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Abstract Currently, the focus of research on human affect recognition has shifted
from six basic emotions to complex affect recognition in continuous two or three
dimensional space due to the following challenges: (i) the difficulty in representing
and analyzing large number of emotions in one framework, (ii) the problem of
representing complex emotions in the framework, and (iii) the lack of validation of
the framework through measured signals, and (iv) the lack of applicability of the
selected framework to other aspects of affective computing. This paper presents a
Valence – Arousal – Dominance framework to represent emotions. This framework is
capable of representing complex emotions on continuous 3D space. To validate the
model, an affect recognition technique has been proposed that analyses spontaneous
physiological (EEG) and visual cues. The DEAP dataset is a multimodal emotion
dataset which contains video and physiological signals as well as Valence, Arousal
and Dominance values. This dataset has been used for multimodal analysis and
recognition of human emotions. The results prove the correctness and sufficiency of
the proposed framework. The model has also been compared with other two dimen-
sional models and the capacity of the model to represent many more complex
emotions has been discussed.
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1 Introduction

Affective Computing is a prime research area of Human Computer Interaction (HCI) which
combines engineering and computer science with Cognitive Science, Sociology, Physiology,
Psychology and many other fields. In the last few decades most of the research was based on
spontaneous as well as posed data acquired in the laboratory setting for affect recognition. The
different affective states like thinking, embarrassment, depression etc. can be considered
complex affective states and expressed via several anatomically possible facial expressions
or body gestures [8]. Since the complex affective states cannot be expressed by a single label,
therefore researchers have used the dimensional model of affect to express them. Recently, the
focus of research on human affect recognition has been shifted from discrete emotions to affect
recognition in continuous two or three dimensional space. Researchers started exploring
dimensional model of emotion as this model is able to capture action units (AUs) effectively.
The complex emotion states can be represented by two/three dimensions emotion primitives.
The 2D model is covered by valence and arousal on two axes (in both positive and negative
directions), representing all emotions in four quadrants, whereas, a 3D model deals with three
emotion primitives i.e. valence, arousal and dominance. Some researchers have used different
nomenclature for different emotion dimensions, for example Whissell [27] proposed 2D
emotion model by considering evaluation-activation as two dimensions.

Key contributions of this study are as follows:

& It presents the approach for affect prediction in terms of valence, arousal and dominance
based on physiological (EEG etc.) and visual cues.

& It also predicts the correlation among emotions and demonstrates significant improvement
in emotion recognition performance.

In this paper, we have studied and reviewed the research work on emotion representa-
tion in two dimensional space. Then, we have mentioned the limitations and shortcomings
of two dimensional model and highlighted the need for a three dimensional emotion
model. Moreover, a 3D emotion model and methodology is explained. An emotion graph
is generated by representing a large number of emotions in three dimensional space and
the findings obtained from emotion graph are discussed and validated. Emotion prediction
from multimodal cues is also presented.

We have used DEAP [10], a database for the analysis of spontaneous emotions. The
database contains samples of physiological signals along with frontal facial video of partici-
pants. Each participant watched different videos and recorded their emotional responses in
terms of Arousal, Valence and Dominance [10].

This paper includes three major experiments. Experiment 1 includes emotion represen-
tation and anlysis of distribution of emotions in VAD space. Clustering and relative
distance measure followed by emotion graph generation is done under experiment 2.
Experiment 3 is performed to validate the emotion graph through emotion prediction from
multimodal physiological cues. The overall paper is divided into six sections, including
this introduction section. The second section deals with state-of-the-art of affect represen-
tation and modeling of emotions. The proposed methodology for emotion prediction in 3D
space is described in third section. Emotion recognition from multimodal cues is described
in section four. Results and discussions are discussed in section five and concluding
remarks are given in the last section.

2160 Multimed Tools Appl (2017) 76:2159–2183



2 State-of-the-art of affect representation and modeling

Recently, researchers started exploring dimensional model of emotion, in which emotions are
represented in 2D or 3D space. The 2D model is covered by two dimensions i.e. valence and
arousal, whereas 3D model deals with three emotion primitives i.e. valence, arousal and
dominance. Many researchers have mapped directly the visual signal onto emotion dimensions
[7, 14, 28]. Emotion categorization is critical to know the affective states of human in the
application of emotion recognition. Some researchers have used a simple strategy to automatic
classification of affect, and that is to simplify the problem of classifying six basic emotions to a
two class (positive-negative) or three class (positive, neutral and negative) classification
problem. A similar simplification is to reduce the emotion classification problem to a two-
class problem—positive vs. negative and active vs. passive classification problem. Few
researchers [1] used Pleasure, Arousal and Dominance (PAD) as three emotion primitives.
The valence scale ranges from unpleasant to pleasant. S. Kolestra et al. [10] added one more
emotion dimension i.e. liking in their work [10]. An emotion can be independently described
by each of these three primitives or measures on a continuous valued scale.

Many researchers [3, 6] have reported a four-class classification problem—i.e. each
quadrants of 2D AV space. Glowinski et al. [7], for instance, analysed four emotions, each
belonging to one quadrant of AV emotion space: high arousal positive valence (joy), high
arousal negative valence (anger), low arousal positive valence (relief) and low arousal negative
valence (sadness).

