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Abstract Measuring image blurriness is an important issue in image-quality assessment.
The blurriness affects the image quality by degrading the image’s high frequency details
in the form of some uniform redundancies in neighboring pixels. Indeed, the blurriness is
accompanied with two destructions: corrupted high frequency details, and degraded image
structure due to the redundancies. In this paper, we propose an approach that measures the
effects of these two distortions using singular value decomposition (SVD). From the prop-
erties of SVD, the basis images corresponding to the higher singular values are associated
with the structural information of the image, while the ones corresponding to the lower sin-
gular values are related to the image details. This work employs this property and splits the
ordered singular values into two subsets from a non-fixed separation point, and constructs
two images by stacking up the basis images corresponding to these two subsets. By moving
the separation point for these two subsets and computing the energy of the two constructed
images in each point, two sequences of energies will be in hand. We shows that the behav-
ior of these two sequences can be used to assess the amount of both structural distortions
and nonstructural detail degradations of an image, and hence a valuable blur metric. Experi-
mental results illustrate that there is a well correlation between the results of our blur metric
and human scores. In addition, in comparative experiments, we found that the proposed blur
metric is stand among the best state-of-the-art ones in evaluating quality of images in terms
of blurriness.
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1 Introduction

Assessing the quality of an image is one of the most important and indispensable issue in
image processing. The best reference for evaluating the quality of an image might be human
being. However it might be person-dependent, expensive, time-consuming and tedious,
especially when applied to a huge number of images.

Objective metrics, on the other hand, provide a quantitative measure in an acceptable
time and with a reasonable precision. These metrics can be classified in three categories,
namely, full-reference (FR), reduced-reference (RR) and no-reference (NR) metrics, based
on their need to the reference image information. Full-reference objective metrics need the
pristine reference image to compare with the image under evaluation. These metrics have a
crucial role in tuning image processing systems that their process accompanied with some
degradations. Image compression is an example of such systems. The reduced-reference
methods need only some descriptive information about the reference image. These metrics
are often used in transmission issues where the quality of received images are assessed with
extra information. The no-reference methods evaluate the quality of an image without the
need for the reference image. These methods are difficult to develop because they need
intrinsic information about the quality of the image.

An image might be affected by various distortions, which can be categorized in non-
structural and structural ones [25]. Nonstructural distortions, like a change of luminance
or brightness, a change of contrast, Gamma distortion, and spatial shifts, impose unpleas-
ant visual effects on image without destroying its structure; while the structural distortions,
like additive noise, blurring and lossy compression, ruin the major structure of image so
that the observer cannot distinguish the image contents in severe conditions. Blurriness,
among these distortions, is a common structural distortion, which has been assessed in var-
ious ways, that can be categorized in spatial and non-spatial methods. The spatial methods,
often, model the total or local variations on statistics like variance [5, 21], autocorrelation
and energy of the first and second derivatives [2], edge profile distributions [1, 4, 6], or dom-
inant eigenvalues of image covariance matrix [28], and use them to define a metric to assess
the blurriness. These methods have the benefits of low complexity cost. The non-spatial
methods obtain their features through some suitable subband or statistical decompositions.
These methods often describe images through varieties of basis functions and then attempt
to assess the blurriness by estimating the amount of energy attenuation in the high fre-
quency basis functions. In [3] blurriness is measured as the kurtosis of DCT coefficients
of blocks. In [11] the uniformity of image spectrum is assessed by entropy and is used as
a blurriness metric. Another blur metric called FISH [22], uses the logarithm of wavelet
sub-band energies in three different scales. In [9, 10] the local phase coherence in wavelet
domain is measured and is employed in computing the blurriness metric. The authors in [20]
performed an SVD decomposition on image and employed the ratio between the k most
significant singular value and all singular values as a blur metric. In [16] the properties of
singular values curve is used to assess the blurriness.

