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Abstract In this paper we tackle the problem of expression recognition by exploiting age-
related spatial facial expression patterns, which carry crucial information that have not been
thoroughly exploited. First, we conduct two statistic hypothesis tests to investigate age effect
on the spatial patterns of expressions and on facial expression recognition respectively. Sec-
ond, we propose two methods to recognize expressions by modeling age-related spatial
facial expression patterns. One is a three-node Bayesian Network to classify expressions
with the help of age from person-independent geometric features. The other is to construct
multiple Bayesian networks to explicitly capture the spatial facial expression patterns for
different ages. For both methods, age information is used as privileged information, which
is only available during training, and is exploited during training to construct a better clas-
sifier. Statistic analyses on two benchmark databases, i.e. the Lifespan and the FACES,
verify the age effect on spatial patterns of expressions and on facial expression recognition.
Experimental results of expression recognition demonstrate the effectiveness of the pro-
posed methods in modelling age-related spatial patterns as well as their superior expression
recognition performance to existing approaches.
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1 Introduction

Facial expression recognition has attracted increasing attention in recent years due to its
wide application in human-computer interaction [9, 20, 24]. Although much progresses have
been achieved in computational facial expression recognition, almost all studies focus on
discriminative geometric and appearance features to characterize facial images, and effec-
tive classifiers to model the spatial and temporary patterns embedded in facial expressions,
ignoring the effects of facial attributes, such as age, on expression recognition even though
research indicates that face structures develop with ages and expression manifestation varies
with ages. Furthermore, most benchmark facial expression databases, such as the MMI
database and CK+ database [18], only consider expressions with a small age ranges. The
lack of databases with larger age ranges limits the generality and the performance of current
expression recognition studies, and further hinders the development of age-related facial
expression recognition.

Recently, researchers in psychology have realized that a large number of faces throughout
the adult lifespan carry crucial information for complete understanding of many psycho-
logical studies, including perception, attention, memory, social reasoning, emotion, infant
and adult development, and neuropsychology [8, 19]. Therefore, two benchmark databases
have been constructed: one is Lifespan [19], consisting of 575 faces from ages 18 to 93, and
the other is FACES [8], containing 2,052 images from ages 19 to 80. Very recently, Ebner
and Johnson’s work [7] investigated interference of face-related tasks by irrelevant faces
of different ages and with different facial expressions. Their work demonstrates age-group
differences in interference from emotional faces of different ages. By reviewing theoreti-
cal frameworks and empirical findings of age effects on facial expression decoding, Fölster
et al. [10] concluded that the age of the face plays an important role in facial expression
decoding. Their review suggests that the expression decoding accuracy for older faces may
be reduced by many factors, such as lower expressivity, age-related facial changes, less elab-
orated emotion schemas, etc. Hess et al. [13] investigated how emotions expressed by the
elderly are perceived by others. Their findings suggest that emotions shown on older faces
have reduced signal clarity due to wrinkles and folds, and thus may consequently impact on
the behavioral inferences that others draw from the emotion expression. Houstis and Kil-
iaridis [14] quantitatively evaluated the facial expressions of children and adults in order to
assess their dependence on age. Their studies on 80 subjects find a trend from childhood
to adulthood, showing an increase in the percentage of change in most vertical movements,
possibly due to development of the mimic musculature from childhood to adulthood.

To the best of our knowledge, there are only three studies to discover the age effect on
facial expression recognition in computer vision. Guo et al. [11] are the first to study the
age effect on facial expression recognition computationally. They proposed two methods,
i.e. age group constrained facial expression recognition and age-removing facial expression
recognition. The former trains a multi-class classifier by considering each expression in each
age group as one independent class. The later removes the facial wrinkles and other aging
details using an edge-preserving image smoothing technique before expression recogni-
tion. Experiments were conducted on the Lifespan and the FACES databases, demonstrating
the significant influence of human aging on computational facial expression recognition.
Other than focusing on age-invariant expression recognition, Alnajar et al. [1] considered
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expression-invariant age estimation. They proposed a graphical model with a latent layer
between the age/expression labels and the features to jointly learns the age and the expres-
sion. Experimental results on the Lifespan and FACES databases illustrate the improvement
in age estimation when the age is jointly learnt with expression in comparison to expression-
independent age estimation. In addition, expression recognition performance is improved
on the FACES data set, and is comparable on the Lifespan data set by joint-learning. These
two studies adopt appearance features, i.e. Gabor features [11] and LBP features [1]. Unlike
the two studies, Dibeklioglu et al. [6] analyzed the effect of age on distinguishing posed
and spontaneous smile by using age as one feature along with the defined dynamic features.
Their experiments on the BBC, MMI, SPOS, and UvA-NEMO databases demonstrate that
the performance of posed and spontaneous smile differentiation is improved by using aging
information as a feature.