2.1 Affect representation in 2D space

Whissell [27] presented a two dimensional emotion model, taking a pair of values: evaluation
and activation. They have shown the position of affective words in evaluation-activation space
in the range of (−3, +3). The neutral is placed at the origin. The emotion mapping is carried
out by considering each of the six basic emotions as 2D weighted points in the evaluation-
activation space, where the assigned weights are the affective weights obtained by the facial
affect recognizer for each emotion.

In Whissell space (Fig. 1), each emotion has a specific location in evaluation-
activation space. It is interesting to note that the emotion ‘joy’ is placed far apart
from other emotions, whereas it should be near ‘cheerful’ and ‘pleased’. Moreover,
emotion ‘surprise’ and ‘joy’ are in the same quadrant-2. In addition, the Whissell
space hardly detects intermediate states between ‘joy’ and rest of the emotions.
Therefore, we can say that two dimensional representation is not able to correctly
represent the relationship among various emotions. Should we require more dimen-
sions to represent all emotions accurately?

A researcher presented a mood and emotions tracking experiment in his article [2]. In this
the average valence and arousal scores for emotion were mapped in the valence-arousal space
as depicted in Fig. 2. Although, it is obvious in Fig. 2 that the two dimensional graph
represents emotional states relatively well, but as can be seen in the graph, all the
positive and intense emotions like ‘pride’, ‘thrill’ and ‘joy’ end up in the upper right
quadrant of the space. The negative and intense emotions like ‘irritation’, ‘suffering’
and ‘anxiety’ are in the opposite third quadrant. The less intense emotions are close to
the middle of the arousal scale, but in the appropriate upper and lower parts of the
plane, according to their values of valence [2].
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In the valence-arousal space, the three emotions, ‘contentment’, ‘affection’ and ‘sadness’ are
on the valence axes itself, which is not possible. Emotion ‘affection’ belongs to happy group, so it
should be nearby ‘joy’. In addition, only limited number of emotions are represented in this model.
Hence, this valence-arousal model is insufficient to represent emotions accurately. So again the
question arises here, should we require more dimensions to accurately represent the emotions?

The answer is YES. From the above two studies, it is clear that the representations
of emotions in two dimensional space are not sufficient. Therefore, we have decided
to explore the three dimensional representation of emotions.

According to Schachter and Singer [18], many psychologists believe that physiological
signals do not distinguish more than arousal level. R. Picard [15] claimed that these distinc-
tions were not limited to arousal, but also included discrimination of emotions having similar
arousal and varying positive or negative (valence) characteristics. They developed pattern
recognition algorithms that attained 81 % classification accuracy instead of the predicted
12.5 % of a random classifier. They found that emotions could be distinguished at levels
significantly higher than chance. Furthermore, they concluded that recognizable physiological
differentiation does appear with the eight emotions they investigated.

2.2 Affect representation in 3D space

According to Schuller B. [20] estimating emotion on a continuous valued scale is an important
alternative to emotion categories for computational community to describe human’s affective

Fig. 1 Whissell’s evaluation-activation space
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states because it is able to describe the intensity of emotion, which can be used for recognizing
dynamics and allows for adaptation to individual moods and personalities. The 3D emotionmodel
consists of three emotion dimensions i.e. Valence, Arousal and Dominance (in short VAD).

& Valence: The valence scale ranges from unhappy or sad like emotions (negative emotions)
on one end to happy or joyful like emotion (positive emotions) at the other end.

& Arousal: The arousal scale ranges from 0 to 9 signifying calm emotions to stimulated or
excited emotions.

& Dominance: The dominance scale ranges from submissive (or Bwithout control^) on one
end to dominant (or Bin control^ or Bempowered^) at the other end.

& Other possible candidates for dimensions may be liking and familiarity. Liking inquires
about the participant’s tastes, not their feelings. Also familiarity varies from subject to
subject for each emotion. Hence, liking and familiarty cannot be considered as dimensions
for representation of emotion independent of subjects.

DEAP database has been successfully used for emotion recognition from EEG and
peripheral cues in [9, 11, 24]. This work is a novel effort to correlate video and other
multimodal cues (i.e. EEG and other physiological signals) with Valence, Arousal and
Dominance values. The EEG signals of 32 subjects (in DEAP dataset) were recorded while
participants watched one-minute fragments from 40 music video clips. The VAD values were
obtained using Self Assessment Manikins (SAM) [13], a method of self-assessment emotional
states. Valence, arousal, dominance and liking were rated directly after each trial on a
continuous 9-point scale using a standard mouse. For liking (i.e. how much did one like the

Fig. 2 Mapping emotional states in valence-arousal mood space
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video?), thumbs-up and thumbs-down icons were used as shown in Fig. 3. The intensity scales
of emotional reactions of excitation, arousal, were represented using graphic pictures that
express nine levels from (1–9) to indicate their emotional state. Similarly for valence, for
dominance and liking, SAM method, as depicted in Fig. 3 was used.

It is worth noting that dimensional representation has mostly been used for emotion
recognition from physiological signals. In Table 1, we briefly summarised automated systems
that attempt model and recognize affect in continuous dimensional space. Table 2 summarizes
representative systems with classification methods and results for dimensional affect
recognition. S. Koelstra et al. [10] proposed an emotion recognition system by using a fusion
of facial expressions and EEG signals. They utilized methods for facial expression and EEG
signal analysis to investigate the possibilities for multi-modal fusion in affect recognition and
implicit tagging. Mamalis A. Nikolaou [14] presented emotion recognition system based on
multimodal cues such as facial expression, shoulder gesture and audio cues and fusion thereof.
They mapped the multimodal cues of continuous emotions in two dimensional space of
valence and arousal. They used Support Vector Regression (SVR) and Long Short Term
Memory Neural Network (BLSTM-NNs) machine learning algorithms to compare the perfor-
mance of the system. An output associative fusion framework was also proposed by them for
the feature and model level fusion of multiple cues.

