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Abstract Automatic violence detection from video is a hot topic for many video surveil-
lance applications. However, there has been little success in designing an algorithm that
can detect violence in surveillance videos with high performance. Existing methods typi-
cally apply the Bag-of-Words (BoW) model on local spatiotemporal descriptors. However,
traditional spatiotemporal features are not discriminative enough, and also the BoW model
roughly assigns each feature vector to only one visual word and therefore ignores the spa-
tial relationships among the features. To tackle these problems, in this paper we propose a
novel Motion Weber Local Descriptor (MoWLD) in the spirit of the well-known WLD and
make it a powerful and robust descriptor for motion images. We extend the WLD spatial
descriptions by adding a temporal component to the appearance descriptor, which implicitly
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captures local motion information as well as low-level image appear information. To elimi-
nate redundant and irrelevant features, the non-parametric Kernel Density Estimation (KDE)
is employed on the MoWLD descriptor. In order to obtain more discriminative features, we
adopt the sparse coding and max pooling scheme to further process the selected MoWLDs.
Experimental results on three benchmark datasets have demonstrated the superiority of the
proposed approach over the state-of-the-arts.

Keywords Violence detection · Surveillance systems · Motion weber local descriptors
(MoWLD) · Kernel density estimation (KDE) · Sparse coding · Max pooling

1 Introduction

Violent behavior seriously endangers social and personal security [20]. Analysis of crowd
behavior is an area of increasing interest within the safety. Currently, millions of video
surveillance equipment have been used in places such as streets, prisons and supermarkets
(some sample frames from public datasets are shown in Fig. 1. If a surveillance system
can detect these violent activities automatically and alarm correspondingly, it will greatly
improve security. Therefore, it is highly necessary to investigate the problem of automat-
ically identifying violent contents from surveillance video. Computer vision techniques
are highly demanded for intelligent surveillance and automatic video annotation. However,
complex background, variable illuminating conditions and different distances between the
subjects and the camera have made this task very challenging. Compared with other related
issues of action recognition, violence detection is less studied by now. The variations of
body motion caused by scale, viewpoint, occlusion, and the clutter background have made
violence detection very difficult. For this practical consideration, in this paper, we focus
on the challenging work of detecting violence in surveillance videos and aim to develop a
system to effectively detect violent behaviors using computer vision techniques.

Up to now, there have been some developmental systems about violence detection. In
early research, Nam et al. [25] proposed to recognize violent scenes in videos by detecting
flame and blood and capturing the degree of motion, as well as the characteristic sounds of
violent events. Cheng et al. [10] recognized gunshots, explosions and car-braking using a

Fig. 1 Sample frames from the Hockey Fight dataset (first row), the BEHAVE dataset (second row) and the
Crowd Violence dataset (third row). In each row, the left three columns are violent scene while the right three
columns are non-violent scene
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hierarchical approach. Nam et al. [29] presented a novel technique to characterize and index
violent scenes in general TV drama and movies. Unlike simple low-level video visual fea-
ture analysis, this kind of method allows searching and access to specific violent scenes.
Cristani et al. [12] presented a new method that was able to integrate audio and visual
information for scene analysis in a typical surveillance scenario, using only one camera
and one monaural microphone. This method allows one to detect separate audio and visual
patterns representing unusual unimodal events in a scene. Lin and Wang [23] presented
a weakly-supervised method to detect violent shots in movies. This detection process is
split into two aspects, i.e. audio and video. However, the above approaches require audio
information, which is often not available in many surveillance scenes. Datta et al. [16]
relied on motion trajectory information and orientation information of a person’s limbs to
detect violent behavior. This method requires foreground segmentation to extract the pre-
cise silhouettes, which is difficult in a real life environment. Clarin et al. [11] presented
a system that uses a Kohonen self-organizing map to detect skin and blood pixels in the
video sequences and motion intensity analysis to detect violent actions involving blood.
The method relies on the skin color information, which performance will degrade greatly
when the color feature is not discriminating enough. In recent studies, some methods based
on spatiotemporal interest points (STIPs [17], MoSIFT [4]) have been proposed for vio-
lence detection. After extracting interest points over the frames, the Bag-of-Words (BoW)
framework is used for violence recognition. This kind of methods compute only in the
regions of interest (located around the detected interest points) and are not discriminative
enough. Moreover, the BoW model roughly assigns each feature vector to only one visual
word and ignores the spatial relationships among the features. To solve the above prob-
lems, Zhou et al. [45] proposed a structured codebook construction method to encode spatial
and temporal contextual information among local features for video representation. The
method better suits for structured videos, rather than the more textural videos in our data set.
Hassner et al. [36] detected crowd violence using the Violent Flow (ViF) descriptor formed
from computing a magnitude-change map of optical flow over time. However, the perfor-
mance of this method degrades significantly when dealing with faces with crowded scenes.
Zhang et al. [44] proposed a fast and robust framework for detecting and localizing violence
in surveillance scenes, and experimental results on several benchmark datasets have demon-
strated the superiority of this method over the state-of-the-arts in terms of both detection
accuracy and processing speed, even in crowded scenes. Ye et al. [22] proposed a physical
bullying detection algorithm based on activity recognition. The algorithm is designed for
smartphones requiring a 3D accelerometer and a 3D gyroscope to collect data and therefore
is not suitable for general scenario.

