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Abstract Scene flow provides the 3D motion field of point clouds, which correspond to
image pixels. Current algorithms usually need complex stereo calibration before estimating
flow, which has strong restrictions on the position of the camera. This paper proposes a
monocular camera scene flow estimation algorithm. Firstly, an energy functional is construct-
ed, where three important assumptions are turned into data terms derivation: a brightness
constancy assumption, a gradient constancy assumption, and a short time object velocity
constancy assumption. Two smooth operators are used as regularization terms. Then, an
occluded map computation algorithm is used to ensure estimating scene flow only on
un-occluded points. After that, the energy functional is solved with a coarse-to-fine variational
equation on Gaussian pyramid, which can prevent the iteration from converging to a local
minimum value. The experiment results show that the algorithm can use three
sequential frames at least to get scene flow in world coordinate, without optical flow
or disparity inputting.
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1 introduction

Recent revolutionary development of multimedia technologies has advanced many disciplines
and industries, such as health, intelligent vehicles and augmented reality. In health area, with
the help of crowd-based and social networking services, healthcare knowledge is more
convenient to share, acquire and disseminate among health seekers and providers. To bridge
vocabulary gap between health seekers and community generated knowledge, Nie et al. [22]
presented a scheme to label question answer pairs by jointly utilizing local mining and global
learning approaches. Health today is complementarily characterized by multi-modal data,
which enables doctors to concisely comprehend the health conditions of the patients. To help
understand chronic diseases progressions based on observational health records in form of
multimedia data, Nie et al. [24] proposed an adaptive multimodal multi-task learning model to
co-regularize the modality agreement, temporal progression and discriminative capabilities of
different modalities. To make health knowledge exchange and reusability, Nie et al. [23]
presented a multilingual system to return one multi-faceted answer that was well-structured
and precisely extracted from multiple heterogeneous healthcare sources. Patients nowadays
actively seek for online health information, and post their disease control experiences. While
the vocabulary gap between health seekers and providers has hindered the cross-system
operability and the inter-user reusability. Nie et al. [25] presented a novel scheme to code
the medical records by jointly utilizing local mining and global learning approaches, which
were tightly linked and mutually reinforced. Nie et al. [26] proposed a scheme accurately and
efficiently inferring diseases especially for community-based health services. Mobiles and
other wearable health sensors are equipped by patients and doctors to track the health and
exercises, which makes it possible for real-time monitoring and remote health support. Camera
is one kind of such sensors. Yan et al. proposed a novel Multi-Task Learning framework
(FEGA-MTL) for classifying the head pose of a person moving freely in an environment
monitored by multiple, large field-of-view surveillance cameras [31] and for action recognition
[32]. For complex event detection in videos, Yan et al. [33] proposed a novel strategy to
automatically select semantic meaningful concepts for the event detection task based on both
the events-kit text descriptions and the concepts high-level feature descriptions. To cope with
vast amount of unlabeled and heterogeneous data for recognizing human activities from
videos, Yan et al. [34] proposed a multitask clustering framework for activity of daily living
analysis from visual data gathered from wearable cameras. We think remote scene dynamics
may be helpful for doctors to monitor patients and provide instructions for their health, so in
this paper, we propose a monocular scene flow estimation method. The concept of scene flow
comes from optical flow, it not only solves motion information in 3D camera frustum, but also
overcomes the rigid motion assumption in optical flow, which makes it possible to get 6DOF
(Dimension of Free) data in scene only form image sequences. Because motion information is
based on scene structure itself, scene reconstruction is one of key problems when solving scene
flow, beyond that, occlusion among different objects also should be taken into account for
multi objects may have different moving state.