Among the three studies, the first two studies can recognize expression and age jointly,
or remove aging details before expression recognition. It means age information is not
required during testing. Therefore, age information is used as privileged information, which
is only available during training [23], and is exploited during training to construct a bet-
ter classifier. While in the Dibeklioglu’s study, age estimation should be performed before
expression recognition during testing. Such sequential approach may propagate the error of
age estimation to the subsequent expression recognition. Therefore, we prefer to incorpo-
rate age information as privileged information, which is only required during training, in
this paper. Furthermore, the first two studies adopted appearance features, which are useful
to describe wrinkles, and the third study used dynamic features, which are crucial for posed
and spontaneous smile distinction. In this paper, we exploit spatial patterns, which carry
crucial information for facial expressions that have not been thoroughly exploited in age-
invariant expression recognition. Specifically, we propose two methods. One is a three-node
Bayesian Network (BN) [21] to recognize expressions with the help of age from geomet-
ric features. During training, we construct a full probabilistic model P(x, x�, y) by using
the training set (xi, x

�
i , yi), i = 1, ..., l, where xi is geometric features, x�

i is age informa-
tion, and yi is expression label. During testing, we can obtain P(y|x) by marginalizing over
x�. The other is to construct multiple Bayesian networks to explicitly capture the spatial
facial expression patterns for each age group. During testing, only facial geometric fea-
tures are provided, and the samples are classified into expressions according to the BN with
the largest likelihood. Experiments on the Lifespan and FACES databases demonstrate the
effectiveness of our proposed approaches.

The rest of this paper is organized as follows. Section 2 introduces two benchmark
databases and the extracted geometric features. Section 3 analyzes the age effect on spa-
tial pattern of expressions and on expression recognition. Section 4 introduces our two
proposed methods. Section 5 presents the results and analyses on the experiments for vali-
dating our proposed methods. Section 6 compares our methods with related work. Section 7
summarizes our work.

2 Two databases

Currently, only two databases, i.e. the FACES [8] and Lifespan [19] databases, contain a
large range of age variations as mentioned in Section 1, therefore, we adopt them in our
work.

The FACES database consists of 2052 images, which are divided into two sets. Since
the images of the two sets are almost the same, we adopt one set in this work. The FACES
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Fig. 1 Expression samples in the FACES database a young-anger; b young-disgust; c young-fear; d young-
neutral; e young-happy; f young-sad; g middle age-anger; h middle age-disgust; i middle age-fear; j middle
age-neutral; k middle age-happy; l middle age-sad. m old-anger; n old-disgust; o old-fear; p old-neutral; q
old-happy; r old-sad

database includes six expressions, i.e. anger, disgust, fear, happiness, neutral and sadness, as
shown in Fig. 1. The Lifespan database consists of images with eight expressions as shown
in Table 1. Since the numbers of expression samples with surprise, sadness, anger, annoy,
disgust, and grumpy are much fewer than those of neutral and happy facial images, only
neutral and happy samples of the Lifespan database are adopted in our work. Therefore, the
number of used samples is 835. Figure 2 lists sample faces of happy and neutral expressions
for the Lifespan database. Both databases are posed facial expression databases. In our
work, we group the samples of both databases into 3 age groups, which are 18–31, 32–59
and 60–93 respectively as shown in Table 1.

In addition, Guo et al. [11] manually labeled the fiducial points for each face image of
both databases. (For FACES database, they only labeled 2004 images. So in our experi-
ment, the database we use contains 2004 images). Therefore, we choose 26 fiducial points
on the FACES database and 31 fiducial points (include two eye pupils) on the Lifespan
database in our work, as shown in Fig. 3 (for the Lifespan database, the 22-th point is only
used to extract person-independent features). Since only apex images are provided in the
two databases, and neutral faces are not available, we extract person-independent geometric
features [2], i.e. ratios of distances, areas and angles, to represent the spatial patterns embed-
ded in expressions, instead of using distances directly or normalizing these distances using
neutral faces. The person-independent features are listed in Table 2, where the second col-
umn denotes the corresponding formula to calculate the feature fj . Each facial landmark is
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Fig. 2 Expression samples in the Lifespan database a young-happy; b young-neutral; c middle age-happy;
d middle age-neutral; e old-happy; f old-neutral

denoted as pi = (xi, yi) ∈ R2, and the index i in this table is consistent with the point index
in Fig. 3a, b. The features listed in the table represent the spatial relationships of the fiducial
points on faces and exhibit discriminative person-independent properties. For example, the
first feature f1 is the ratio of the distance d1 (i.e. the distance between the left eye outer cor-
ner and the left mouth corner) to the distance d2 (i.e. the distance between the right eye outer
corner and the right mouth corner). This ratio almost remains the same for every person for
the same expression, thus it is a person-independent feature. Similarly, other features listed