Fig. 3 Self-Assessment Manikins (SAM) method to record emotion states, a Valence b Arousal c Dominance
and d Liking [10]
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Y. Wang et al. [26] investigated multimodal information extraction and analysis based on
kernel method. They utilized Kernel cross-modal factor analysis for modeling the nonlinear
relationship between twomultidimensional variables. They have also introduced an approach to
identify optimal transformations to represent patterns. M. Mansoorizadeh [12] proposed an
asynchronous feature level fusion approach to create unified hybrid feature space for clustering
and classification of basic affective states from speech and facial expressions. They claimed that
the proposed fusion approach performs better than unimodal face and speech based system.
They have also provided comparative results based on synchronous feature level and decision
level fusion approaches. B. Schuller et al. [19] compared the performance of nine standard
corpora using modeling on a frame-level by means of Hidden Markov Models (HMM) and
supra-segmental modeling by systematic feature brute-forcing for emotion recognition. They
cluster each database’s emotion into binary valence and arousal to provide better comparability
among different datasets. They claimed that supra-segmental modeling performed better.

3 Proposed 3D emotion model in VAD space

We propose a 3D emotion model based on three continuous emotion dimensions (valence, arousal
and dominance) by considering a large number of emotions (fun, happy, joy, cheerful, melancholy,
depressing, terrible, exiting, love, lovely, sentimental, sad, mellow, shock, hate etc.). The DEAP
database used for this work provides the values of valence, arousal and dominance for large number

Table 2 Systems shown in Table 1 with classification methods, fusion and results

System Classification Explicit fusion Results

S. Koelstra and I.
Patras

binary classification on the
arousal, valence and control
ratings

Feature level and decision
level fusion

For arousal, valence, and control,
video tag classification rates of
80.0 %, 80 % and 86.7 % are
attained respectively when
aggregating across all 24
participants.

M. A. Nicolaou et
al. (2011)

The bidirectional Long
Short-Term Memory neural
networks (BLSTM-NNs), and
Support Vector Machines for
Regression (SVR)

Feature level, model level,
and output associative
fusion

In terms of RMSE (0.141) and
correlation (0.84), the
inter-coder SAGR (0.86)

Y. Wang et al.
(2012)

HMM Feature level and score
level fusion

RML dataset result 82.22 % and
eNTERFACE dataset result
72.47 %

M.Paleari (2010) Neural Network Feature level fusion 73 %

M. Mansoorizadeh
(2010)

SVM (10-foldscross validation,
that is, 90 % of the data is
used for training and the
remaining 10%is used for
testing).

Feature level, Decision
level, Optimal decision
level, Optimal feature
level fusions

77 % for TMO-EMODB and
71 % for eNTERFACE

D. Datcu et al.
(2009)

2-fold Cross validation method
for testing the performance of
the models.

High level data fusion 80.02 % on still pictures and
85 % on a sequence of frames.

B. Schuller et al.
(2009)

SVM HMM/GMM Supra-segmental
modelling

80.2 % for SVM and 80.5 %
for HMM/GMM
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of emotions. There is no prior knowledge about their relative locations in three dimensional VAD
space. In order to evaluate the model, it is necessary to establish the region in VAD space where
each emotion can be considered to be correctly located and their relative positions and distances. For
this purpose, a total of 1280 (40 trials for each 32 subjects) VAD values are represented in 3D space
as shown in Fig. 4. Each emotion was placed in the valence-arousal-dominance coordinate system.

3.1 Experiment 1: Emotion representation in VAD space

To validate our model we have plotted all 1280 emotion-points in VAD space as shown in Fig. 4.
All the values of valence, arousal and dominance are continuous and on a continuous scale of 0–
9. In Fig. 4, it can be seen that the most of the ‘valence’ values are distributed from 2.0 onwards.
However, the values of dominance are distributed throughout the range from 1 to 9. The average
standard deviation (for all emotions) for valence, arousal and dominance are 1.5511, 1.8367 and
1.8558 respectively. Mean and standard deviation for different emotions are given in Table 3.

As evident from Fig. 4, all emotions are continuously distributed in VAD space and although the
standard deviation (see Table 3) of any particular emotion is not more than 2.51, values of V, A and
D for various instances of any one emotion can vary a lot. One reason for this can be attributed to the
presence of noise in each measurement. Therefore, in experiment 2, we have analyzed the centroids
of each emotion, which indicates a definite pattern. But, such a big and continuous spread of every
emotion cannot be only due to noisymeasurement. It definitely proves the continuous distribution of
each emotion in VAD space. Any emotion (say Happy) can have different values of Valence,
Arousal and Dominance depending on different stimulation effects. Hence, at different instances, a
subject can be Happy in one instance and can be more Happy at the other instance. Our
representation model can accommodate all these variations as all the three axes are continuous.