The prototype of scene flow comes from Gilad Adiv’s study in 1985 [1], which put forward
a method to calculate the depth and motion information of camera scene by utilizing binocular
optical flow and rigid motion segments, and took a direct search way to match these segments
for complexity of the subject and limited hardware. This paper innovatively extends scene
flow estimation algorithm to image sequences taken from a single moving camera, and makes
no assumption about rigidity of motion itself. At the same time, we express the consistency
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assumption as a total energy functional by combining 3D scene structure and scene flow into a
monocular camera projection model, besides, we make a smooth regularization in flow
estimation, and anisotropy boundary operator is taken as smooth operator, which makes the
result more close to nature. When solving the functional, according to Brox’s optical flow
method [6], we rewrite the main function according to Euler-Lagrange condition and use a
coarse-to-fine framework to prevent the total equation converging to a local minimum after
getting the iterative equation, so the nonlinearity of functional can be maintained until inner
iteration. As the experimental results show and Brox proved, solving the total scene flow
energy functional by PDE is effective and reasonable.

This paper is organized by 6 sections: Section 2 describes the state-of-art scene
flow relative works from three research fields. Section 3 derives the total energy
functional in detail, including inverse depth introduction and three important consis-
tency assumptions. In order to get the numerical solution, we process energy func-
tional according to Euler-Lagrange equation to get a non-linear iterative equation, and
linearize it using a coarse-to-fine framework in section 4. Experiment results are
shown in section 5. The last section summarizes the innovations and advantages of
our algorithm, also points out some shortages under bad environmental conditions,
which need to be fixed in our future work.

2 Related works
2.1 Stereo based scene flow

After solving optical flow problems with accurate and fast ways, study about binoc-
ular optical flow based scene flow methods [27, 28] were proposed. These algorithms
always need a prior depth [14, 30] to get the scene structure, then refer the projection
relationship between 3D scene flow and 2D image flow to solve motion parameters
with least square method. Vogel et al. presented the dynamic 3D scene by collecting
planar rigidly moving local segments [29]. Basha et al. proposed a 3D point cloud
parameterization, which allows directly estimating the desired unknowns, their func-
tional enforced multi-view geometric consistency and imposed brightness constancy
and piecewise smoothness assumption directly on the 3D unknowns. Except constancy
assumption, Birkbeck et al. [5, 9] took known proxy motion into account which
enables 3D trajectory reconstruction when only a single view is available. Damn et
al. tackled the 6D pose and additional shape degrees of freedom for the object of
known class in the scene, combining image data and depth information for the pose
and shape recovery. Even though these methods can get an effective solution, they are
not general because of their requirement to much prior information.

2.2 RGBD scene flow

Since Microsoft released somatosensory equipment device Kinect [8, 12, 16, 18, 36],
studies on RGBD dataset have become popular. Because RGBD data provides
complete and reliable information, scene flow estimation based on RGBD data
becomes important. Letouzey et al. [20] reconstructed 3D scene on RGBD images,
combining geometric information from depth maps with intensity variations in color
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images to estimate smooth and dense 3D motion fields, which takes advantage of
the geometric information provided by the depth camera to define a surface domain.
Herbst et al. [13] proposed a method which generalized two-frame variational 2D
flow algorithms to 3D and computed flow reliably using RGBD data, overcoming
depth noise. But similar methods work only under indoor situation, for the IR
camera which takes depth image is easily influenced by sunshine. Even Yang et
al. [35] proposed novel density modulated binary patterns for depth acquisition, the
carried phase is not strictly sinusoidal and so the depth reconstructed from the phase
contains a systematic error.

2.3 SLAM based scene flow

As the most important and basic algorithm in robotics [10], with decades of development, SLAM
has become an effective algorithm which can accurately position camera only by image infor-
mation. After getting camera position, cloud points matching can be used to rebuild the scene.
Such as, Alcantarilla et al. [2] combined visual slam and dense scene flow to parse surrounding
environment. The key idea is to continuously estimate a semi-dense inverse depth map for the
current frame, which can be used to track the motion of the camera in turn. Even though SLAM
offers much information to scene reconstruction, it needs a lot of posteriori data because it is
based on probabilistic theory [15] and its initial evaluation is not particularly accurate, so the
probability based SLAM algorithm does not suitable for dense scene flow estimation.

3 Monocular scene flow

We use a integrated energy functional to estimate scene flow, focus on getting inverse depth
and scene flow of referenced frame, only from monocular image sequences. We make no
assumption about motion rigidity of camera, and express the solution with world coordinate.

