligence and can match each
other fairly well. To make full use of outstanding convergence characteristic of PSO and global
search ability of genetic algorithms, we propose this hybrid algorithm. Specifically, let velocity
and position update formulas together serve as a new operator (PSO update). After conven-
tional genetic operation, individuals go on with PSO update operation. It hopes to make hybrid
algorithm possess more superior global performance.

In presented algorithm, different versions of PSO update operator are introduced into
different subpopulations. Global version PSO update operator is introduced into class B
subpopulation in order to speed up the convergence of its individuals to global optima. While,
random version PSO update operator is introduced into class A subpopulation. The reason lies
in that it matches the function of exploring solution space of class A subpopulation and helps
to prevent algorithm from premature.

We lay emphasis on two parameters in PSO update operator, i.e., inertia weight w and
maximal velocity Vmax. Usually there exist w∈ [0.3, 1.5], ±vd,max=± kxd,max (0.1≤k ≤1.0). If
they select greater values, the update operator is more likely to find out new parts of solution
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space. Otherwise the update operator is good at local search. According to characteristics of
different subpopulations, we set the range of w and Vmax of every mode of update operator in
Table 2. Based on adaptation idea [32], we let w and k (coefficient of maximal velocity)
decrease linearly along with evolution from their maximal values to the minimal values.

2.6 The procedure of presented algorithm

Flow chart of the presented swarm-based intelligent optimization algorithm is shown in Fig. 4.

Table 2 Relevant settings of PSO update operators for two classes of subpopulations

Subpopulation Class A Class B

Update operator Random version Global version

Inertia weight w wmax = 1.5; wmin = 0.9 wmax = 0.9; wmin = 0.3

Coefficient k kmax = 1.0; kmin = 0.6 kmax = 0.5; kmin = 0.1

Divide all the individuals into subpopulations of two classes

Chaos initialization

Set the generation number K=0

Migrate individuals between subpopulations

at intervals of given migration cycle

K Mod Km=0?

Yes

Yes No

No

Satisfy end criterion?
Output 

solution

Class A

Improved

adaptive

crossover

& mutation

Interpolating

rank-based

selection 

with pressure

Random version

PSO update

Class B

Improved

adaptive

crossover

& mutation

Interpolating

rank-based

selection 

with pressure

Global version

PSO update

K=K+1

Fig. 4 Flow chart of the presented
swarm-based intelligent optimiza-
tion algorithm
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3 Numerical example

The engineering background of this example is the layout design of printed circuit boards (PCB)
and plant equipment. Assume that there are n objects named A1, A2, …, An and the weight
between Ai and Aj is wij, i, j=1,2,…, n. Try to locate each object such that the value of expression
S+ λwC of a layout scheme is as small as possible and the constraints of no interference between
any two objects are satisfied. Here S is the area of enveloping rectangle of a layout scheme. λw is a
weight factor and C is the sum of the products of dij multiplied by wij, i.e.,

C ¼
Xn−1

i¼1

Xn

j¼iþ1

di jwi j ð15Þ

where dij is the distance between object Ai and Aj. wijmay possess different meanings in different
engineering problems. For example, in PCB layout design problems, wij denotes the connectivity
between integrated devices. While in the layout design problems of plant equipment, wij denotes
the adjacent requirement between equipment.

Table 3 The best layouts by two algorithms of the example

No. The best layout by PGA The best layout by presented algorithm

xi/mm yi/mm xi/mm yi/mm

1 −24.80 −5.70 −8.03 6.85

2 22.85 −12.11 7.81 9.98

3 6.97 23.00 24.19 −20.64
4 −36.29 −15.28 −18.06 −4.36
5 −30.97 −26.00 −29.91 −2.44
6 13.69 2.08 −20.27 −19.87
7 6.76 −24.90 17.11 13.80

8 24.21 −23.85 31.24 18.62

9 −9.48 −1.18 −11.85 −8.68
10 −16.21 16.85 −28.92 18.57

11 14.12 −14.15 −11.04 24.54

12 35.70 −9.21 2.16 −19.88
13 31.22 9.35 30.54 1.49

14 −0.42 −10.45 4.48 23.72

15 −12.10 −25.00 11.81 −2.47

x

y 

x

y

(a) Best layout by PGA (b) Best layout by presented algorithm

Fig. 5 The obtained best layout
patterns of the example by two
algorithms
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Suppose that (xi, yi) is the coordinates of the center of the object Ai. The mathematical
model for this problem is given by