Table 1 Facial Expressions
with Age Group Divisions on
two databases

DB Expression Age group Total

18–31 32–59 60–93

FACES Anger 58 55 54 1002

Disgust 58 55 54

Fear 58 55 54

Happy 58 55 54

Neutral 58 55 54

Sad 58 55 54

Lifespan Neutral 225 99 253 1043

Happy 145 29 84

Anger 4 4 2

Annoyed 22 11 7

Disgust 2 5 0

Grumpy 1 5 3

Sad 34 21 9

Surprise 43 25 10
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Fig. 3 The face fiducial points on two databases. a FACES; b Lifespan

in Table 2 also exhibit discriminative person-independent properties. More details can be
found in [2].

Before feature extraction, we normalize the images according to the coordinates of two
pupils.

3 Statistical analyses of age effect on expressions

Two kinds of statistical analyses are conducted to investigate the age effect on expressions.
The first one is to discover whether there is any aging difference on spatial patterns embed-
ded in expressions. The second one is to analyze age effect on expression recognition. Both
analyses use person-independent features.

For the first study, a one-way ANOVA [3, 15] with age as an independent variable and
the geometry features as dependent variables is adopted. The null hypothesis (H0) is that
the mean value of geometric features among three age groups for each expression are equal.
The alternative hypothesis (H1) is that the mean value of geometrical features among age
groups for each expression are not exactly the same. The significance level is set at 0.05.

Statistical analysis results are listed in Table 3. From Table 3, we can find that for most
expressions, more than half features are age-related, since their p-values are less than 0.05.
It proves the age effect on spatial patterns embedded in expressions. For both databases,
happy and neutral expressions have the largest number of features with significant differ-
ence. The age effect on the neutral expression may indicate that face structures develop
with ages, since neutral expression mainly represents face structures but rarely expression.
Compared with other non-neutral expressions, the happy expression shows more variations
across age groups. It may demonstrate the changes of happy expression manifestation are
much more significant than those of other expressions with ages. The reason may be that
happy expression, a kind of smile expressions, is the most frequent displayed expressions
during our daily life. This kind of frequently display may enhance the change of expres-
sion manifestation with ages. In addition, the features with significant difference among age
groups for the same expression are not exact the same on the two databases. For example,
for happy and neutral expressions, the p-values of f3 on the FACES database are lower than
0.05, but larger than 0.05 on the Lifespan database. It may caused by the database bias.
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Table 2 Person Independent Geometric Features [2]

Feature Equation

f1 d1 = ‖p18 − p20‖, d2 = ‖p19 − p21‖, f1 = d1/d2

f2 A1 = area{�(p16p18p20)}, A2 = area{�(p18p20p22)}, f2 = A1/A2

f3 linet = p18p20; d1 = distance(p19, linet ), d2 = distance(p21, linet ), f3 = d1/d2

f4 f4 = ∠(
−−−−→
p21p18,

−−−−→
p22p18)

f5 pt = (p18 + p20) ∗ 0.5; d1 = ‖p19 − pt‖; d2 = ‖p21 − pt‖; f5 = d1/d2

f6 pt = (p19 + p21) ∗ 0.5; f6 = ∠(
−−−→
p18pt ,

−−−→
p20pt )

f7 pt = (p19 + p21) ∗ 0.5; linet = p18p20, f7 = distance(pt , linet )

f8 A1 = area{�(p19p18p20)}, A2 = area{�(p18p20p22)}, f8 = A1/A2

f9 d1 = ‖p17 − p21‖, d2 = ‖p17 − p22‖, f9 = d1/d2

f10 d1 = ‖p7 − p9‖, d2 = ‖p18 − p20‖, f10 = d1/d2

f11 A1 = area{�(p8p7p9)}, A2 = area{�(p2p7p9)}, f11 = A1/A2

f12 f12 = ∠(
−−→
p1p2,

−−→
p1p9)