Fig. 4 Emotion distribution in 3D space
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3.2 Experiment 2: Clustering and the relative distance pattern of the centroids
of emotions

After representing emotions in VAD space, we calculated the emotion centroid of each
emotion (considering all instances except very few outliers) and calculated the Euclidean
distances of each emotion from the other as reported in Table 4. Although, there are several
ways to compute the cluster of a set of emotions, we chose K-means clustering (K = 1) for this
purpose. We have removed some of the outliers; a point is considered an outlier if its
coordinate values are too high or too low to fall in any cluster. Table 4 shows the maximum
distance of 5.463 between Joy and Melancholy and the minimum distance of 0.356 between
Mellow and Sentimental. Further, we have plotted a graph of 15 emotions as nodes and the
distances as edges in Fig. 6. Firstly, we have only shown the distances up to 25 % of the
maximum value as solid lines. This emotion network (or graph) interestingly groups 15
emotions in 5 groups, which are exactly equal to the number of clusters as shown in Fig. 5.
Interestingly these five clusters are: C1: Happy, Joy, Fun, Exciting (Happy Group); C2: Love,
Cheerful, Lovely (Love Group); C3: Depressing, Sentimental, Mellows (Sentimental Group);
C4: Sad, Melancholy, Terrible (Sad Group); and C5: Shock, Hate (Hate Group).

In Fig. 5, it can be seen that the cluster1 of happy group of emotions is associated with high
valence and high dominance. This is in line with some studies, e.g. [17], where happy group of
emotions are classified in positive valence and positive dominance space. The emotions within
a cluster are highly associated with each other. The cluster 2, interestingly related to low
dominance and high valence emotions, consists of Love, Lovely and Cheerful emotions. There
are debates on whether to include love in the list of emotions or not, but we have considered
whatever was provided in DEAP dataset. Generally Cheerful can be included in happy group
(Cluster 1), but here it is with love group (Cluster 2), which could also be because of the

Table 3 Mean and standard deviations (SD) of different emotions on VAD dimensions

Emotions Valence Arousal Dominance

Mean SD Mean SD Mean SD

Fun 6.8571 1.3015 5.8571 2.1993 6.0 1.5584

Exciting 5.9286 2.0516 6.9286 1.9808 5.5 2.4128

Happy 7.1429 1.1867 4.8571 1.4569 5.2143 1.319

Joy 6.9333 2.3228 6.4667 1.9276 5.8 2.0067

Cheerful 5.9286 1.7914 3.3571 1.342 4.9286 1.7914

Love 6.5714 1.3997 4.2143 2.5122 5.4286 2.0603

Lovely 6.4667 1.3597 4.0 1.7889 4.9333 1.9137

Sentimental 4.2 1.4236 3.7333 1.8062 3.9333 1.9482

Melancholy 3.3333 1.1926 4.4667 1.9956 3.2 1.376

Sad 3.3333 1.3499 2.9333 1.6918 4.6667 2.1499

Depressing 4.2 1.6411 3.6 1.2 4.6 1.8184

Mellow 4.2 1.7963 3.0 1.5055 3.3333 1.7764

Terrible 3.6667 1.4907 5.4667 2.0613 4.6 1.7436

Shock 4.6667 1.4907 6.4 1.9253 4.9333 1.5691

Hate 3.9333 2.0483 6.1333 2.0934 5.5333 1.8927
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variations in labeling of emotions in various cultures. But this also indicates the problem of
discrete linguistic labelling. More Cheerful (having more dominance) may change its cluster to
happy group. Similar comments can be made about odds in cluster C3, C4 and C5, where
Depressing should be transferred from C3 to C4 and Terrible from C4 to C5. To clarify this and
visualize the relative distances of each emotion from the other, we have calculated Euclidean
distances among centroids of each emotion (Table 4) and shown the ‘Emotion-Graph’ in Fig. 6
in the proposed VAD space. In ‘Emotion-Graph’ each centroid of emotion is shown as a node
(15 nodes for 15 emotion centroids) and the nearest distance node is connected through bold
lines and next two nearest nodes are connected through dotted and dashed lines respectively.
As can be seen in Table 4 and Fig. 6, Depressing is nearest to Sad and hence must be included
in C4 (Sad group). Although Terrible is nearest to Sad but the second nearest to Hate and
hence with some compensation in error it can be transferred from C4 (Sad group) to C5 (Hate
group). This new grouping was verified linguistically in terms of synonyms and literary use of
emotion words. Hence, the new grouping of above 15 emotions should be:

& C1: Happy, Joy, Fun, Exciting, Cheerful (Happy Group);
& C2: Love, Lovely (Love Group);
& C3: Sentimental, Mellow (Sentimental Group);
& C4: Sad, Depressing, Melancholy, (Sad Group) and
& C5: Shock, Hate, Terrible (Hate Group).

The blank space in the graph shows the possibility of many other emotions to be
accommodated in emotion graph. The nearby emotions (in clusters) are related to each other
and their relative positions in VAD space can be viewed as some measure of relatedness with
each other.
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The following are the findings from the Emotion Graph as depicted in Fig. 6.

& It can be concluded that the emotions are completely represented in three dimensional space and
each emotion is a combination of the quantities represented in three dimensions i.e. valence,
arousal and dominance (rather than a single value as in the case of discrete emotion model).

& The valence and arousal are relatively high in happy group of emotions (Joy, Exciting,
Happy and Fun), but, valence is low in sad group (Sad, Depressing and Melancholy). This
is what represents positive and negative emotions. If we have a perpendicular plane at
valence 6.5, all emotions on the left side are called negative emotions while on the right
side are called positive emotions.