Find X ¼ xi; yið ÞT ; i ∈ 1; 2;…; nf g
min f Xð Þ¼ S þ λwC
s:t:intAi∩intA j ¼ L i≠ j; i; j∈ 1; 2;…; nf g

ð16Þ

where intAi presents the interior of object Ai.
Quoted from Ref. [22], 15 circular objects are contained in this example. Let λw=1. The

radii of objects are r1=r3=r10=12, r2=r4=3, r5=r13=r14=9, r6=r12=r15=10, r7=7, r8=8,
r9=4, r11=6 mm. The weight matrix is

W ¼

0 0 0 98 98 0 81 0 92 93 45 61 99 84 27
0 0 34 0 0 0 93 44 0 0 33 60 0 0 56
0 34 0 0 0 0 0 0 0 85 0 65 39 0 50
98 0 0 0 91 50 5 24 73 0 4 0 0 31 23
98 0 0 91 0 37 0 16 78 95 0 0 73 32 0
0 0 0 50 37 0 0 35 0 31 0 0 0 48 0
81 93 0 5 0 0 0 94 33 34 26 61 0 87 87
0 44 0 24 16 35 94 0 91 0 0 0 59 39 0
92 0 0 73 78 0 33 91 0 0 30 0 0 0 0
93 0 85 0 95 31 34 0 0 0 0 0 0 0 0
45 33 0 4 0 0 26 0 30 0 0 0 21 35 2
61 60 65 0 0 0 61 0 0 0 0 0 56 0 43
99 0 39 0 73 0 0 59 0 0 21 56 0 1 0
84 0 0 31 32 48 87 39 0 0 35 0 1 0 0
27 56 50 23 0 0 87 0 0 0 2 43 0 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

ð17Þ

To compare the performance of presented algorithm with that of traditional PGA objec-
tively, we adopt presented algorithm and the PGA that possesses two subpopulations (same as
presented algorithm) to solve this example respectively and the subpopulation sizes of both
algorithms are identical. Moreover, any relevant contents of the two algorithms, such as
encoding scheme, fitness function and migration cycle, that may be identical are selected as
the same. All computation is performed on PC with CPU at 2.1GHz and RAM size of 2GB.

Both algorithms are calculated 20 times respectively. The best layouts among 20 optimal
results by them are in Table 3 and the corresponding best geometric layout patterns are shown

Table 4 Comparison of obtained results of the best layouts by two algorithms of the example

Algorithms S /mm2 C t/s

PGA 5996.46 89779.16 29.79

presented algorithm 5258.63 79082.28 27.53

Table 5 Comparison of average values of optimal results by two algorithms of the example

Algorithms S /mm2 C K

PGA 6153.83 95739.06 705

presented algorithm 5412.23 86962.57 512
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in Fig. 5. The comparison of obtained results of the best layouts is given in Table 4. In Table 4,
ΔS and t denote the interference area and computation time respectively.

As the data presented in Table 4, for the best layout by PGA, S, C and compu-
tation time t are 5996.46 mm2, 89779.16 and 29.79 s; for the best layout by presented
algorithm, S, C and t are 5258.63 mm2, 79082.28 and 27.53 s. When obtained
S≤5996.46 mm2, C≤89779.16 by presented algorithm, it takes 22.91 s. So in the
sense of best results, to reach the same precision, presented algorithm reduces the cost
of time by 23.10 % compared with PGA.

Table 5 lists relevant average values of obtained twenty optimal results of the example by
two algorithms. In this table, K represents elapsed generation number for an optimal result.

Table 5 shows that compared with PGA, on an average, presented algorithm reduces the
area of enveloping rectangle S, the parameter C and elapsed generation number K by 12.05,
9.17 and 27.38 %, i.e., from 6153.83 to 5412.23 mm2, from 95739.06 to 86962.57 and from
705 to 512 respectively.