f13 d1 = ‖p3 − p9‖, d2 = ‖p2 − p9‖, f13 = d1/d2

f14 A1 = area{�(p1p3p9)}, A2 = area{�(p1p7p9)}, f14 = A1/A2

f15 f15 = ∠(
−−→
p8p9,

−−−→
p10p9)

f16 d1 = ‖p8 − p10‖, d2 = ‖p7 − p9‖, f16 = d1/d2

f17 f17 = ∠(
−−→
p2p3,

−−→
p4p5)

f18 f18 = ∠(
−−−−→
p15p18,

−−−→
p15p7)

pt represents the mid point of a line pipj

�(pipjpk) indicates a triangle formed by three points pi, pj and pk

Vector −−→
pipj represents a vector pointing from pi to pj . Angular features (i.e. ∠) are calculated by employing

vector inner products

For the second study, we compare the performance of expression recognition within age
group with that of cross age group by using person-independent features and SVM. Ten-fold
cross validation is adopted. Experimental results on the FACES database and the Lifespan
database are listed in Table 4. From this table, we can obtain the following observations:
first, the recognition accuracies of within age group are much higher than those of a cross
age group in most cases, which clearly demonstrates the age effect on expression recogni-
tion. Second, in most cases, the accuracies of cross age group decrease with the increase of
age difference between age groups. For example, on the Lifespan database, when training on
age group 18–31, the expression recognition accuracy of within age group is 93.3 %, while
the accuracy drops to 84.57 and 83 % respectively when testing on age group of 32–59 and
60–93. Third, the accuracy of within age group decreases with aging for both databases,
suggesting the challenge of expression recognition for the old. This may be caused by the
wrinkles and the facial muscle elasticity reduction developed with aging. Another possible
reason is different expression manifestations for different age groups. For example, old peo-
ple tend to express their expressions in a subtle way, while the young are inclined to show
expressions exaggeratedly. This difficulty of expression recognition for the old may lead to
the lower accuracy of within age group 60–93, compared with those of a cross age groups
for both databases.

Last, comparing the performance on two databases, the accuracies on the Lifespan
database are higher than those on the FACES database for both within age group or cross
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Table 3 Results of statistic hypothesis test on two databases

FACES Lifespan

Anger Disgust Fear Happy Neutral Sad Happy Neutral

f1 0.009∗ 0.000∗ 0.000∗ 0.000∗ 0.000∗ 0.000∗ 0.000∗ 0.000∗

f2 0.001∗ 0.015∗ 0.092 0.000∗ 0.000∗ 0.006∗ N/A N/A

f3 0.112 0.025∗ 0.016∗ 0.000∗ 0.016∗ 0.443 0.355 0.134

f4 0.185 0.055 0.000∗ 0.000∗ 0.000∗ 0.009∗ N/A N/A

f5 0.444 0.052 0.020∗ 0.000∗ 0.000∗ 0.146 0.357 0.369

f6 0.528 0.048∗ 0.733 0.000∗ 0.067 0.097 0.001∗ 0.797

f7 0.144 0.064 0.585 0.000∗ 0.004∗ 0.416 0.000∗ 0.888

f8 0.019∗ 0.693 0.561 0.021∗ 0.105 0.222 N/A N/A

f9 0.511 0.122 0.001∗ 0.001∗ 0.001∗ 0.025∗ N/A N/A

f10 0.000∗ 0.000∗ 0.000∗ 0.003∗ 0.000∗ 0.000∗ 0.007∗ 0.000∗

f11 0.010∗ 0.001∗ 0.002∗ 0.062 0.047∗ 0.000∗ 0.517 0.010∗

f12 0.018∗ 0.002∗ 0.008∗ 0.098 0.226 0.012∗ 0.015∗ 0.000∗

f13 0.000∗ 0.000∗ 0.859 0.768 0.002∗ 0.962 0.032∗ 0.000∗

f14 0.089 0.129 0.023∗ 0.048∗ 0.189 0.404 0.451 0.586

f15 0.677 0.008∗ 0.029∗ 0.624 0.603 0.733 0.012∗ 0.000∗

f16 0.058 0.360 0.014∗ 0.266 0.631 0.536 0.053 0.004∗

f17 0.154 0.866 0.091 0.003∗ 0.316 0.547 0.000∗ 0.000∗

f18 0.057 0.281 0.066 0.423 0.025∗ 0.047∗ 0.157 0.000∗

Percentage (%) 38.89 50.00 61.11 66.67 61.11 44.44 57.14 64.29

N/A means the features that are not available

*indicates P ≤ 0.05

age group. Since the number of expression categories of the FACES is six, while that of the
Lifespan database is two, obviously it is easier to classify two expressions than to classify
six expressions.