Targeting the above challenges, this paper proposes a simple and robust violence
detection algorithm. Our contributions are mainly in the following three aspects:

– First, to detect sufficient number of interest points containing the necessary information
to recognize a violent activity, we propose a novel image descriptor, i.e. Motion Weber
Local Descriptor (MoWLD), to extract the low-level image and motion properties of
a query video. The MoWLD algorithm detects spatially distinctive interest points with
substantial motions. In a sense, this descriptor takes the advantages of both SIFT in
terms of computing the histogram using the magnitude and orientation of gradient, and
LBP in terms of computational efficiency.

– Secondly, to eliminate redundant and irrelevant features, Kernel Density Estimation
(KDE) is employed on the MoWLD descriptor. This not only avoids unnecessary
computation and speeds up the system but also contributes to a high detection rate.
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– Lastly, sparse coding is adopted to transform the low-level descriptors into compact
mid-level features. To obtain a highly discriminative representation of the extracted
feature, the max pooling algorithm is employed over the whole sparse code set of the
query video.

Experimental results on three challenging datasets have demonstrated the superiority of
our proposed approach over the state-of-the-arts.

The remaining of this paper is organized as follows. Related work is discussed in
Section 2. Section 3 introduces a novel violent detection method. In Section 4, experimental
results and analysis are presented. Finally, conclusions are given in Section 5.

2 Related work

Action recognition is a hot topic in computer vision research. We refer readers to a recent
survey [34] and focus our discussion to single-camera methods. Most existing works in
action recognition have used spatiotemporal features, trajectories, and set of features [1].
Sequential approaches represent human activities with a sequence of actions and recognize
activities by analyzing a set of features extracted from the input video [23]. Zhang et al.
[43] used two-layer Hidden Markov Models (HMMs) to recognize group actions, where
one layer models the basic individual activities from audio-visual features, and the other
models the interactions between the individual activities. However, the impact of the lay-
ered decomposition on the size of the parameter space was not given. Also, the effects of
the inference on learning requirements and accuracy for different amounts of training were
ambiguous. Nguyen et al. [30] presented an application of the Hierarchical Hidden Markov
Model (HHMM) for activity recognition. Their main contributions lie in the application
of the shared-structure HHMM and the estimation of the model’s parameters at all levels
simultaneously. However, it failed to recognize complex behaviors. Shi et al. [35] presented
Propagation Networks (P-Nets) for representing and recognizing sequential activities that
include parallel streams of action. Their work was focused on a common task for elderly
people who have developed late stage diabetes. However, the performance strongly relied on
the manually labeled training data. Dai et al. [13] introduced a novel event-based dynamic
context model, where a multilevel dynamic Bayesian network (DBN) model was used to
detect multilevel events. However, the applicable scenario was limited. Damen and Hogg
[14] proposed to construct Bayesian networks using AND-OR grammars to encode pairwise
event constraints. However, it failed to recognize complex and ambiguous events. Bobick
and Davis [5] used two components, i.e. MEI and MHI, to represent and recognize human
activities. It first constructed a vector image, which was matched against a stored represen-
tation of known movements. However, it is only applicable to these situations where the
motion of object movement can be separated easily. In [34], the optical flow based approach
was used to represent apparent velocities of movement of brightness patterns in an image,
which has been employed for modeling typical motion patterns [9, 37]. However, this mea-
sure may also become invalid in extremely crowded scenes. A dense local sampling of
optical flow has been proposed to solve this issue [27]. Baysal and Duygulu [3] utilized a
line based pose representation to recognize human actions in videos. However, they used
line-flow histograms, which can be easily effected by the performance of segmentation.
Manifold learning is another efficient approach for recognizing human actions. Saghafi and
Rajan [33] proposed a novel embedding which is optimum in the sequence recognition
framework based on Spatiotemporal Correlation Distance (SCD) as the distance measure.
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However, its performance mainly relies on the key poses chosen equidistantly from one
action period and works not very well in complex environment. Oikonomopoulous et al. [31]
proposed a representation of human action as a collection of many short trajectories, which
are extracted by a particle filtering tracking method. They used a longest common subse-
quence algorithm to verify different sets of trajectories. Vishwakarma and Agrawal [38]
considered multiclass activities fused in a three dimensional (spatial and time) coordinate
activity recognition system to achieve maximum accuracy. They quantized feature vectors of
interest points utilizing a histogram. This method works well in semantically varying events
and is robust to scale and view changes. Yang et al. [42] proposed to use a scheme of multi-
feature learning via hierarchical regression for multimedia semantics understanding. The
algorithm can be applied to a wide range of multimedia applications and the performance
of the proposed algorithm is remarkable when only a small amount of labeled training data
are available. Gao et al. [18] proposed a semi-supervised annotation approach by learning
an optimal graph (OGL) from multi-cues (i.e., partial tags and multiple features) which can
more accurately embed the relationships among the data points.