4 Conclusions

In order to solve complex layout problems more effectively, on the basis of PGA, we
take several measures and propose a novel swarm-based intelligent optimization algo-
rithm. These measures involve introducing chaos initialization, interpolating rank-based
selection with pressure as well as multi-subpopulation evolution based on improved
adaptive crossover and mutation into proposed algorithm. And more importantly, the
idea of particle swarm optimization is introduced and PSO update operators can improve
the global performance of the proposed algorithm. A numerical example shows that
presented algorithm is feasible and effective for this kind of problems. It is really
superior to PGA in accuracy and convergence rate. Our work is expected to provide
inspiration and reference for solving layout problems satisfactorily. In addition, because
presented algorithm is a universal algorithm, it also can be applied to solve other
complex engineering optimization problems. The proposed optimization approach is able
to be applied in some related research fields, such as network [13–17, 31], image
processing [2, 7, 26–28, 39, 47], computer graphics [30], grid [5, 6, 23], cloud compu-
ting [40–43], multimedia [10, 25, 29, 45], optimization algorithms [8, 44, 48, 49].

Acknowledgments Our research work is financially supported by the National Natural Science Foundation
of China (No. 61374114 and No. 51579024), the Fundamental Research Funds for the Central Universities
of China (No. 3132014321, No. DC120101014, No. DC110320), the Applied Basic Research Program of
Ministry of Transport of China (No. 2011-329-225-390, No. 2012-329-225-070), the China Scholarship
council (No. 201306575010), the Higher Education Research Fund of Education Department of Liaoning
Province of China (No. LT2010013), and the Doctor Startup Foundation of Liaoning Province
(No. 20131006).

References

1. Albert EFM, Manuel I, Silvano M, Marcos J, Negreiros G (2013) Optimal design of fair layouts. Flex Serv
Manuf J 25(3):443–461

2. Boneh D, Lynn B, Shacham H (2004) Short signatures from the Weil pairing. J Cryptol 17(4):297–319

19456 Multimed Tools Appl (2017) 76:19445–19461



3. Boudissa E, Bounekhla M (2012) Genetic algorithm with dynamic selection based on quadratic ranking
applied to induction machine parameters estimation. Electr Power Compon Syst 40(10):1089–1104

4. Cagan J, Shimada K, Yin S (2002) A survey of computational approaches to three-dimensional layout
problems. CAD Comput Aided Des 34(8):597–611

5. Che L, Shahidehpour M, Alabdulwahab A, Al-Turki Y (2015) Hierarchical coordination of a community
microgrid with AC and DC microgrids. IEEE Trans Smart Grid

6. Che L, Zhang X, Shahidehpour M, Alabdulwahab A, Abusorrah A (2015) Optimal interconnection planning
of community microgrids with renewable energy sources. IEEE Trans Smart Grid

7. Chen Z, Huang W, Lv Z (2016) Towards a face recognition method based on uncorrelated discriminant
sparse preserving projection. Multimed Tools Appl

8. Dang S, Kakimzhanov R, Zhang M, et al (2014) Smart grid-oriented graphical user interface design and data
processing algorithm proposal based on LabVIEW. Environment and Electrical Engineering (EEEIC), 2014
14th International Conference on. IEEE 323–327

9. De La Calle FJ, Bulnes FG, García DF, Usamentiaga R, Molleda JA (2015) Parallel genetic algorithm for
configuring defect detection methods. IEEE Lat Am Trans 13(5):1462–1468

10. Gu W, Lv Z, Hao M (2016) Change detection method for remote sensing images based on an improved
Markov random field. Multimed Tools Appl

11. Jame K, Rui M (2002) Population structure and particle swarm performance. Proceedings of the 2002
Congress on Evolutionary Computation. Honolulu, HI, USA 2:1671–1676

12. Jankovits I, Luo C, Anjos MF, Vannelli A (2011) A convex optimization framework for the unequal-areas
facility layout problem. Eur J Oper Res 214(2):199–215

13. Jiang D, Hu G (2009) GARCH model-based large-scale IP traffic matrix estimation. IEEE Commun Lett
13(1):52–54

14. Jiang D, Xu Z, Chen Z et al (2011) Joint time–frequency sparse estimation of large-scale network traffic.
Comput Netw 55(15):3533–3547

15. Jiang D, Xu Z, Li W, Yao C, Lv Z, Li T (2015) An energy-efficient multicast algorithm with maximum
network throughput in multi-hop wireless networks. J Commun Netw