& This emotion graph validates the existing emotion theory where happy group of emotions
is far away from sad group of emotions.

The above findings also demonstrate to some extent the sufficiency of the three continuous
dimensions, namely Valence, Arousal and Dominance (Although in DEAP database the values
of Liking and Familiarity are also given, but we find that they do not provide any useful
information about emotion). As per the cognitive appraisal theory, emotions are responses to
the cognitive appraisal of the abnormal situations. Smith C.A. et al. [21] has pointed out eight
dimensions of cognitive appraisal. These dimensions include Pleasantness, Attentional
Activity, Control, Certainty, Goal-Path Obstacle, Legitimacy, Responsibility and Anticipated
Effort. Out of these, Goal Path Obstacle and Legitimacy has not been considered by many
other researchers. Although, no one–to–one mapping can be done from remaining six dimen-
sions to VAD space, but we are of the view that the dimension of Pleasantness and Anticipated
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Effort are in some way included in Arousal, while Control and Responsibility gets included in
Dominance and other dimensions like Attentional Activity and Certainty are represented by
Valence. Hence, we think that Valence, Arousal and Dominance continuous dimensions are
sufficient to uniquely represent an emotion.

4 Model validation through emotion prediction and multimodal emotion
recognition

In this section, we have validated the proposed 3D emotionmodel through emotion prediction and
multimodal emotion recognition. Themultimodal cues used in this study are EEG and visual cues.

Electroencephalogram (EEG) measures voltage fluctuations resulting from ionic current
flows within the neurons of the brain. EEG records the brain’s spontaneous electrical activity
over a short period of time, from multiple electrodes placed on the scalp. Whereas, visual cue
includes video frames obtained from different subjects of DEAP database. We have considered
only basic emotions (Ekman’s emotion) due to the limitation in the emotion content of videos
in DEAP database.

4.1 Experiment 3: multimodal affect-group recognition framework

We have proposed a multimodal affect-group recognition framework in this section which was
used to validate emotion grouping in VAD space. Multimodal signals used in experiments are
video and EEG signals. The visual signals include facial video frames of different subjects,
extracted from DEAP database. In DEAP database, the spontaneous responses of participants,
while watching music videos, were recorded with resolution of 720 × 576 pixels at 50 frames
per seconds. We have extracted the video frames after selecting and grouping the video into
three emotion categories i.e. happy, sad and surprise. We have considered only three basic
emotions (Ekman’s emotion) due to the limited emotion content of videos in DEAP database.
Although 32 subjects participated in the experiments, the face videos of 22 subjects are
available in the database. Hence, we have used the facial expressions of 22 participants only
in this study.

The affect-group recognition framework consists of the three major steps: 1) VAD data
processing 2) Multimodal data processing and 3) Affect-group prediction. First the Valence,
Arousal and Dominance values were processed to create ground truth data in VAD space.
Segmentation was performed on VAD data to segment V-A-D values into different

Table 5 Valence, arousal and dominance class with range

Valence class (range) Arousal class (range) Dominance class (range)

Low Valence
(1–4.5)

Low Arousal(1–4.5) Low Dominance (1–4.5)

Medium Valence (4.5–5.5) Medium Arousal (4.5–5.5) Medium Dominance (4.5–5.5)

High Valence (5.5–9) High Arousal (5.5–9) High Dominance (5.5–9)
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class as shown in Table 5. Multimodal data processing includes pre-processing,
feature extraction and feature normalization of multimodal cues (visual and physio-
logical). Different pre-processing approaches have been employed for each modality,
as described in detail under section of pre-processing of EEG and video cues. An
architecture of affect-group recognition framework is illustrated in Fig. 7.

4.1.1 Emotion Grouping in VAD Space

Valence, Arousal and Dominance (VAD) data processing includes annotation of
emotions in three categories based on low, medium and high Valence, Arousal and
Dominance values separately as given in DEAP database. The ground truth data of
DEAP database is the ratings given by each participant in the continuous range of [0,
9] individually in terms of V, A and D. The ratings for each of these scales are
threshold into three classes (low, medium and high) as shown in Table 5. This
procedure segments multimodal data in terms of low, medium and high categories.

Mul�modal Data Processing VAD Data Processing

EEG and Peripheral 
Physiological cues

Preprocessing

Feature Extrac�on

Video

Preprocessing

Feature Extrac�on

Annota�on

Ground Truth Data

Segmenta�on

Emo�on Predic�on
KNN SVM MLP

Results

DEAP Database

Fig. 7 Proposed affect prediction framework
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4.1.2 Multimodal data processing and Feature Extraction

Multimodal data processing involves processing of video, EEG and peripheral physiological
signals. For the video cue, the pre-processing involves to detect the frontal face from a video
frame. We have used face detection utilities of Viola Jones [25] which is based on cascade
classifier. To extract the features from frontal face, Discrete Wavelet Transform (DWT) was
applied with Bdaubechies^ wavelet family to extract wavelet features. Similarly, to capture the
spontaneous emotion from EEG and peripheral physiological cues, we have also applied
DWT. Followed by feature extraction, min- max normalization was performed to normalize
features obtained from visual, EEG and peripheral physiological signals.