In this paper we evaluate the blurriness of an image by considering both its structural and
nonstructural residual defections. Proposed blur metric employs the structural and residual
features arises from the SVD-based basis images, which formed from the product of the left
and right singular vectors, accompanied with the corresponding singular value. In recent
years, there has been an increasing attention to SVD as an efficient decomposition for image
quality assessment. For instance, beside two aforementioned SVD-based blur metrics in
[16, 20], there exist methods like those proposed in [19, 23, 24, 31], which their main
concern are overall quality evaluation, but their results on blurriness are also noticeable.
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The rest of this paper is organized as follows: Sections 2.1 and 2.2 give a brief review
on the singular value decomposition concepts and the basis images analysis, respectively.
A detailed description of our proposed measure is given in Section 2.3. Performance eval-
uations and results analysis are presented in Section 3. Finally the paper is concluded in
Section 4.

2 Proposed SVD-based blur evaluation metric

2.1 A brief review of singular value decomposition

The singular value decomposition is one of the most efficient tools in linear algebra to
decompose a matrix into a series of basis matrices which represent the underlying structure
of the matrix. Every real matrix X with dimension m × n can be decomposed into a three
matrices as below,

X = Um×r × Sr×r × Vr×n (1)

where U and V are orthogonal matrices (UT U = I , V T V = I ) containing left and right
singular vectors of X, respectively, and S is a diagonal matrix containing the singular values
of X in descending order. The number of non-zero singular values, r , is the rank of matrix
X. These matrices can be shown as below,

⎧
⎨

⎩

U = (u1, u2, ..., ur )

V = (v1, v2, ..., vr )

S = diag(δ1, δ2, ..., δr )

(2)

Considering the above, (1) can be rewritten as below:

X =
r∑

i=1

Xi =
r∑

i=1

uiδiv
T
i (3)

Fig. 1 (a) Original Image, (b-h) Basis images corresponding to the seven higher singular values of image
(a), respectively
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The basis images (Xi) corresponding to higher singular values contain the major infor-
mation of image which encoded in its low frequency components. On the other hand
the ones corresponding to lower singular values expose the nonstructural details of the
image, i.e. the high frequency contents. Figure 1b-h show the basis images corresponding
to the seven higher singular values of the reference image shown in Fig.1a. The number
of basis images which can be extracted for an image is equal to the rank of the image,
r ≤ min(rows, columns).

Fig. 2 Illustration of the structural (left) and residual (right) portions of the reference image shown in
Fig.1(a), for the various values of p ∈ {1, 5, 20, 140}. Note the pixel intensities is scaled to [0,255] for better
representation
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2.2 Structural and residual portions of an image

Recall (3), by setting a positive integer p, 0 ≤ p ≤ r and computing the summations in
(4), we can obtain two complementary portions of image X, which we call them Structural
Portion (SP) and nonstructural Residual Portion (RP).

{
SP

p
X = ∑p

i=1 uiδiv
T
i

RP
p
X = ∑r

i=p+1 uiδiv
T
i

(4)

For small values of p, the SP portion contains the major structure of the image without its
high frequency components, while these high frequency components will be in RP portion.
By increasing the value of p toward r , the SP portion will become more similar to the
original image and the RP portion will become sparser. Figure 2 shows the two portions SP
and RP for different values of p.

The concepts of structural and residual portions have been introduced in [23] (namely,
content-dependent and content-independent parts), where they employed the gradient and
contrast similarities between the content-dependent parts of the reference and the distorted
images, besides the normalized PSNR of content-independent parts. Here we concentrate on
the inherent properties of these portions and obtain more accurate results for assessing blur.

Back to (4), the energy of structural and residual portions (ESPX and ERPX , respec-
tively), for a given value of p, can be calculated via Frobenious norm as below1,

⎧
⎨

⎩

ESP
p
X = ∥

∥SP
p
X

∥
∥

F
=

√∑p

i=1 δ2i

ERP
p
X = ∥

∥RP
p
X

∥
∥

F
=

√∑q

i=p+1 δ2i

(5)

The resulted vectors contain valuable information about the image blurriness. To further
investigate, let we choose an arbitrary source image and produce various of its blurred ver-
sion via applying Gaussian smoothing filters with different values of σ . The ESPX and
ERPX of the image for various p have been computed and shown in Fig. 3. As it can be
considered from the figure, the slope of changes in ESPX and ERPX highly depends to the
image blurriness. These behaviors, from our experience on various reference images, can
be described mathematically as below:

{
ESP

p
X ≈ log(pα)

ERP
p
X ≈ 1

log(pβ)

(6)

where the values of α and β determine the curves in Fig. 3a and b, respectively, and are
proportional with the variance (σ ) of the Gaussian function involved in blurriness.