16. Jiang D, Xu Z, Xu H et al (2011) An approximation method of origin–destination flow traffic from link load
counts. Comput Electr Eng 37(6):1106–1121

17. Jiang D, Ying X, Han Y, et al (2015) Collaborative multi-hop routing in cognitive wireless networks. Wirel
Pers Commun 1–23

18. Kameyama K (2009) Particle swarm optimization: a survey. IEICE Trans Inf Syst 92(7):1354–1361
19. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceedings of the IEEE International

Conference on Neural Networks, Perth, Australia 1942–1948
20. Knysh DS, Kureichik VM (2010) Parallel genetic algorithms: a survey and problem state of the art. Int J

Comput Syst Sci 49(4):579–589
21. Li GQ (2003) Research on theory and methods of layout design and their applications, Ph.D. dissertation.

Dalian University of technology, Dalian, China
22. Li GQ (2005) Evolutionary algorithms and their application to engineering layout design, Postdoctoral

Research Report, Tongji University, Shanghai, China
23. Li X, Lv Z, Hu J, et al (2015) Traffic management and forecasting system based on 3D GIS. 15th IEEE/

ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). IEEE
24. Li C, Zhou J, Kou P, Xiao J (2012) A novel chaotic particle swarm optimization based fuzzy clustering

algorithm. Neurocomputing 83:98–109
25. Lin Y, Yang J, Lv Z et al (2015) A self-assessment stereo capture model applicable to the internet of things.

Sensors 15(8):20925–20944
26. S Liu, W Fu, L He, et al (2015) Distribution of primary additional errors in fractal encoding method [J].

Multimed Tools Appl
27. S Liu, Z Zhang, L Qi, et al (2015) A fractal image encoding method based on statistical loss used in

agricultural image compression [J]. Multimed Tools Appl
28. Lv Z, Halawani A, Fen S, et al (2015) Touch-less interactive augmented reality game on vision based

wearable device. Pers Ubiquit Comput
29. Lv Z, Halawani A, Feng S et al (2014) Multimodal hand and foot gesture interaction for handheld devices.

ACM Trans Multimed Comput Commun Appl (TOMM) 11(1s):10
30. Lv Z, Tek A, Da Silva F et al (2013) Game on, science-how video game technology may help biologists

tackle visualization challenges. PLoS One 8(3):57990
31. Lv Z, Yin T, Han Y, Chen Y et al (2011) WebVR——web virtual reality engine based on P2P network. J

Netw 6(7):990–998
32. Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with

adaptive inertia weight. Appl Soft Comput J 11(4):3658–3670

Multimed Tools Appl (2017) 76:19445–19461 19457



33. Pluhacek M, Senkerik R, Zelinka I (2014) Chaos driven particle swarm optimization with basic particle
performance evaluation—an initial study. Lect Notes Comput Sci 8838:445–454

34. Qian ZQ, Teng HF (2002) Algorithms of complex layout design problems. China Mech Eng 13(8):696–699
35. Rocca P, Mailloux RJ, Toso G (2015) GA-based optimization of irregular subarray layouts for wideband

phased arrays design. IEEE Antennas Wirel Propag Lett 14:131–134
36. Silva CP (1996) Survey of chaos and its applications. Proceedings of the 1996 I.E. MTT-S International

Microwave Symposium Digest, San Francisco, CA 1871–1874
37. Sokolov A, Whitley D, Salles Barreto ADM (2007) A note on the variance of rank-based selection strategies

for genetic algorithms and genetic programming. Genet Program Evolvable Mach 8(3):221–237
38. Srinivas M, Patnaik LM (1994) Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE

Trans Syst Man Cybern 24(4):656–667
39. Su T, Wang W, Lv Z et al (2016) Rapid Delaunay triangulation for randomly distributed point cloud data

using adaptive Hilbert curve. Comput Graph 54:65–74
40. Wang Y, Su Y, Agrawal G (2015) A novel approach for approximate aggregations over arrays. Proceedings

of the 27th International Conference on Scientific and Statistical Database Management. ACM 4
41. Wang K, et al (2015) Load‐balanced and locality‐aware scheduling for data‐intensive workloads at extreme

scales. Concurrency Comput Pract Exp
42. Wang K, et al (2015) Overcoming Hadoop scaling limitations through distributed task execution. Proc IEEE