To further analyze age effect on expression recognition, we conduct the above within age
group and cross age group facial expression recognition experiment for twenty times, and
employ Wilcoxon test [22] to investigate whether there are significant differences between
the performance of within age group and cross age group. Wilcoxon signed-rank test is a

Table 4 Facial expression
recognition of within age group
and cross age group on two
databases

DB Train Group Test Group

18–31 (%) 32–59 (%) 60–93 (%)

FACES 18–31 76.56 73.44 58.94

32–59 72.39 74.44 62.50

60–94 71.28 75.39 63.00

Lifespan 18–31 93.30 84.57 83.00

32–59 90.32 91.89 84.18

60–93 91.77 90.91 87.55
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nonparametric method and can be used to assess whether the population means of the paired
samples’ rank differ. The null hypothesis (H0) is that the difference between two age groups
comes from a distribution whose median is zero. The alternative hypothesis (H1) is that the
difference between two age groups comes from a distribution whose median is not zero.
The significance level is set at 0.05 in our work. The results is that all the p-value are 1.9E-
6, which is much lower than the significant level 0.05. It means the age influence on facial
expression recognition is statistically significant.

4 Expression recognition enhanced by ages

We propose two methods to recognize expressions by modeling age-related spatial expres-
sion patterns. One is a three-node Bayesian Network to classify expressions with the help of
age from person-independent geometric features. During training, we construct a full prob-
abilistic model of features, age groups, and expression labels. During testing, we can infer
the posterior probability of expression labels given geometric features by marginalizing over
ages. For such a method, the age-related spatial patterns are represented in geometric fea-
tures. The other is to construct multiple Bayesian networks to explicitly capture the spatial
patterns embedded in expressions from feature points for different ages. During training, the
age-related spatial patterns are modeled through structure and parameter learning of mul-
tiple Bayesian networks. During testing, only feature points are provided, and the samples
are classified into expressions according to the BN with the largest likelihood. For such
method, the spatial expression patterns are represented in the structure and parameters of
learned BNs. The framework of our proposed method are shown in Fig. 4.

4.1 3-node Bayesian network for age-augmented expression recognition

The proposed 3-node Bayesian network for expression recognition enhanced by age is
shown in Fig. 5b.

During training, we construct a full probabilistic model P(x, x�, y) by using the train-
ing set (xi, x

�
i , yi), i = 1, ..., l, where xi is geometric features, x�

i is age information, and
yi is expression label. The label prior probability P(y = k)(k = 1, 2, · · · ,m) and the
Conditional Probability Distribution(CPD) P(x|y = k) and P(x|y = k, x�

i ) are estimated
through the Maximum Likelihood Estimation (MLE) [16] method from the training data
(xi, x

�
i , yi), i = 1, ..., l, where m is the number of expressions, and l is the number of train-

ing samples. During testing, the posterior probability P(y = k|x) is computed for each class
y, and the class is recognized as the one with the highest posterior probability, according to
(1):

y� = argmax
k

P (y = k|x)

= argmax
k

∑
x� P (y = k, x, x�)

P (x)

= argmax
k

P (y = k)
∑

x� P (x�|y = k)P (x|x�, y = k)

P (x)
(1)

where P(x�|y = k) is a tabular probability and the CPD P(x|x�, y = k) can be represented

as Gaussian distribution: P(x|x�, y = k) ∼ N
(
x|μ(k)

i , �
(k)
i

)
(i = 1, 2, · · ·, n) for each
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Fig. 4 The flowdiagram of our methods

given value of x�, suppose x� has n states. In our work, n represents the number of age
groups.

It is clear from (1) that x� is encoded into p(y|x). Furthermore, according to the defini-
tion of mixture Gaussian, we find that P(x|y = k) = ∑

x� P (x�|y = k)P (x|x�, y = k)

follows a mixture of Gaussian distribution, while P(x|y = k) of the native two-node BN

Fig. 5 Two kinds of Bayesian
Network. a two-node BN; b
three-node BN
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structure (shown in Fig. 5a) often obeys a single Gaussian distribution. Since mixture Gaus-
sian distribution can fit the data better than a single Gaussian distribution, this three-node
BN structure with discrete x� can better the class distribution of P(x|y).