Pre-processing of visual cues As the emotion content in videos of DEAP database is low,
we have considered only three emotion category (i.e. happy, sad and terrible) for affect
recognition. The facial expression samples are collected from videos of different subjects
having high content of facial emotion. The videos selection is based on the content of emotion
manually observed by us. As the emotion frames contains various background objects, which
are not significant in emotion recognition, therefore it is essential to extract the frontal face
from video frames. To detect the face from the video frames, we have applied face detection
utilities of Viola Jones [25] which is based on cascade classifier. The DEAP dataset contains
the frontal facial image of different subjects However; there is some other background objects
appearing in the video. Therefore, we have used face detection utilities of Viola Jones to
extract the frontal face. The size of the extracted frame is 720 × 576.

Pre-processing of EEG signal Electroencephalogram signals in DEAP dataset were
recorded with a 1024 Hz sampling rate and later down sampled to 256 Hz to reduce
the memory and processing costs. EEG signals were recorded using active AgCl
electrodes placed according to the international 10–20 system. The unwanted artefacts,
trend and noise were reduced prior to extracting the features from EEG data by pre-
processing the signals. Drift and noise reduction were done by applying a 4-45 Hz
band-pass filter and eye artefacts were removed with a blind source separation
technique [10].

Multimodal signal analysis Most of the emotion theory reveals that physiological features
are important for emotion. P. Ekman et al. [5] demonstrated that physiological pattern
associated with a particular emotion. Multiresolution methods such as wavelet transforms
are rated as potent for feature extraction during the near past in various applications [16, 23,
29]. Hence, we have used multiresolution analysis (MRA) to analyze visual and physiological
signals in this study. EEG can be described by frequency and amplitude. The following
frequency bands are includes in EEG signal [22].

& Delta: 1–4 Hz.
& Theta: 4–8 Hz.
& Alpha: 8–12.5 Hz.
& Beta: 12.5–28 Hz.
& Gamma: 30–40 Hz.
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Feature extraction Discrete wavelet transform used with different wavelet families to
extract the approximation and detail coefficients from physiological signals. Power spectral
features, logarithms of the spectral power from all EEG bands were extracted from approxi-
mation and detail coefficient as shown in Table 6.

4.1.3 Matching and Affect Prediction

In the final stage, we predict emotions by classification of multimodal (EEG and Video)
features using three different well known classifiers namely Multilayer Perceptron (MLP),
Support Vector Machine (SVM) and K-Nearest Neighbor (K-NN). A brief description of
above classifiers is as under.

A Multilayer Perceptron (MLP) is a feed forward artificial neural network model
that maps sets of input data onto a set of appropriate outputs. MLP utilizes a
supervised learning technique called back propagation for training the network.
Classification is starts by assigning input nodes with extracted EEG outcome,
{x1, x2,…xn} from the proposed technique which then propagated in a forward
direction through the perceptron until the output nodes. The network is trained with
the back propagation learning algorithm. The learning algorithm adapts the weights;
wn and vn based on minimizing the error between given output and desired output.
The two main activation functions used in current applications are both sigmoid, and
are described by Eq. 1.

y við Þ ¼ tanh við Þ and y við Þ ¼ 1þ e�við Þ�1Þ ð1Þ
In Eq. 1, the former function is a hyperbolic tangent which ranges from −1 to 1,

and the latter, the logistic function, is similar in shape but ranges from 0 to 1. Here yi
is the output of the ithnode (neuron) and vi is the weighted sum of the input synapses.

k- Nearest Neighbor algorithm assumes that all the data are in feature space and
each training data has a feature vector and class label associated with it. In K-NN
algorithm the number k decides how many neighbors will influence the classification.
If k = 1 then the K-NN algorithm is called the nearest neighbor algorithm. It simply
assign the data point to class which has nearest distance from the class by using any
distance function like Euclidean distance, Manhattan distance, Minkowski distance or
Cityblock distance. Let an arbitrary n-dimensional feature vector=[x1, x2,…xn]. Then

Table 6 Video, EEG signal and extracted features

Signal Extracted features

Video Standard deviation, mean, entropy of each level and ratio between them.

EEG Relative Power Energy (RPE):Four band of Delta, Theta, Alpha, Beta and Gamma
Logarithmic Relative Power Energy (LRPE) : Four band of Delta, Theta, Alpha, Beta and Gamma
Absolute Logarithmic Relative Power energy (ALRPE) : Four band of Delta, Theta, Alpha, Beta and

Gamma, Standard deviation all levels of detail coefficients and highest level approximation coefficient
Entropy: all levels of detail coefficients and highest level approximation coefficient.
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the distance between two feature vectors X = [x1, x2,…xn] and Y= [y1, y2,…yn] can be
defined in terms of Eucledean distance given in Eq. 2.

dis X ; Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ n
i¼1 xi � yið Þ2

q

ð2Þ

Support Vector Machine (SVM) is a method of classification that uses a supervised
learning algorithm to classify data into different classes. The main goal of support
vector machine is to design a hyper plane that classifies all training vectors into two
classes. A hyper plane is a decision boundary that is of n-1 dimension if the data
points are of n dimension. There are many hyper planes for classifying the data, but
the best one is that which has a maximum margin from the both classes of training
vector. The data points that are close to the hyper plane are called support vector. The
movement of support vector causes movement of decision boundary. The equation of
the support vector machine classifier is given as Eq. 3.

g xð Þ ¼ wTxþ b ð3Þ

g xð Þ≥1;∀xϵClass1

g xð Þ≤1;∀xϵClass2

Where w is a vector normal to the hyper plane, b is the bias and g(x) is classifier.