2.3 Proposed method of blurriness assessment

The blurriness affects the image quality by decreasing the image’s high frequency details
and introducing to the low frequency components in the form of some uniform redundan-
cies in neighboring pixels. Hence, we face with two kinds of destructions, first losing the
high frequency details, and second damaging the image structure by introducing the low
frequency redundancies. Here, we try to estimate both of these effects by considering the
properties of ESP

p
X and ERP

p
X , respectively. To do this, the sequences ESP

p
X and ERP

p
X

1From linear algebra, it is known that: ‖USV T ‖F = √
T r[(USV T )(USV T )T ]) = √

T r(USV T V ST UT ) =√
T r(SST )
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Fig. 3 Plots of vectors (a) ESPX and (b) ERPX , corresponding to the energy of structural and residual
portions, respectively, for the blurred versions of image in Fig.1(a), with variances σ ∈ [0.5, ..., 9.5] with
steps of 1. The circle symbols indicate the corresponding energies of the reference image

are computed for both the reference and the blurred images, and then the following ratios
are built upon them:

ESP
p
B

ESP
p
R

≈ log(pαB )

log(pαR )
= αBlog(p)

αRlog(p)
= αB

αR

(7)

ERP
p
B

ERP
p
R

≈
1

log(pβB )

1
log(pβR )

= βRlog(p)

βBlog(p)
= βR

βB

(8)

where αR and βR determine the curves of structural and residual portion energies, respec-
tively, belong to the reference image. Similarly, the values of αB and βB indicate the
corresponding curves in blurred image. Since the values of αR and βR are constant for a
given reference image, the ratios in (7) and (8) can determine the rate of blurriness. These
ratios characterize the structural and residual distortions, respectively, and can be served in
a blur indicator. We involve their contribution via a nonlinear pooling scheme and make our
final proposed Blur Metric (BM), as below:

proposedBM = 1

q

⎛

⎝
q∑

p=1

ESP
p
B

ESP
p
R + ε

⎞

⎠

γ

.

⎛

⎝
q∑

p=1

ERP
p
B

ERP
p
R + ε

⎞

⎠

1−γ

(9)

where the parameter γ , 0 ≤ γ ≤ 1, is a tuning parameter and can be determined empirically
to achieve the best correlation with the subjective scores. In the next section we will provide
more discussion around this parameter. In order to avoid division by zero, the extra small
value of ε is added in the denominators. The dynamic range of our proposed blur metric is
(0, 1], with the best value achieved when the blurred and the reference images are equal.
Figure 4 exhibits a flowchart for the proposed full-reference blur evaluation algorithm.

3 Performance evaluation

In the implementation stage, we must determine two parameters in our proposed method.
First the parameter q in (5), which determines the size of sequences SP

p
R and RP

p
R , and is a
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Fig. 4 Flowchart of the proposed SVD-based image blur assessment approach

nonzero value smaller than the rank of the image. We found empirically that the best value

of this parameter is around q =
⌊

min(m,n)
3

⌋
. The second parameter to set, is the value of γ

in (9) which controls the contribution of the two aforementioned portions. Through a series
of experiments, which will be explained in the following subsection, this parameter sets as
γ = 0.95.

A popular method for validating the ability of a blur metric is to investigate the algo-
rithm’s performance in monotonically predicting the blurriness of images with uniformly
increasing the standard deviation. In the first experiment, we have produced several blurred
images with different standard deviation σ ∈ {0.5, 1.5, ..., 9.5}. Figure 5 shows the values
of the proposed blur metric for these blurred images against the values of standard devia-
tion. As the figure shows, by increasing the blurriness, the values of the proposed metric are
decreased monotonically.
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Fig. 5 The plot of objective scores of blurriness, evaluated by proposed blur metric, versus different variance
(σ ) values in blurring the image

In order to further evaluate the proposed blur metric, we verify its ability to predict the
subjective scores of the blurred image subsets of LIVE(Laboratory for Image and Video
Engineering) [18], TID2008 [15] and CSIQ [12] databases. The LIVE is a standard database
for image quality metrics performance evaluation, which contains 29 high-resolution orig-
inal and 145 Gaussian blurred images. The TID2008 is a comprehensive quality-related
database with 25 reference images blurred each in four levels of blurriness. The CSIQ is
also a popular quality related image database, contains 150 blurred images (30 references
each blurred in five different severity).