Recently, more and more research attention is given to anomaly detection in video [32],
i.e. detecting irregular patterns that are different from regular video events. Despite there
are many existing works on video anomaly detection [27, 32], few of them can work well in
crowded scenes. Vijay Mahadevan et al. [25] used the mixture of dynamic textures (MDT)
model to detect both temporal and spatial abnormality. Marco Bertini et al. [27] constructed
a multi-scale local descriptor for anomaly detection and achieved real-time performance in
video surveillance applications. Mehrsan Javan et al. [28] densely sampled the spatiotempo-
ral information in videos for learning dominant and anomalous behaviors online. Xu et al.
[15] presented a novel unsupervised learning approach for video anomaly detection based
on deep representations. The proposed method is based on multiple stacked autoencoder
networks for learning both appearance and motion representations of scene activities.

Following the above works, in this paper, to detect violent video we focus on interest
point detection and feature representation. For interest point detection, a widely-adopted
one is the scale invariant feature transform (SIFT), introduced by Lowe [24]. Many attempts
to improve the SIFT descriptor have been reported [24, 41]. However, the feature descriptor
is an important step which is almost ignored. Chen et al. [9] proposed the motion SIFT
(MoSIFT) to detect interest points, which not only encodes their local appearance but also
explicitly models local motion. This MoSIFT descriptor consists of two main parts. The
first part is an aggregated histogram of gradients (HoG) to describe the spatial appearance.
The second part is an aggregated histogram of optical flow (HoF) to indicate the movement
of the feature point. In the aspect of action recognition, they have also demonstrated the
superiority of their MoSIFT over four different descriptors, i.e. 3D HoG, HoF, HoG and
HoF, and grid aggregated HoG and HoF. However, as mentioned above, SIFT is a sparse
descriptor, because it only considers the regions of interest.

Another simple, yet very powerful and robust local descriptor is Weber Local Descriptor
(WLD), first proposed by Chen et al. in [8] for texture classification and face detection.
Wang et al. [39] further exploited the illumination insensitive characteristics of the WLD
and used it for face recognition. Li et al. [21] proposed multi-scale WLD and multi-level
information fusion approaches for face recognition. It states that the change of a stimulus
(such as sound, lighting) will be just noticeable when the change is smaller than the constant
ratio of the original stimulus [8], i.e. the proportion of the change to the original stimulus
value is a constant.

The highly successful illumination-invariant WLD for object recognition detects many
interest points in an image and the descriptors of these points are used to match static
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objects. Since recognizing violent activities is more complicated than face recognition,
violence detection requires enhanced local features that can provide sufficient motion infor-
mation because only WLD interest points with sufficient motion provide the necessary
information for action recognition. The widely used optical flow approach detects the move-
ment of a region by calculating where a region moves by measuring temporal differences.
In this paper a novel descriptor, i.e. Motion WLD (MoWLD), is proposed to represent the
feature point. Our proposed MoWLD is composed of two parts of information. The first
part is an aggregated histogram of WLD describing the spatial appearance, and the second
part is an aggregated histogram of optical flow (HoF) indicating the movement of feature
points. OurMoWLD can therefore detect spatially distinctive interest points with substantial
motions.

Approaches based on local spatiotemporal descriptors are traditionally combined with
Bag-of-Words (BoWs) model and have achieved promising performance in violence detec-
tion [4, 17]. However, the conventional BoW methods rely on the discriminative power
of local spatiotemporal descriptors and how often they occur in the video. Moreover, the
performance of BoW model can be degraded significantly due to high quantization error.
Currently, methods based on sparse coding have been successfully utilized in action and
image classification field [40, 41, 46]. The sparse coding method transforms each low-level
descriptor to a linear combination of a few atoms in a well-trained dictionary. Com-
pared with the BoW model, it generates less reconstruction errors and can achieve a more
discriminative feature representation.

In this work, we combine our proposed MoWLD descriptor with the sparse coding
method in order to generate a more discriminative representation of violent video. The
framework of our approach is illustrated in Fig. 2. Firstly, we extract MoWLD features
from the input video. Secondly, we employ the Kernel Density Estimation (KDE) based
feature selection method to eliminate redundant and irrelevant features from the original
MoWLD descriptor. Subsequently, sparse coding is adopted to transform the reduced low-
level descriptors into mid-level features. To obtain a highly discriminative representation of
the extracted feature, the max pooling algorithm is employed over the whole sparse code
set of the query video. Finally, an SVM classifier is trained using these video level feature
vectors.

3 Our approach

Intuitively, effective features can reveal distinct visual patterns of query video. In this sec-
tion, we propose a more discriminative and robust violence detection algorithm. Firstly,
a MoWLD algorithm is proposed to extract low-level features of a query video. Then, to

Fig. 2 The framework of the proposed method
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eliminate redundant and irrelevant features, KDE is applied. Lastly, to obtain a highly dis-
criminative representation of the extracted features, sparse coding and max pooling are
introduced.