3.1 Pinhole model

As the pinhole model of camera in Fig. 1, we can get the relationship between 3D space object
point and 2D image point:
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Fig. 1 Inverse depth: the red point is a pixel point on image plane, after back projection, its correspond 3D point
will exist on back projected ray; the hexahedron contains the ray is camera frustum, instead, perspective
projection can map the 3D point in frustum to the red pixel on image plane

Specially, let M’ = pTi, which stands the 3x4 projection matrix of camera at time i,
including external parameters relative to referenced frame and internal parameters of the
camera itself.

3.2 Inverse depth

The conception of inverse depth came from Civer’s study about mono SLAM [7] and
Richard emphasized it in his DTAM system [21]. According to pinhole model, inverse

depth of a defined pixel will be in a range dcn (f) because of projection

information loss (as Fig. 1).
For a 3D space object point X_W) = (Xwi,Vui,2w ), the corresponding pixel point is

e . . .
X;i = (u;,v;, 1), their relationship can be expressed as:
— —
d(u,-,v,-)le :Mlei (2)

Obviously, d(u;, v;), same as z- in Eq. 1, is a function with image pixel position as
its parameters. Thus, we can get a 3D point X_W:: (xpi, v, d (u;,v;)) by back
projecting from a pixel on referenced frame, and then the 3D point will be
re-projected to the time / image as a pixel of X =/, ()_(> Wi). As we know, point

position at next time in 3D space, is defined by current time position and velocity per
time unit, so we can give the relationship between two succession time positions of a

. g n g % . o, . . . .
3D point as: X pi = [ (X wo, V! ,t). The initial position of the 3D point comes

from back projection (suppose the camera is located in the origin of the world
coordinate in the first frame):

X0
—
X yo (10) = fhackproject 1y, d(”O: VO) Yo

0
uo/fu—o,/fu (3)

= d(up,v) | vo/fv—o,/fv
1
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Expanding above equation for a pixel, we express the corresponding relationship of a 3D
space point cloud and a 2D image pixel as following:

AN
[M[]IX—W: [Ml]l(XWO"‘ Vi)
u; = = —
[MthWi [Mlb (XWU + V; )
= M (o + Vi) +M§2(wa + Vy‘) M5 (d(ug,vo) + Vi) + M,
M (0 + Vo) + My (v + V) Mis(d(uo,vo) + Vi) + M,

M,Ey_ M(T + ) N
)

Vi = . —\ L —— —
M) (XW,-) M (XWO 7
_ My (o + Vi) + Moy (e + V) Miy(d(uo, v0) + Vi) + M,
Ml31(xw0 + in) +M§2 (ywo + Vy’) M’33(d(u0,vo) + Vzi) + M§4

Equation 4 shows that, after back projected to 3D space and moving, a pixel on referenced
frame at time O can be re-projected as another pixel on time i frame.

3.3 Consistency assumption

This paper makes some reasonable assumptions to scene and projection information like
optical flow method. We first propose short time velocity consistency based on spatial
coincidence, and then we propose brightness consistency based on illumination invariant in
short time constraint. In order to make our algorithm tolerant to the texture variances and
brightness noise, we adopt gradient consistency.

3.3.1 Velocity consistency

As in Fig. 2, for sequential frames, we assume that object points’ velocity in world
space is constant within a short time interval, so we can formulate the relationship
between moving camera and dynamic scene in short period successive frames. Let
camera moving information as known quantity, the inverse depth and the object

velocity W as unknown ones, the same 3D object point can be projected to different
image positions for the moving of camera and objects. When getting the camera
transform matrix and intrinsic matrix, pinhole model in Eq. 1 can be rewritten as a
3D space point moving relationship as in Eq. 5.