4.2 Expression recognition by modeling age-related spatial patterns using
multiple BNs

The proposed multiple BNs for expression recognition by modeling age-related spa-
tial patterns are shown in Fig. 3. As a directed acyclic graph, a BN represents a
joint probability distribution among a set of variables. In this figure, each node of a
BN represents the coordinates of a feature point, and the links between nodes and
their conditional probabilities capture the probabilistic dependencies among the fea-
ture points. The BN hence captures the spatial relationships among facial landmark
points. We further assume the spatial relationships vary with facial expression and
age. Different BNs are constructed to capture the spatial facial patterns under different
age and expression.

In our work, the age group information is regarded as privileged information, thus m×n

BN models Gc, c = 1, . . . , m × n are established during training, where m is the number
of expressions, and n is the number of age groups. For every BN model Gc, the learn-
ing procedure includes structure learning and parameter learning from the training data
set xc = (xci)

lc
i=1 where xci = (

f 1
ci , f

2
ci , . . . , f

p
ci

)
, and p is the dimension of features.

The structure learning is to find the network with the highest score, so that the learned
network can represent the training data xc best. In our work, the Bayesian Dirichlet equiv-
alence(BDe) criterion score function is adopted [5], as defined in (2). Supposing that the
prior probability of Gc, c = 1, . . . , m × n are uniform, we get P(Gc|x) ∝ P(x|Gc)

when testing on the test set x. For the continuous nodes, the local probability distribution
are linear Gaussian of the continuous parents. The parameters for each node are defined

as fj ∼ N
(
bj + WT

j Pa(fj ), δ
2
j

)
(j = 1, . . . , p), where Pa(fj ) is the states of node

fj ’s parents, Wj is the regression coefficients, bj is the regression intercept, and δ2
j is the

variance. We use θc to represent the parameters given Gc.

Score(Gc) = log P(x|Gc)

= max
θc

log P(x|Gc, θc) (2)

Given the score function, the search strategy greedy search with random restarts [12] was
employed to learn Gc. After the BN structure is constructed, the parameters can be learned
from the training data. The parameter learning is to determine the conditional probability
of each node given the structure of Bayesian Network. And we use Maximum Likelihood
Estimation (MLE) method to estimate the parameters:

θ∗
c = argmax

θc

log P(x|θc), (3)

where θc denotes the parameter set for cth BN model. The algorithms of BN structure and
parameter learning for continuous variables are already implemented in DEAL package [4].
In our experiment, we employed the DEAL directly. After training, the learned BNs capture
the spatial patterns embedded in expressions respectively given age groups.

During testing, the posterior probability of every testing sample represents the fitness on
each BN model. And the sample is given the label of the BN that best fits the sample. Thus
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we use the following equation to classify the testing set into expression with the maximum
log-likelihood:

c� = arg max
c∈[1,m×n]

P(ET |Gc)

Complexity(Gc)

= arg max
c∈[1,m×n]

∏p

j=1Pc(Fj |pa(Fj ))

Complexity(Gc)

∝ arg max
c∈[1,m×n]

p∑

j=1

log(Pc(Fj |pa(Fj )))

− log(Complexity(Gc)), (4)

where ET represents the features of a sample, Gc stands for the cth model where c ranges
from 1 to m × n, P(ET |Gc) denotes the likelihood of the sample given the cth model, Fj is
the jth node in the BN, and pa(Fj ) denotes the parent nodes of Fj , and Complexity(Gc)

represents the complexity of Gc. Because of the diversity among different spatial structures,
the model likelihood P(ET |Gc) will be divided by the model complexity for balance. In
our work, the total number of the links in BN is used as the model complexity.

5 Experiments and analyses

To validate our proposed methods, expression recognition experiments are conducted on
the FACES and Lifespan databases, and ten-fold subject-independent cross validation is
adopted. For both methods, two experiments are conducted, one is to recognize expressions
without considering age information, denoted as Exp model, and the other is to recognize
expression using age information as privileged information, denoted as Exp age model. For
the first method, two-node BN is used as Exp model, and our proposed three-node BN is
adopted as Exp age model. For the second method, Exp model is performed by constructing
m BNs using samples for each expression category, while Exp age model is conducted by
constructing m × 3 BN models to recognize expressions using samples for each age group
respectively. Thus, we can obtain 6 Exp models and 18 Exp age models on the FACES
database and 2 Exp models and 6 Exp age models on the Lifespan database. Figure 3a, b
show a example of BN model on the FACES and Lifespan database respectively.