3.1 MoWLD algorithm

This subsection presents our MoWLD algorithm to detect and describe interest points
spatiotemporally. We aim to develop an effective feature representation method, which
can detect a sufficient number of interest points containing the necessary information to
recognize violent behavior.

3.1.1 The original WLD

Weber’s law describes a fact, that for a stimulus, the ratio between the smallest perceptual
change and the background is a constant, which implies stimuli are not perceived in absolute
terms but in relative terms.

Inspired from this law, Chen et al. [8] proposed a local image descriptor named Weber
Local Descriptor (WLD) for the task of face recognition. Chen’sWLD descriptor consists of
two components, i.e. differential excitation (magnitude) and orientation, which are defined
as below [8, 39].

Weber Magnitude:

ξm(xc) = arctan

⎛
⎝α

p−1∑
i=0

xi − xc

xc

⎞
⎠ , (1)

where the arctangent function is used to prevent the output from being too large and thus can
partially suppress the side-effect of noise, xc denotes the center pixel, xi (i = 0, 1, . . . , p −
1) are the neighboring pixels, p is the number of neighbors, and α is a parameter used to
adjust the intensity difference between neighboring pixels.

Weber Orientation:

ξo(xc) = arctan

(
x1 − x5

x3 − x7

)
, (2)

where x1 − x5 and x3 − x7 indicate the intensity difference of two neighboring pixels of xc

in vertical and horizontal direction, respectively.
According to [8], ξm and ξo are then linearly quantized into T (in our experiments, T is

set to 12) dominant differential magnitudes and orientations respectively.
Chen’s WLD uses the intensity differences between the current pixel and its neighbors

as the changes of a current pixel. By this means, we can find the salient variations within an
image to simulate the perception pattern of human beings. Both differential excitation and
differential orientation have been proved to be illumination insensitive and computationally
efficient [39]. The 2D concatenated histogram about the differential excitation and orienta-
tion can be constructed to represent the image. As is shown in [8] and [21], each row of the
2D WLD histogram corresponds to a dominant differential excitation ξm(xc), and each col-
umn corresponds to a dominant orientation ξo(xc). The original WLD histogram [8, 21, 39]
denotes the frequencies of a certain dominant differential excitation on a certain dominant
orientation.

The WLD descriptor employs the advantages of both the SIFT in terms of computing
the histogram using the gradient and its orientation, and the LBP in terms of computational
efficiency and smaller support regions. Different from the SIFT and LBP, the WLD is a
dense descriptor computed for every pixel and depends on both the local intensity variation
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and the magnitude of the center pixel’s intensity. Since the WLD is computed around a
relatively small square region (e.g., 3×3), while SIFT is computed around a relatively large
region (e.g., 16 × 16), the description granularity of the WLD is much smaller than that of
the SIFT. That is to say, the WLD is computed in a finer granularity than SIFT. The smaller
size of the support regions for WLD enables it capture more local salient patterns.

3.1.2 Modified WLD

The original WLD feature described as above is not rotation invariant, and is also sensitive
to partial occlusion and deformation. Rotation invariance is important to appearance since it
provides a standard to measure the similarity of two key points. Aiming to address the above
problems, we propose to rebuild the WLD histogram by aggregating the WLD histograms
of neighboring regions and also aligning the WLD histograms to their dominant orientation.
In details, these are achieved with the following steps:

1. The Weber magnitude and orientation are calculated according to (1) and (2) for every
pixel in a region of a Gaussian-blurred image F .

2. TheWeber orientation is quantified into 12 dominant bins by using the non-linear quan-
tization method in [21], with each bin covering 30◦. An orientation histogram with 12
bins is then formed.

3. An aggregated histogram of Weber gradients from neighboring regions is captured as
local appearance feature. This gives our WLD descriptor better tolerance to partial
occlusion and deformation.

4. Each sample in the neighboring window is added to a histogram bin and weighted by its
Weber magnitude and its distance from the current point. When a dominant orientation
is calculated, all Weber magnitudes in the neighborhood are rotated according to the
dominant orientation to achieve rotation invariance.

5. Pixels in the neighboring region are normalized into 144 (16 × 9) elements, which
are grouped as 16 (4 × 4) grids. Each grid has its own Weber orientation histogram
describing the orientation of the sub-region. This results in a WLD feature vector of
192 dimensions (4 × 4 × 12 = 192).

Figure 3 illustrates the idea of the WLD histogram grid aggregation. Pixels in a neigh-
borhood are grouped into 4 × 4 blocks, each containing 3 × 3 pixels. By constructing the

Fig. 3 Grid aggregation for WLD feature descriptors. Pixels in a neighborhood are grouped into 4×4 blocks,
each containing 3 × 3 = 9 pixels. An orientation histogram with 12 bins is formed for each grid resulting
into a 192-element vector for the neighborhood
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WLD feature vector in this way, we can obtain a more discriminative descriptor of in total
16 × 12 = 192 dimensions.