— —
XW’ :fpos(XWﬂ7 V7ti)
= XWO + [f V.fbackpmject ([03 d(u07 VO) + ti 14 (u07 VO)

3D space scene flow V(MO, Vo) is a function of image coordinate, #; is time interval between
referenced time 0 frame to time 7, so 3D point location of time i can be seen as a result of
non-linear function of velocity and time.
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Fig. 2 Projection model with time changing, 3 frames from a successive monocular image sequences are
extracted

3.3.2 Brightness consistency

Assuming there exists no mirror reflection in the scene and the environment structure or
illumination condition is stable in a very short period of time, after a tiny movement, the image
pixels from the same 3D point will have similar light intensity. Based on this assumption, we

can conclude the illumination consistency constraint between real frame and its re-projected
frame as in Eq. 6.

— . i
BCy (4, V) = ; mm/”d)(

[i_li()?l,-)r) (6)

where /; is the real frame at time i, and /; (/\71,) is the re-projected frame based on evaluated

inverse depth and scene flow. If the velocity consistency established in n frames, BCj,
is the brightness consistency in current frame. As in Eq. 6, integral range represents a

rectangular image domain, which means our functional covers the whole image range
by calculating Eqs. 3 and 4, with ¢ (x) = /(x> + €), € is a tiny value, the function
is used to ensure the convexity of the total functional, in other words, the functional
has a global minimum, so we can use Euler-Lagrange equation to derivate iterative

equation. my,; is a mask to cover occlusion points and prevent the consistency error
caused by camera moving.
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Referring to brightness consistency, we can also list an equation between referenced frame
and re-projected frames as following:

n

BCo (4, V) =>" mi, / J’(”O‘li(?h) ‘2> (7)

i=1

3.3.3 Gradient consistency

In real environment, scene flow estimation merely with brightness consistency may be
influenced by inevitably noises, so the gradient consistency is introduced in this paper to
make algorithm much more robust.
2
(8)

Where V stands for the light intensity gradient of a pixel. Equation 8 restraints pixel
gradient itself and makes the functional is not merely robust for image texture, but also for
texture distribution.

And now, the data term of the functional consists of three parts:

Gc(d, 7) - Z i, / Qw(‘VI,«—VI,» (?,)

i=1

FC = BCy + BCy + a,GC (9)

with oy, a weight factor to balance two kinds of consistency proportion, too much
gradient consistency will fuzz up objects’ edges, on the contrary, too small weight
will weaken robustness. And it’s usually determined by a scene structure, normally
takes 0.5.

3.3.4 Smooth regularization

The main purpose of smooth regularization is to reduce noises of scene flow and inverse depth,
but over-smoothing will blur the edge, which leads an error in solution, so we take an
anisotropy operator as smooth function.

As we know, traditional methods often choose isotropy operator like Laplacian to smooth
scene flow. However, we adopt an operator similar to Evan Herbst [13], it is anisotropic and
reduces the smoothness over object edges:

L(?[> = l—ec((rgb (Yi))irgh(Yi)) , where ﬁeN(?) (10)
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N (') are adjacent pixels of pixel X on referenced image frame. So we can get the smooth
regularization term as:
— — = —\ — [(—
$/(V) = w(V (%) £ (%) V (%)) (1)

Adopting Eq. 11 as smooth term, scene flow’s similarity in object internal area can be
ensured, on the other hand differences on objects’ edges can be kept.

Same as traditional methods, we take a Laplacian to do depth smooth as in
Eq. 12, for the correlation between depth and edges is not so strong compared with
scene flow.

Se(d) = (Va1 (12)

We get the smoothness term as following:

FS =88+ 8., (13)

with 3,and 3, as weight factors.
In conclusion, we can derive the integrated energy functional in Eq. 14.

E(d, 7) - / (FC + o FS)dudv

@ (14)

- / [BCy + BCor + 0, GC + 0 (3,5 + 3.5.) | dudv
7]

Where internal area {2 is the image domain, which means the functional solution is aimed at
the whole image.

As in Eq. 14, the integrated energy functional is about object points depth and
scene flow, and it is nonlinear. So, we convert it to a variational problem by
considering Euler-Lagrange condition and obtain a linear iterative equation to get
numerical solution.