Experimental results on the FACES and Lifespan databases are shown in Tables 5 and 6
respectively. From Tables 5 and 6, we can find follows:

First, for both methods, experimental results demonstrate clear performance improve-
ment with the help of age information, since the accuracy and F1-score of Exp age model
are higher than those of Exp model in most cases. Specifically, for the first method, the
average accuracy increases 0.3 percent on the FACES database as well as 1.0 percent on
the Lifespan database, and the F1-score increases 1.0 percent on both databases by using
age information as privileged information. For the second method, the average accuracy is
improved by 0.7 percent on the FACES database and 0.5 percent on the Lifespan database,
and the F1-score increases 2.5 percent and 0.6 percent on the FACES and Lifespan database
respectively. It indicates that by modeling the age-related spatial patterns embedded in
expressions, our proposed methods not only improve the recognition accuracy, but also
make the recognition results more balanced.
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Table 5 Experimental results on FACES

Experiment Parameter Method Anger Disgust Fear Happy Neutral Sadness Average

First Accuracy(%) Exp 89.82 86.53 94.01 96.00 88.52 87.03 90.32

Exp age 90.02 88.22 93.71 96.11 88.22 87.43 90.62

Guo’s+SVM 91.42 90.62 94.31 97.00 89.12 88.22 91.78

Guo’s+BN 88.22 87.53 94.41 96.11 85.53 85.63 89.62

F1-score(%) Exp 62.22 66.50 83.70 88.83 63.72 54.86 69.97

Exp age 65.28 68.28 82.64 89.08 65.09 55.94 71.05

Guo’s+SVM 73.78 72.02 83.19 91.18 67.07 64.24 75.25

Guo’s+BN 56.93 63.77 83.13 89.01 62.63 54.72 68.37

Second Accuracy(%) Exp 94.61 93.11 98.40 99.00 94.21 90.72 95.00

Exp age 94.81 94.31 98.7 99.20 94.61 92.81 95.74

Guo’s+SVM 92.81 93.81 96.51 99.20 90.52 90.42 93.88

Guo’s+BN 89.72 89.82 96.31 98.60 86.13 83.93 90.75

F1-score(%) Exp 84.66 76.77 95.32 97.06 83.71 70.66 84.70

Exp age 84.80 82.67 96.12 97.59 83.83 78.31 87.22

Guo’s+SVM 78.82 81.10 89.68 97.60 72.46 69.81 81.58

Guo’s+BN 69.25 70.18 89.21 95.76 53.51 54.65 70.93

Second, the method of multiple BNs outperforms three-node BN method on both
databases with higher accuracy and F1-score. It may indicate that the age-related spatial pat-
terns represented by links and parameter of BNs may be more effective in capture expression
spatial pattern than those represented in geometric features.

Third, when comparing the results on two databases, we find that the performance of
the Lifespan database is better than that of the FACES database. This further proves that
multi-class recognition is more challenging than binary classification.

Finally, we find that for both methods, the improvement margin of disgust and sad
expression is the biggest. We think this is because that the baseline performance of these
two expressions are lower than other expressions, so it is easier to achieve an improvement.

6 Comparison with related work

We compare our methods with the most related work, Guo et al’s work [11]. Since Guo
et al. use Gabor features, not geometric features, we can not compare our experimental
results with theirs directly. So we perform a comparison experiment by using their recogni-
tion method [11] and our features. Guo et al’s proposed to perform age group classification
and facial expression recognition jointly. Specifically, each expression in each age group is
considered as one independent class. Thus, the number of classifiers is equal to the product
of the number of expressions and the number of age groups, and a multi-class classifica-
tion is performed. In our work, we use two classifier to conduct experiment, one is SVM
(Support Vector Machine) [17], the other is two-node Bayesian network. The experimental
results are shown in Tables 5 and 6, denoted as Guo’s.
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Table 6 Experimental results on Lifespan