5 Results and discussion

All the experiments were carried out on a 64-bit Intel i5 processor (2.40 GHz) with 4 GB
RAM. The DEAP database is being used in all the experiments. 40 channel EEG signals with
8056 data with 40 trials each for 32 participants were used in experiments. As the sampling
rate is 128 Hz. We have decomposed the physiological signals up to five levels in order to
extract detail information from physiological signals. Daubechies wavelet transform (‘db6’)
was used to extract the approximation and detail coefficients from physiological signals. Min-
max normalization has been applied to normalize feature vectors to the range [0, 1] prior to
classification.

A leave-one-out 10 fold cross validation approach has been employed to validate
the user independent classification performance. At each step of cross validation, the
samples of one participant were taken out as test set and the classifier was trained on
the samples from the rest of the participants. In order to get the best performance,
various parameters of machine learning methods are configured. For SVM, we got the
best accuracy for C = 200 and ε = 0.01 with RBF kernel. Similarly, the MLP network
has two hidden layer and learning rate is 0.5. For each video from the dataset, the
ground truth data was prepared by the ratings (in terms of valence, arousal and
dominance) given by each participants individually. The results are given in terms
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of classification rate, F1 measure and Receiver Operating Characteristics (ROC) curve
as given in Eqs. 4, 5 and 6 respectively.

Classification Rate CRð Þ ¼ TP� 100ð Þ=N ð4Þ

Where TP = number of correct classified instances and N = Total number of instances.

F1 ¼ 2� precision:recallð Þ= precisionþ recallð Þ ð5Þ

ROC ¼ False Positive=True Positive ð6Þ

The Confusion Matrix for 7200 instances of various emotion groups with low, high and mid
V, A and D and the predicted emotion groups from EEG and Video Signals are shown in Table
7. Table 7 validates the continuous V, A and D representation model of emotions through EEG
signals of the same subjects. Features extracted from EEG signals as described in Table 6, were
classified (using K-NN classifier) into same emotion groups (low, high and mid) V, A and D as
shown in Table 5. Table 7 shows that the prediction is correct for low and high V (51 % and
63 %), A (62 % and 65 %) and D (57 % and 61 %) emotion-groups considering only one
dimension (V, A or D) at a time. However, the results for mid (range 4.5–5.5) V, A or D valued
emotion group is between 34 % to 44 %. This is quite obvious as the mid range is only 1/9 of
the total scale and it can be debated that they represent no emotion or neutral emotion. In any
case the confusion is very high in the neutral cases (can be mistakenly considered as either
towards lower or higher side). It is interesting to note that these predictions of emotion groups
are based on either Valence or Arousal or Dominance only. Even then the matching through
EEG signal is of the order of more than 60 % (except) in case of low V (51 %) and low D
(57 %). This also proves the significance of each axis of representation, i.e. V, A and D.

The results given in Table 8 are based on evaluation matrices: CR (Classification
rate), Average F1-measure and ROC area as defined above. A ROC curve for valence, arousal
and dominance is given in Fig. 8. The highest classification rate (CR) achieved for EEG data
applying various classification techniques (MLP, SVM, K-NN) are 67.5 %, 69.6 % and 65.1 %
for V, A and D respectively as shown in Table 8 and Fig. 9 (for MLP). Corresponding ROC
curve is also mentioned in Fig. 8. The very high accuracy matching from video data is not a
correct representation as only three emotions (happy, sad and terrible) could be selected from
video data of emotions in DEAP dataset and hence have little ambiguity. Also, the video
frames are extracted from manually selected videos with rich emotion content.

It is observed that our multiresolution analysis is efficient in discrimination of emotion
groups based on low, mid (medium) and high values of Valence, Arousal and Dominance
separately. We have evaluated our model of three dimensional continuous VAD (valence,
arousal and dominance) space of emotion representation through measured EEG data of the
subjects and the experiments and results validate our claims of sufficiency of three continuous
dimensions in representing complex emotions to some extent.

Experiment 1 clearly establishes that emotions can be represented on a continuous scale,
rather than a discrete one. The large value of standard deviation for each emotion indicates the
variation in each instance which can be accommodated on continuously varying axes only.
Interestingly, the average standard deviation of Valence, Arousal and Dominance for the 15

Multimed Tools Appl (2017) 76:2159–2183 2177



Table 7 Confusion matrices of classification of EEG and VIDEO (column: classified label; row: ground truth)

Total no. of instances =7200 (low = 2624, Mid = 1120, High = 3456)

Valence No. of Instances (%) Low Mid High

Low 1345 (51.26) 327 (12.46) 952 (36.28)

Mid 397 (35.45) 376 (33.57) 347 (30.98)

High 958 (27.72) 327 (9.46) 2171 (62.82)

(a) EEG

% Low Mid High

Low 99.234 0.316 0.125

Mid 0.212 98.235 0.0377

High 0.553 1.449 99.837

(b) Video

Total no. of instances =7200 (low = 3232, Mid = 736, High = 3232)

Arousal No. of Instances (%) Low Mid High

Low 2011 (62.22) 209 (6.47) 1012 (30.31)

Mid 248 (33.70) 251 (34.10) 237 (32.20)

High 925 (28.62) 193 (5.97) 2114 (65.41)

(c) EEG

% Low Mid High

Low 98.487 0.391 0.061

Mid 0.352 98.195 0.091

High 1.160 1.414 99.848

(d) Video

Total no. of instances =7200 (low = 2784, Mid = 1536, High = 2880)