The modified WLD feature constructed as above only describes the properties of still
images and carries no motion information of video. Therefore, the detected candidate points
are distinctive in appearance only, but are independent of the motions or actions in video.
As its result, a cluttered background can produce many interest points which are unrelated
to human actions. Clearly, motion information is essential for interest points to provide suf-
ficient information for action recognition. In our MoWLD algorithm, we adopt the widely
used optical flow approach to detect the movement within an image region. A local extreme
fromWLD feature points can only become an interest point if it has sufficient motion in the
optical flow field.

Also, the WLD features described above are extracted from a small patch (‘grid’) of 3×3
pixels, which implies a single and fixed granularity. However, the sub-images with different
sizes at the same location can result in different feature vectors, and multi-scale sub-images
can be conducted to extract more discriminative and robust features of different human local
structures. Thus, in this work we adopt the multi-scale WLD feature analysis approach [8],
which is computed using a square symmetric neighbor set of p pixels placed on a square.

Next, we continue introducing our motion WLD, and then multi-scale MoWLD is
introduced.

3.1.3 Motion WLD (MoWLD)

The optical flow approach detects the movement of a region by calculating the tempo-
ral differences of the region in image space between consecutive frames. Compared to
video cuboids or volumes, optical flow explicitly captures the magnitude and direction of
a motion, instead of implicitly modeling motion through appearance change over time.
Explicitly measuring motion is beneficial for recognizing actions. In our work, to add
motion information into our modified WLD feature, we apply the same aggregation idea to
the optical flow of every grid in a region and propose our motion WLD, i.e. MoWLD.

Our MoWLD adopts the idea of grid aggregation in WLD into optical flow to describe
motion information among frames. Optical flow detects the magnitude and direction of
movement between frames, which produces the same properties as WLD and can be used
to construct optical flow histograms. The dominant orientation feature is the main differ-
ence between the WLD and optical flow. Since surveillance video is typically captured
by stationary cameras, the direction of movement generated by violent actions is typically
irregular and variable, which can be used to distinguish them from normal actions. There-
fore, for optical flow histograms, we omit the step of adjusting orientation invariance in the
MoWLD motion descriptors.

Similarly as in the WLD, the orientations of optical flow in each grid is normalized into
12 directions and an optical flow histogram of 12 bins is constructed for each grid. For a
4×4 grid neighborhood, this results in an aggregated optical flow histogram of a dimension
of 4×4×12 = 192. Also, we consider temporal contextual information for better robustness
and add the WLD and optical flow histograms of three previous frames into the descriptor.

Thus, all of the aggregated histograms (WLD and optical flow) are concatenated into
the MoWLD descriptor (as shown in Fig. 4), which now has 1536 (4 × 2 × 192 = 1536)
dimensions.

Figure 4 illustrates our MoWLD algorithm. The algorithm takes consecutive four frames
to find spatiotemporal interest points at multiple scales. Two major computations are
applied, i.e. WLD feature and optical flow computation, according to the scale of the WLD.
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Fig. 4 System flowchart of our MoWLD algorithm. Four consecutive frames are input to compute the WLD
and optical flow. Candidate points with sufficient motion are determined as the MoWLD interest points, for
which MoWLD features are extracted

3.1.4 Multi-scale MoWLD

In our MoWLD algorithm, we adopt the multi-scale WLD feature analysis approach [8] and
calculate multi-scale optical flows according to the WLD scales.

Specifically, optical flow pyramids are constructed over two Gaussian pyramids.
Multiple-scale optical flows are calculated according to the WLD scales. A local extreme
from WLD feature points can only become an interest point if it also has sufficient motion
in the optical flow pyramid. We assume that a complicated action can be represented by the
combination of a reasonable number of interest points. Therefore, we do not assign strong
constraints to spatio-temporal interest points. As long as candidate interest points contain a
minimal amount of movement, the algorithm can extract them as MoWLD interest points.
The extracted MoWLD interest points are scale and rotation invariant in spatial domain
but they are not scale invariant in the temporal domain. The MoWLD can select distinc-
tive interest points with sufficient motion where humans can ‘see’ the action based on these
points and machines can learn an action model.

Since our MoWLD is based on the WLD and the optical flow, it is natural that our
descriptor leverages the following advantages. Instead of combining a HoF classifier with
a HoG classifier, we build a single feature descriptor, which concatenates both HoG and
HoF into one vector, which is also called ‘early fusion’. We believe appearance and motion
information together are the essential components for classifying actions. Since an action
is only represented by a set of spatio-temporal point descriptors, the descriptor features
critically determines the information used by later recognition steps. It can also be seen
that our MoWLD descriptor captures local appearance with an aggregated histogram of
gradients from neighboring regions. This gives our MoWLD descriptor better tolerance to
partial occlusion and deformation. Also, when an interest point is detected, a dominant
orientation is calculated and all gradients in the neighborhood are rotated according to the
dominant orientation. This makes our MoWLD rotation invariant.
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3.2 KDE-based feature selection

The extracted high-dimensional MoWLD descriptor may contain some irrelevant and redun-
dant information. To improve both performance and computational efficiency, we employ
the KDE-based feature selection method [6, 19] to select the most representative features
from the extracted MoWLD.