We used four criteria to assess the performance of proposed algorithm following [8]: (1)
The Pearson correlation coefficient (PCC), which measures the amount of predictions cor-
relation with the subjective scores, (2) The Spearman rank order correlation (SROCC) and
(3) the Kendall rank order correlation (KROCC), which measure both the relative mono-
tonicity between the predictions and subjective scores, and (4) the root mean square error
(RMSE) which validates the predictions accuracy, like PCC. Before evaluating these cri-
teria, we applied the following five-parameter logistic transform suggested by [8], to the
values obtained from our blur metric to bring them on the same scales as the TID2008’s
MOS, LIVE’s DMOS and CSIQ’s DMOS values:

MOSe = β1

(
1

2
− 1

1 + exp (β2BM − β3)

)

+ β4BM + β5 (10)

whereMOSe is the estimatedMOS by our proposed blurriness metricBM . The coefficients
βi are determined so that the minimum MSE between the MOS and the MOSe achieved.
Figures 6a, c and e show the scatter plots of the objective scores for the proposed blur metric
versus the subjective ones of TID2008, LIVE and CSIQ databases, respectively. The solid
curves are the results fitted with the above logistic function. In addition, the scatter plots of
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Fig. 6 Scatter plots of subjective scores versus the proposed blur metric on blurred subsets of IQA databases:
(a) TID2008, (c) LIVE and (e) CSIQ databases. (b), (d) and (f) Scatter plots of the same data as (a), (c) and
(e), respectively, after nonlinear regression. The corresponding evaluation criteria are shown in Table 1

MOSe versus MOS is shown in Fig. 6b, d and f, for TID2008, LIVE and CSIQ databases,
respectively. The correlation between the values of MOSe and MOS demonstrates that the
proposed metric has well consistency with human opinions of quality. In addition Table 1
shows the values of the predefined evaluation criteria for the proposed blur metric on these
databases. It can be observed that the PCC and SROCC between the scores of the proposed
metric and the subjective scores of test databases are impressive.

Table 1 The values of
performance evaluation criteria
for the proposed blurriness metric

PCC SROCC KROCC RMSE

LIVE 0.9845 0.9788 0.8780 3.8179
TID2008 0.9485 0.9543 0.8241 0.3674
CSIQ 0.9525 0.9570 0.8229 0.0873
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Table 2 the values of SROCCs of some blurriness metrics applied on subset of blurred images of LIVE,
TID2008 and CSIQ databases

Proposed PSNR SSIM MS-SSIM ADM VIF MAD FSIM SVDR VGS ref[24]

LIVE 0.9788 0.9413 0.9517 0.9722 0.9650 0.9584 0.8990 0.9708 0.9123 0.9700 0.9775

TID2008 0.9543 0.8682 0.9544 0.9607 0.9140 0.9546 0.9197 0.9472 0.8120 0.9040 0.9696

CSIQ 0.9570 0.9289 0.9609 0.9720 0.9726 0.9747 0.9660 0.9729 0.9367 0.9820 0.9839

As another validation step, we compare the results of the proposed method with the
results of some other well accepted quality metrics including PSNR, SSIM [27], MS-SIM
[26], ADM [13], VIF [17], MAD [12], FSIM [29], SVDR [14], VGS [30] and the SVD-ELM
based method proposed in [24]. In this comparison, we only employ the SROCC criterion
and forget the others because of their similar results. As Table 2 shows, the SROCC of the
proposed method on LIVE database dominates the SROCC of all other metrics, which is an
impressive achievement. For TID2008 and CSIQ databases, our proposed metric doesn’t sit
among the three dominant metrics, but its distances to them are not considerable.