Experiment Parameter Method Happy Neutral Average

First Accuracy(%) Exp 91.38 91.38 91.38

Exp age 92.46 92.46 92.46

Guo’s+SVM 91.02 91.02 91.02

Guo’s+BN 91.02 91.02 91.02

F1-score(%) Exp 85.94 93.78 89.86

Exp age 87.43 94.61 91.02

Guo’s+SVM 85.60 93.47 89.54

Guo’s+BN 84.60 94.67 89.13

Second Accuracy(%) Exp 96.05 96.05 96.05

Exp age 96.53 96.53 96.53

Guo’s+SVM 94.85 94.85 94.85

Guo’s+BN 92.46 92.46 92.46

F1-score(%) Exp 93.54 97.15 95.35

Exp age 94.50 97.46 95.98

Guo’s+SVM 91.62 96.28 93.95

Guo’s+BN 86.45 94.77 90.61

From the tables, we can find for both databases, the proposed multiple BN method
outperforms Guo’s in terms of both accuracy and F1-score despite using SVM or BN.
Specifically, the average accuracy and F1-score of our method is 4 percent and 5 per-
cent higher than Guo’s by using BN on Lifespan database. And for the FACES database,
ours is 5 percent and 17 percent higher on the accuracy and F1-score separately. Like-
wise, Table 6 shows that modeling spatial pattern for each expression in each age group
generally improves both the accuracy and F1-score by 2 percent when applying SVM in
Guo’s method. What’s more, compared to Guo’s by using SVM, the average F1-score of our
method is 2.0 percent and 6.0 percent higher on the FACES database. This further demon-
strates that our proposed multiple BN models systematically captures the age-related spatial
patterns embedded in expressions. This also empirically shows that spatial expression
pattern is more discriminative than appearance pattern.

The performance of the proposed three-node BN method is better than that of Guo’s
not only on the FACES database but also on the Lifespan database when using Bayesian
Network. This indicates that our method is really better than Guo’s when applying the
same classifier. However, when using SVM, our method is comparable to Guo’s, since it
is superior to Guo’s on the Lifespan database, but not on the FACES database. This is
because as a discriminative classifier SVM is stronger than the generative Bayesian Network
classifier.

The above comparison demonstrates the advantages of our approaches compared with
state of the art. Our approaches can successfully capture the age-related spatial patterns
embedded in expressions through the parameters and structure of Bayesian networks. The
age information, which is available during training, further enhance expression classifiers.

As discussed in Section 1, both Guo et al. [11] and Alnajar et al.[1] conducted experi-
ments on the FACES database and the Lifespan database. Although the former focused on
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Table 7 The accuracy of facial
expression recognition in [11]
and [1]

Database [11] [1] ours 3-node BN ours multi-BNs

Lifespan 96.79 % 93.68 % 92.46 % 96.53 %

FACES 97.89 % 92.19 % 90.62 % 95.74 %

age-invariant expression recognition, and the latter considered expression-invariant age esti-
mation, they both adopted appearance features, i.e. Gabor features [11] and LBP features
[1] respectively, and provided expression recognition results as shown in Table 7. From this
table, we can find that the expression recognition performance of our method using geo-
metric features are comparable with those using texture features. It further demonstrates the
importance of spatial patterns for expression recognition.

7 Conclusion and future Work

Current studies of facial expression recognition pay little attention to the age effect on the
performance of expression recognition. In this paper, we propose to enhance expression
recognition by modeling age-related spatial expression patterns. First, we conduct two sta-
tistical analyses to investigate the age effect on spatial patterns of expressions and on facial
expression recognition respectively. Analysis results demonstrate that the spatial expression
patterns are significantly different among age groups, and age information has a significant
effect on the facial expression recognition. Second, we propose two methods to recog-
nize expression with the help of age. One is a three-node Bayesian Network to classify
expressions from person-independent geometric features. The age-related spatial patterns
are represented in geometric features. The other is to construct multiple Bayesian networks
to explicitly capture the spatial patterns embedded in expressions from feature points for
different ages. The spatial expression patterns are represented in the structure and parame-
ters of learned BNs. For both methods, age information is used as privileged information,
and is exploited during training to construct a better classifier. Experimental results on two
databases demonstrated the power of the proposed model in capturing age-related spatial
patterns embedded in expressions as well as its advantage over existing approaches for
expression recognition.

In addition to age-related spatial patterns, age-related temporal patterns is crucial for
expression recognition. This work only exploits age-related spatial patterns embedded in
expressions. Therefore, we will further investigate age-related temporal patterns for expres-
sion recognition in the future. Furthermore, we will also consider combing spatial and
appearance expression pattern for expression recognition. Although age recognition and
facial expression recognition are typically done separately and independently, they may help
each other. Specifically, as demonstrated in our paper, age information could help expres-
sion recognition, expression information may also help age recognition. Therefore, another
possible future work is to use expression as privilege information to improve age recogni-
tion. Currently, only two benchmark facial expression databases, i.e. the Lifespan and the
FACES, contain a large range of age variations. A large scale facial expression database
with multi-ethnic, multi-age, multi-personality, and multi-occupation subjects should be
constructed, since the size and the diversity of a database are crucial for the research of
expression recognition.
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