Suppose x1, x2, . . . , xN are N independent identically distributed data of a one-
dimensional random variable x. KDE infers the probability density function of x by
centering a kernel function K(x) at each data point xi as:

fh(x) = 1

hN

N∑
i=1

K

(
x − xi

h

)
, (3)

where h is a smoothing parameter, named as bandwidth, which can be adaptively chosen
using the method proposed in [19].

In order to reduce the dimension of the MoWLD feature, we use KDE to obtain a smooth
probability density function based on our training data. However, the common Gaussian
kernel density estimator [6] lacks local adaptivity, and this often results in a higher sensitiv-
ity to outliers. So, an adaptive kernel is chosen to be K(•), as discussed in [19], which can
be used as a way to improve local adaptivity and reduce bias.

If the probability density function of a feature is bimodal or multimodal, this feature is
considered to be more discriminative than those with only a single mode. Figure 5 shows
an example of our probability density function (PDF) with three modes. We estimate the
PDF of each feature on the original 1536 features of MoWLD. According to the number of
modes, we sort the 1536MoWLD features in descending order. Finally, the first 850 features
are selected to form the reduced MoWLD, which is more effective than the original ones.

Fig. 5 The normalized probability density function estimated by the KDE method
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3.3 Sparse coding scheme

In order to obtain more discriminative features, instead of the BoW model, we adopt sparse
coding to further process the selected MoWLD features for violence detection.

Let X be a set of reduced MoWLD feature vectors extracted from a query video clip.
X = [x1, x2, . . . , xN ] (x ∈ R

d×N), where xi denotes ith vector of the total N data samples.
The sparse coding problem can be formulated as:

Z = arg min
Z∈Rk×N

1

2
‖X − DZ‖2�2 + λ ‖Z‖�1

, (4)

where Z = [Z1, Z2, . . . , ZN ] (Z ∈ R) and Zi is the corresponding sparse representation of
vector yi , D = [d1, d2, . . . , dN ] (D ∈ R) is a pre-trained dictionary, which is an overcom-
plete basis set (k > d), and λ is a positive regularization parameter to control the tradeoff
between fitting degree and sparseness (according to [26], it is set to 0.069). The optimiza-
tion overZ is convex when the dictionary D is constant. To seek a sparseZ, the LARS-lasso
approach [41] is employed to solve (4). In this way, the original low-level descriptors are
converted into compact mid-level features (corresponding spare code representation Z).
Then, the violence analysis/recognition is carried out on Z domain.

The dictionary D contains atoms representing basic patterns of the specific data distribu-
tion in feature space. Given a large collection of the reduced MoWLD features (processed
by KDE-based feature selection) extracted from training data Y = [y1, y2, . . . , yN ] (y ∈
R

d×M), the dictionary learning problem in sparse coding scheme can be defined by:

arg min
U∈Rk×M,D∈C

1

M

M∑
i=1

1

2
‖yi − Dui‖2�2 + λ ‖ui‖�1

, (5)

where U = [u1, u2, . . . , uN ] (U ∈ R) is the coefficients set and C is a convex set, and

C � {D ∈ R
d×k, s.t. ‖di‖�1

≤ 1, i ∈ {1, . . . , k}}, (6)

where the formulation is not convex with respect to D and U . Online dictionary learn-
ing algorithm [26] that has been proven to be more appropriate for large training sets was
employed to solve this joint optimization problem.

3.4 Max pooling scheme

Pooling is used to achieve invariance to image transformations, more compact represen-
tations, and better robustness to noise and clutter. It has been stated that max pooling
outperforms the average pooling [7, 17]. In order to further capture globally optimized
feature, max pooling is applied over the sparse code set Z as:

β = �(Z), (7)

where β is a vector with k dimensions and � is a pooling function defined on each row of
Z ∈ R

k×N. Different pooling functions construct different video statistics [40, 41]. In our
experiment, we adopt the max pooling function approach [7], which is defined as:

βi = max | Zi1 |, | Zi2 |, . . . , | ZiN |, (8)

where βi denotes the ith element of β, and Zij denotes the (ij)th entry of the matrix Z.
Compared with the BoWmodel, the sparse coding method achieves a much lower recon-

struction error and captures the salient properties of human actions. Then, with the help
of max pooling approach, the irrelevant information is discarded, and only the strongest
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response to some certain atoms is preserved. It is spatially-temporally pooled, and gener-
ates a compact and discriminative video level feature β for our violence detection task. In
classification stage, we employ the SVM with a RBF kernel to classify the input video as
either violent or non-violent.

4 Experiments and results

4.1 Dataset

Experiments of our method were conducted on three challenging datasets: the Hockey Fight
dataset [36], the BEHAVE dataset [2], and the Crowd Violence dataset [36].

The Hockey Fight dataset This dataset contains 1000 video clips of action from hockey
games of the National Hockey League (NHL). Five hundred videos in the dataset are man-
ually labeled as fight and others are labeled as non-fight. Each clip consists of 50 frames
(360 × 288 pixels image resolution).