3.3.5 Occlusion estimation

In scene flow estimation, occlusion points may appear at any position because of the dynamics
of the scene, so it is necessary to get rid of occluded points before the main iterative process.
As shown in Algorithm 1, for a moving camera, its optic center change may lead to boundary
occlusion, so we compute the COP position for the ith frame as initialization again. After
acquiring the boundary occlusion map, every 3D point corresponds to reference image
pixel is projected to current time ¢ image coordinate. If two 3D points have the same
2D image coordinate, the point with further COP is set occluded and its correspond-
ing reference image coordinate will be marked for the time i frame. Thus, scene flow
estimation without occluded points becomes more accurate, which only need few steps
before real estimation begins.

@ Springer



10584 Multimed Tools Appl (2017) 76:10575-10597

Algorithm 1 Occluded Map Estimation
Input: Image Resolution
Initialization: mgc'(pi) - the occluded sign of pi at time
i, 1 means the point is occluded
1: myc < 1 { myc' -the occlustion map of time i frame,
0 means the pixel in reference coordinate frame is oc-
cluded }
2: ¢+ NULL { c-the temporary map to record occlusion
point coordinate }
3: COP' < 0 { COP- the optic center of time i frame in
3D world space}
4 RangeX <« [0,imageWidth] {RangeX - the image
range of X direction}
5. RangeY < [0,imageHeight] {RangeY - the image
range of Y direction}
6: for every point p0 at reference frame do
7. P(p0) + 3D point correspond to p0 in 3D world
space
8 pi « reproject(P(p0))
9: if c(pi) = NULL then
10: P1« 3D point correspond to msc'(pi) in 3D world
space
11: P2 + 3D point correspond to pi in 3D world space
12: if  distance( P1,COPY); distance(P2,COP)

then
13: P1 is nearer to COP" than P2
14: msct (pi) -0
15: else
16: ¢(pi)<pi
17: mct(p) <0
18: end if
19: else
20: ¢(pi)« pi
21: msc(p0) <1
22 end if
23:  if myci(pi) = 0 OR pi in RangeX OR pi in RangeY
then
2: mct(pi) + 0
25:  end if
26: end for

27: return myci(pi) for time i frame
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4 Solving the energy functional

Now we get the integrated energy functional to solve scene flow of monocular moving camera,
through mathematical model brightness and smooth assumption in section 3, it is a convex
nonlinear functional. Firstly, abbreviate the equation:

;= [t_li(Xl,)
~ —_—
G = Io1; (X,‘) (15)

So we can rewrite the energy Functional as following:

n n

E(V, d) - / IZF(V,d)dudv - / i {; V(e2) + ; w(@f) n ; ¥(Ve?) +¢-<7TL?> +1/)(|Vd|2)}dudv
(16)

Because Eq. 16 has continuity and differentiability in the field of definition, we can rewrite
it according to Euler-Lagrange as an equation to inverse depth d:

SF & [OF " (2 e
0= TR (E) = ; Y (@?)gpi(&pj/&ll) + ; Y (‘P,’)‘Pi(d‘)oi/dd)

+ Z (4 (@?)V%(W%/M)—asﬂzdiV(w’(Ilez))Vd (17)

i=0

I . . ..
for v, in V, the iterative equation is:

§F d (6F G ~ (2N (s
0= () = X vieDatdasmg + v (o ) (5600w

+ Y VIRV o)+ (VIV)V (8)

i=0

Derivation for the other value v, and v, are the same. Thus, we convert the functional
solving problem to an optimization problem, which means we should find the optimal solution
under above equations.

5 Numerics

The existence of local minimum often lead to errors in solving optimization problems, so we
use a L2 norm ) to ensure functional convexity, which makes iterative process converge to a
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global minimum. Because the back projection and projection are non-linear, we use the first
order Taylor expansion to linearize scene flow and depth.