Dominace No. of Instances (%) Low Mid High

Low 1580 (56.75) 409 (14.69) 795 (28.56)

Mid 462 (30.08) 674 (43.88) 400 (26.04)

High 738 (25.63) 372 (12.92) 1770 (61.45)

(e) EEG

% Low Mid High

Low 99.170 0.309 0.092

Mid 0.331 99.358 0.134

High 0.497 0.332 99.775

(f) Video

Table 8 Single cue prediction results for Valence, Arousal and Dominance Dimensions for different modalities.
(CR-Classification Rate, F1- Average F1 measure, ROC- ROC Area)

MLP SVM K-NN

CR F1 ROC CR F1 ROC CR F1 ROC

Valence EEG 63.47 0.62 0.739 56.34 0.536 0.605 67.51 0.675 0.725

Video 98.43 0.984 0.997 96.20 0.962 0.965 98.46 0.985 0.985

Arousal EEG 69.62 0.696 0.696 52.79 0.528 0.454 68.55 0.685 0.736

Video 99.43 0.994 0.999 99.63 0.996 0.997 99.30 0.993 0.994

Dominance EEG 63.57 0.627 0.730 57.71 0.557 0.635 65.10 0.651 0.675

Video 98.53 0.985 0.999 97.06 0.971 0.975 98.36 0.984 0.986
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emotions of DEAP dataset is approximately 1.5, which is 1/6th of the total scale (0–9). This
indicates the linguistic labelling difficulty for any instance of stimulated emotion, whereas the
measured values of physiological signals (e.g. EEG) are generally continuous. Experiment 2
represents the relative distances of emotions from each other in VAD space, where the
‘nearness’ (Euclidean distance in VAD space) is equated with ‘relatedness’ property. Within
the limited scope of DEAP dataset where sufficient VAD and data for only 15 emotions are
available, the relatedness property is established except few exceptions. This also highlights
the composition of complex emotions, which can be considered as the mixture of nearby
emotions. Experiment 3 validates the VAD model through measured EEG dataset. The
emotion group predicted by VAD model more or less, matches with that predicted by
measured EEG data of subjects.
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Fig. 9 Classification results (using MLP) of each class for different modalities (EEG Vs. VIDEO)
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Previous studies [3, 10, 30] using DEAP database are shown in Table 9. Koelstra [10]
proposed a system based on power spectral features from EEG signals, Fisher criterion for
feature selection and Naive Bayes classifier for classification. They achieved the average
accuracies of 57.6 % and 62 % for two classes of valence and arousal using DEAP database. In
another study using DEAP database, Yoon and Chung [30] designed an emotion recognition
system based on Fast Fourier transform and Pearson correlation coefficient for feature
selection and Bayes classifier. They obtained the average accuracies of 70.9 % and
70.1 % for two classes of valence and arousal, and 55.4 % and 55.2 % for three
classes. Chung and Yoon [4] proposed an emotion recognition method using Bayes
classifier based on a weighed-log-posterior probability function and power spectral
features and the best accuracies obtained are 66.6 % and 53.4 % for two and three
classes of valence dimension respectively. Among all the studies, feature extraction is
based on power spectral features. Whereas, our method is based on MRA and we
have obtained improved classification accuracy in terms of three classes of valence,
arousal and dominance by at least 8 % compared to others’ best classification
accuracies as shown in Table 9. Furthermore, in comparison with other new studies,
our proposed method has representational capacity including the possibility of com-
plex emotion representation.

6 Conclusion and future work

The emotion recognition field has recently shifted from six basic (Ekman’s emotion
visible through facial expressions) discrete emotions to dimensional emotion as com-
plex emotions cannot be measured from facial expressions only. The work presented
in this study focused on

1) 3D emotion framework to represent large number of emotions in three dimen-
sional space (Valence, Arousal, Dominance) followed by validation of the pro-
posed model through emotion prediction and recognition from visual and
physiological cues. The VAD values are further classified in high, medium
(neutral) and low for ground truth data generation. The neutral emotion (no
emotion) is ambiguous as with small change in VAD values it can change their
class.

2) The proposed model validated through experiments conducted on a benchmark
DEAP database.

Table 9 Accuracy comparison with other studies in terms of VAD (for DEAP database)

Author(s) Year Approach Classification Accuracy (%)

Koelstra et al. [10] 2012 Power spectral features 57.6 (V) 62.0 (A)

Chung and et al. [4] 2012 power spectral features and
Bays classifier

66.6 (V) for two class and 53.4 (V) for
three class

Yoon H. J. and
Chung S. Y. [30]

2013 FFT and classifier 70.9 (V) 70.1(A) for two class, 55.4(V),
55.2 (A) for three class

Our method 2015 Multiresolution analysis and
MLP

63.47 (V), 69.62 (A), 63.57 (D) for three
class
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3) The proposed affect model represents a large number of emotions compared to the
previous studies which are based on limited number of emotions.

4) We have shown that two dimensional spaces are insufficient to represent emotions as it
has many shortcomings discussed in state-of-the-art section. On the other hand, we have
validated a three dimensional model which is sufficient to represent large number of
emotions.

Overall, we conclude that three dimensional framework is sufficient and accurate to
represent all emotions compared to two dimensional frameworks. As a future task, the
proposed model remains to be evaluated with extensive dataset with large number of simple
and complex emotions (and with richer emotional expressions).
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