The BEHAVE dataset This dataset contains more than 200,000 frames (640×480 pixels
image resolution) and various scenarios, including walking, running, chasing, discussing in
group, driving or cycling across the scene, fighting and so on. We partitioned the dataset into
clips with various activities and manually labeled as violence or non-violence. Each clip
consists of at least 100 frames. Finally, we picked 80 clips for violence detection, including
20 violence clips and 60 non-violence clips.

The crowd violence dataset This dataset is assembled for testing violent crowd behavior
detection. All video clips are collected from YouTube, presenting a wide range of scene
types, video qualities and surveillance scenarios. The dataset consists of 246 video clips
including 123 violent clips and 123 normal clips with a resolution of 320× 240 pixels. The
whole dataset is split into five sets for 5-fold cross-validation. Half of the footages in each
set presents violent crowd behavior and the other half presents non-violent crowd behavior.

4.2 Results and discussion

We compare our proposed method against the state-of-the-art techniques including the BoW
based methods, the violence detection method in [44], the Appearance and Motion DeepNet
(AMDN) method in [15] and the ViF method in [36]. To evaluate the classification accuracy,
we employed the 5-fold cross validation test on each dataset. Results are reported with mean
prediction accuracy (ACC)± standard deviation (SD) as well as the area under the ROC
curve (AUC). In our experiments, SVM is employed as classifier in all approaches compared
and both the MoWLD feature and the final video level feature vector are �2 normalized.
Also, to assess the impact of dictionary size on accuracy, we have run the experiments with
dictionaries of different sizes being learned.

Results on Hockey Fight dataset Table 1 shows the results of various methods on the
Hockey Fight dataset. The results on this dataset using the BoW model paired with HOG,
HOF and MoSIFT (i.e. “HOG+BoW”, “HOF+BoW” and “MoSIFT+BoW” respectively)
are reported in [4]. As it can be seen from the table, MoSIFT and HOG based BoW models
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Table 1 Accuracy comparison of BoW-based violence detection methods on the Hockey Fight dataset

Vocabulary HOG+BoW [4] HOF+BoW [4] MoSIFT+BoW [4] MoWLD+BoW

50 words 87.8 % 83.5 % 87.5 % 88.1 %

100 words 89.1 % 84.3 % 89.4 % 90.4 %

150 words 89.7 % 85.9 % 89.5 % 90.7 %

200 words 89.4 % 87.5 % 90.4 % 91.3 %

300 words 90.8 % 87.2 % 90.4 % 91.3 %

500 words 91.4 % 87.4 % 90.5 % 91.5 %

1000 words 91.7 % 88.6 % 90.9 % 91.9 %

perform comparably, with a slight improvement achieved with MoSIFT over HOF. The pro-
posed MoWLD (noted as “MoWLD+BoW” in the table) outperforms all above approaches,
indicating our proposed MoWLD descriptor is more discriminative and effective. Also, with
the increase of the dictionary size, the performance begins to rise and then stays stable. This
phenomenon indicates that selection of an appropriate dictionary size is significant to both
high accuracy and computational efficiency.

Table 2 shows the results obtained after adopting the sparse coding and KDE-based fea-
ture selection into our MoWLD and BoW approach. It can be seen that using the sparse
coding based approach have resulted in higher accuracy than the BoW based approaches
alone, due to the less quantization error of sparse coding. The performance is further
improved after using the KDE-based feature selection. This is due to the fact that the irrel-
evant and redundant features of MoWLD are removed while leveraging feature selection,
thus contributing to a more discriminative local descriptor. In this experiment, the number
of words in the dictionary of BoW equals to the size of sparse dictionary in sparse coding.

Results on the BEHAVE dataset Twenty clips of this dataset are randomly picked for
training. In order to demonstrate the superior performance of our algorithm, we compared
our approaches with those of the state-of-the-art approaches implemented by us, including
HOG, HOF, HNF (combination of HOG and HOF), ViF [36], the robust violence detec-
tion (RVD) [44], the Appearance and Motion DeepNet (AMDN) [15] and MoSIFT [4].
Table 3 presents the results obtained with the above mentioned methods on the BEHAVE
dataset. The dictionary size is fixed to 500 in this set of experiments. HOG, HOF and HNF

Table 2 Detection results on the Hockey Fight dataset using sparse coding with and without using the KDE

Vocabulary
MoWLD+SparseCoding MoWLD+KDE+SparseCoding

ACC±SD AUC ACC±SD AUC

50 words 89.1 ± 1.31 % 0.9318 91.4 ± 1.78 % 0.9597

100 words 90.5 ± 0.88 % 0.9492 92.9 ± 2.18 % 0.9615

150 words 92.4 ± 1.51 % 0.9618 93.9 ± 1.84 % 0.9695

200 words 83.1 ± 1.91 % 0.9708 94.7 ± 1.62 % 0.9715

300 words 93.5 ± 1.51 % 0.9638 94.6 ± 1.71 % 0.9708

500 words 93.3 ± 1.29 % 0.9706 94.9 ± 1.68 % 0.9789

1000 words 93.7 ± 1.68 % 0.9781 94.2 ± 1.91 % 0.9719
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Table 3 Detection results on the BEHAVE dataset