3.1 The role of Gamma

Recall from (9), our proposed blur metric is achieved through an exponentially weighted
pooling scheme, in which the parameter γ controls the amount of contributions of structural
and residual portions. A series of experiments performed on TID2008, LIVE and CSIQ
databases with the aim of detecting the best value of this parameter. Figure 7 indicates
the resulted SROCC between the MOS values of these image databases and the objective
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Fig. 7 The plot of different SROCC values between the MOS provided by TID2008, LIVE and CSIQ image
databases and proposed blur metric scores, versus different values of γ in (9)
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blur measures achieved by our blur metric with different values of γ ∈ [0, 1]. Surprisingly
eliminating the second term in (9) (i.e. the rate of residual portion energies) by setting the
value of γ = 1, exposes more destructive effect on blur metric, compared to removing the
first term (i.e. the rate of structural portion energies) by setting γ = 0. It can be realized that
the existence of residual portion information, has impressive improvement on the proposed
metric, even with an small exponential weight. The reason was investigated by observing the
behavior of the first and the second terms in (9), separately, for different blur versions of the
first image of TID2008 database, namely ”I01.bmp”, which are shown in Fig. 8. As can be
seen in Fig. 9, the first term in (9) has a low sensitivity to the blur severity, while the second
term behaves in opposite direction and expresses a high keenness to the blurriness extremity.
These different dynamic ranges of changes for these two terms were foresighted. The first
term always includes the first singular value of the image, which is the most dominant

Fig. 8 The first image of the TID2008 database (i.e. ’I01.bmp’). a the original image, (b-e) four blurred
versions of (a) with increasing blur severity
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one. On the other hand the second term includes the details information, which changes
drastically by introducing blur effects. These observations reinforce our assumption about
the two kinds of destructions in a blurred image.
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Table 3 Consuming time for each IQA index (in seconds per image

PSNR SSIM MS-SSIM Proposed ADM VSI FSIM VIF MAD IFC

TID2008 0.0177 0.0523 0.0789 0.1086 0.1361 0.3244 0.3621 1.1960 1.3768 2.5967

Back to Fig. 7, the value of γ = 0.82 is the best when we consider only the LIVE
database. This setting yields an SROCC equal to 0.9812 for this database, which is a very
good score. But to have a reasonable results on the whole three aforementioned databases,
we set the final value of this parameter as γ = 0.95.

3.2 Computational complexity of proposed metric

In order to calculate the structural and residual portion energies, we only need the sin-
gular values of SVD decomposition. Hence, according to [7], we can obtain them with
the order of O(min(mn2, m2n)), where m and n are the number of image’s rows and
columns, respectively. To calculate the proposed metric, we need to call the SVD function
twice and a loop with O(q2) iterations, and finally perform an averaging with O(q). Thus
the overall computational complexity of our metric summarized as O(min(mn2,m2n) +
min(m, n)2). We compared our proposed metric with some other IQA indexes by run-
ning unoptimized MATLAB code (version R2013b) on a modern desktop with a 2.67GHz
Intel Corei5 CPU and a 4G RAM. The average consuming times for assessing the blur-
riness of TID2008 images, with sizes of 512 × 384, are shown in Table 3, ascendantly.
It can be seen that the efficiency of our proposed metric is better than the most modern
IQA indexes.

4 Conclusions

In this paper we addressed the image blurriness as two different distortions: destructed
high frequency details, and redundancy-polluted low frequency structure. Motivated by
this assumption, we proposed a novel full-reference blurriness measure, which extracts
the two structural and nonstructural residual portions of the image. In the structural por-
tion we assess the amount of low frequency redundancies, while in nonstructural residual
portion we measure the amount of high-frequency degradation. These portions are con-
structed by summation of the SVD based basis image matrices corresponding to the low
frequency and high frequency components of the image, respectively. We showed that
the basis images corresponding to the higher singular values contain the structural infor-
mation of the image, while the residual basis images provide the nonstructural details.
The ratio of these portions energies for the reference and blurred images serves as the
proposed blur metric.

The experimental results on images with various levels of blurriness convince the
monotonic behavior of the proposed blurriness metric. In addition, the results achieved
by applying the proposed metric on the blurred subsets of LIVE, TID2008 and CSIQ
databases have also been quite satisfactory, showing a high correlation with the human
perception of quality. The proposed metric has also been compared with other state-of-
the-art blurriness metrics, standing among the best, specially have the first rank for the
LIVE database.
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