Int Conf Clust Comput
43. Xu C, He X, Abraha-Weldemariam D (2012) Cryptanalysis of Wang’s auditing protocol for data storage

security in cloud computing. In Proc. ICICA’12, Springer-Verlag 422–28
44. Yang J, Chen B, Zhou J et al (2015) A low-power and portable biomedical device for respiratory monitoring

with a stable power source. Sensors 15(8):19618–19632
45. Yang J, He S, Lin Y, Lv Z (2016) Multimedia cloud transmission and storage system based on internet of

things. Multimed Tools Appl
46. Yang J, Yang J (2011) Intelligence optimization algorithms: a survey. Int J Adv Comput Technol 3(4):144–152
47. Zhang S, Jing H (2014) Fast log-gabor-based nonlocal means image denoising methods. IEEE Int Conf

Image Proc (ICIP) 2014:2724–2728
48. Zhang X, Xu Z, Henriquez C, et al (2013) Spike-based indirect training of a spiking neural network-

controlled virtual insect. 2013 I.E. 52nd Annual Conference on Decision and Control (CDC). IEEE 6798–
6805

49. Zhang S, Zhang X, Ou X (2014) After we knew it: empirical study and modeling of cost-effectiveness of
exploiting prevalent known vulnerabilities across iaas cloud. Proceedings of the 9th ACM symposium on
Information, computer and communications security. ACM 317–328

Fengqiang Zhao received his Ph.D. degree in Mechanical and Electronic Engineering from Dalian University of
Technology, Dalian, China, in 2006. He is a Lecturer in the College of Electromechanical & Information
Engineering, Dalian Nationalities University, China. Currently he is also a Postdoctoral Fellow in the College
of Information Science and Technology, Dalian Maritime University, China. His research interests include
intelligent systems and optimization, fault diagnosis and noise control.

19458 Multimed Tools Appl (2017) 76:19445–19461



Guangqiang Li is an Associate Professor in the College of Information Science and Technology, Dalian
Maritime University, China. He received his Ph.D. degree from Dalian University of Technology in 2003.
During 2004 and 2005, he was a Postdoctoral Fellow in Tongji University, Shanghai, China. His current research
focuses on intelligent systems and optimization, evolutionary algorithms, ship motion control and complex
layout design.

Rubo Zhang is Professor of College of Electromechanical and Information Engineering at Dalian Nationalities
University. He received his master degrees in Navigation, Guidance and Control from Harbin Shipbuilding
Institute in 1987 and received his doctor degrees in Control Theory and Control Engineering from Harbin
Engineering University in 1999. His research interests include intelligent control, intelligent robotics and machine
learning.

Multimed Tools Appl (2017) 76:19445–19461 19459



Jialu Du is a Professor in the College of Information Science and Technology, Dalian Maritime University,
China. She received her Ph.D. degree from Dalian Maritime University in 2005. Her research interests include
nonlinear control, intelligent control and ship motion control.

Chen Guo is a Professor in the College of Information Science and Technology, Dalian Maritime University,
China. He received Ph.D. degree from Dalian Maritime University in 1991. His research interests include ship
automation and intelligent control.

19460 Multimed Tools Appl (2017) 76:19445–19461



Yiran Zhou is an Associate Professor in the College of Information Science and Technology, Dalian Maritime
University, China. He received his Ph.D. degree from Zhejiang University in 2008. His current research focuses
on intelligent systems and optimization and measurement and control technology.

Zhihan Lv is a native Chinese. He is an engineer and researcher of virtual/augmented reality and multimedia
major in mathematics and computer science, having plenty of work experience on virtual reality and augmented
reality projects, engage in application of computer visualization and computer vision. His research application
fields widely range from everyday life to traditional research fields (i.e., geography, biology, medicine). During
the past years, he has completed several projects successfully on PC, Website, Smartphone and Smartglasses.

Multimed Tools Appl (2017) 76:19445–19461 19461


	Swarm-based intelligent optimization approach for layout problem
	Abstract
	Introduction
	Presented Swarm-Based Intelligent Optimization Algorithm
	Chaos Initialization
	Interpolating rank-based selection with pressure
	Parameter decision
	Realization process

	Improved adaptive crossover and mutation
	Multi-subpopulation evolution
	PSO update operators
	The procedure of presented algorithm

	Numerical example
	Conclusions
	References