Algorithm ACC±SD AUC

HOG+BoW [36] 58.69 ± 0.35 % 0.6322

HOF+BoW [36] 59.91 ± 0.28 % 0.5893

HNF+BoW [36] 57.97 ± 0.31 % 0.6089

ViF [36] 82.02 ± 0.19 % 0.8592

MoSIFT+BoW [4] 62.02 ± 0.23 % 0.6578

MoWLD+BoW 83.19 ± 0.18 % 0.8517

MoWLD+SparseCoding 85.75 ± 0.15 % 0.8891

RVD [44] 85.29 ± 0.16 % 0.8878

AMDN [15] 84.22 ± 0.17 % 0.8562

MoWLD+KDE+SparseCoding 87.17 ± 0.13 % 0.8993

are spatiotemporal descriptors with BoW model while ViF is a global representation based
approach. As it can be seen from the table, our two sparse coding based methods (the bot-
tom two in the table) outperform other approaches. This demonstrates that our MoWLD
descriptor is significantly superior in performance to HOG, HOF and HNF. It proves that
MoWLD is a more effective descriptor for describing action feature. The performance of
the RVD method in [44] is close to ours, that is because this method has adapt a Gaussian
Model of Optical Flow (GMOF) to extract candidate violence regions, which reduces many
noise disturbances. The AMDN utilizes deep neural networks to automatically learn feature
representations. Undeniably, its performance is very stable. However, it uses optical flow
as the input image feature, and there exist many redundant and interference features, so its
performance is not the best. Also, our MoWLD combined with the sparse coding method
outperforms all BoW based methods and employing the KDE-based feature selection fur-
ther improves the accuracy. Results on this dataset demonstrate that our algorithm is also
effective for detecting violence in group fighting scene. False alarm only happened when a
group of people get together to do some strenuous non-violence activities.

Results on the crowd violence dataset This dataset is more challenging than the above
two datasets because it contains many crowded scenes. The set contains 246 clips divided
into five splits, each containing 123 violent and 123 non-violent scenes. In order to demon-
strate the superior performance of our proposed approach, we compare our algorithm with
those of the state-of-the-art approaches, including HOG, HOF, HNF (combination of HOG
and HOF), ViF, and MoSIFT, which are reported in [4] and [36]. We also compared our
approaches with those of the state-of-the-art approaches implemented by us, including the
robust violence detection (RVD) [44], the Appearance and Motion DeepNet (AMDN) [15].
Table 4 presents the results obtained with various methods on this dataset. Same as before,
the dictionary size is fixed to 500 in this set of experiments. In this dataset, due to more
crowded scenes, the detection rate of RVD method decreases. On the contrary, the perfor-
mance of AMDNmethod is still very stable. However, because of the introduction of optical
flow noise, its performance is not very good. Our sparse coding based methods still out-
perform other approaches. MoWLD descriptor is significantly superior in performance to
HOG, HOF, HNF, RVD and AMDN. It proves that our proposed MoWLD is a more effec-
tive descriptor for describing action feature. Consistent with the results on the previous two
datasets, our MoWLD combined with the sparse coding method outperforms the BoW based
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Table 4 Detection results on the Crowd Violence dataset

Algorithm ACC±SD AUC

HOG+BoW [36] 57.43 ± 0.37 % 0.6182

HOF+BoW [36] 58.53 ± 0.32 % 0.5760

HNF+BoW [36] 56.52 ± 0.33 % 0.5994

ViF [36] 81.30 ± 0.21 % 0.8500

MoSIFT+BoW [4] 57.09 ± 0.37 % 0.6073

MoWLD+BoW 82.56 ± 0.19 % 0.8651

MoWLD+SparseCoding 86.39 ± 0.15 % 0.9018

RVD [44] 82.79 ± 0.19 % 0.8659

AMDN [15] 84.72 ± 0.17 % 0.8891

MoWLD+KDE+SparseCoding 89.78 ± 0.13 % 0.9472

methods and employing the KDE-based feature selection has effectively improved the accu-
racy. Results on this dataset demonstrate that our algorithm is also effective for detecting
violence in crowded scene. Some false alarms are caused by people’s fast running.

By verifying the obtained results, we can find that our proposed system is effective and
robust for correct detection of violence. Our algorithm is able to handle violence detec-
tion with complex scenarios, including different camera distance, severe occlusion between
people and crowed scenes.

5 Conclusion

Aiming for a robust violence detection method in surveillance scenes, in this paper we pro-
posed a novel violent video detection approach based on the MoWLD feature and sparse
coding. Several popular approaches have been employed to generate a highly discrimina-
tive video feature: 1) MoWLD employs the advantages of SIFT in computing the histogram
using the gradient and its orientation, and those of LBP in computational efficiency; 2) The
KDE-based feature selection method eliminates some redundant and irrelevant features of
theMoWLD; 3) Integrating the sparse coding method with max pooling generates a discrim-
inative, high-level global video feature. Experimental results on three challenging datasets
have demonstrated that the proposed method outperforms the state-of-art techniques for vio-
lence detection in both crowded and non-crowded scenes, which has shown the effectiveness
of the proposed video representation.
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