—sk+1 ik
\% =V +5V (19)
dk+1 — dk 4 (Sdk

Major components in the optimization can be rewritten as:
Nk
%05-( = If-( - II(XI‘)
Lk Nk
& = I 1,(X1) (20)
k - \¥
Vo k = VI,-VI, (X,‘)

Thus, with the first order Taylor expansion, the value at (k+1)th iterative time can be
formed by that of th iterative time:

it =+ 0deVd + 8,6l VY,
+ gl YV 4+ G0f VL
k+1 k k k

o Re + 5"§ @; V"kx + 0y, &; V"kx
Lk ko

+ 6\{»»901' v ny + 6":901' sz

Vit =veh 1+ 5vivpkwh 45, vkt

+ 0,V el VIV 4+ 6.V ¢ Vo

At last, by setting the threshold value, we can get follow iterative equation for
inverse depth:

Zd}( k+1 ) k+1 (5%/&1)

, »1\+12Ak+16Ak5d
+Z¢ ((%’ ) >90i <99i/ ) (22)
#3 ((0h)it (v )
—afd iv (0(Vd)) v a

The iterative process is presented in Appendix.

6 Experiments

Experiments were carried out on self-synthetic data sets, general synthetic data sets
and real scene data sets. Three data sets have different settings for the scene and the
movement of objects. Experimental results were compared with those of current
general two scenes flow estimation methods by calculating the root mean square
error (RMSE).
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Table 1 Experimental environment

Hardware Software
CPU 2.40GHz (4CPUs) (ON] Windows 7 Ultimate 32
RAM 4096 MB IDE Visual Studio 2010
D3D DicrectX 11 Tool OpenCV 2.4.1

WPF

Unity3D
Process: Intel core i15-2430 M Language C++,C,Matlab

Table 1 gives the experimental environment.
Table 2 shows the test dataset statistics.

6.1 Data setup

Three data sets include two synthetic data sets and one real data set. Dataset 1 is
generated from Unity3D, by combining the existing camera calibration parameters into
virtual camera projection matrix. Dataset 2 comes from Reinhard Klette’s (Image
Sequence Analysis Test Site) dataset [19], which is a subset of EISATS. Dataset 3
is real scene from the series of 2011\ 09\ 26\ drive\ 0018 (1.1 GB) in KITTI [11].
Table 2 shows the basic properties of each data set, since EISATS provides complete
information with ground truth and ego-motion, comparative experiment and error
calculation were carried out on dataset 2.

6.1.1 Dataset 1 detailed description

Dataset 1 simulates a dynamic ball in the front of a static plane, by putting calibration
parameters of a real camera into a virtual camera in Unity3D, the focal length of the
camera is [657, 658]. As Fig. 3 shows, the plane center position is (0,0,80), the initial
position of the ball is (-1,3,-1), the ball is moving with a constant speed (1.0, 2.0,
0.0), and the camera is static. We assume that there is no distortion of camera and no
offset of optic center. In order to make the scene visible to the camera, we also use a
point light as ambient light. The material of background plane is a carpet with
repeated texture, which is used to prove our estimation results will not be influenced
by texture distribution. When the experiment began, we got the integer value map of
scene by shade, and then set it as the initial depth of our algorithm.

Table 2 Dataset statistics

Dataset Type Source Resolution Additional Information

1 Synthetic (640, 480) Calibration parameters, Depth

2 Synthetic (1392,512) Ego-motion, Calibration parameters,
Groundtruth information

3: Real (1392,512) Calibration parameters
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Fig. 3 Dataset 1 setup. Only one spot light in the scene as ambient light, and the ball is moving in front of a
carpet textured plane, the camera frustum matrix is set with real camera calibration parameters

6.1.2 Dataset 2 detailed description

The Image Sequence Analysis Test Site (EISATS) offers sets of image sequences for the purpose of
comparative performance evaluation of stereo vision, optic flow, motion analysis, or further

(f) Input Z

dtme3  (h)FlowU (i) Flow V

Fig. 4 Our monocular scene flow estimation results on dataset 1. h, i and g are estimated X, Y,Z directional scene flows
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(i) input depth

(j) groundtruth depth

(c) time 2 (g) flow W (K) estimated depth
Fig. 5 Our monocular scene flow estimation results on dataset 2. a-¢ Input frames. e-g Estimated scene flow

results. i-k corresponding depths

techniques in computer vision. We chose the Synthesized (gray-level and color) sequences, because
it offers camera calibration information, camera ego-motion and ground truth information.

06.1.3 Dataset 3 detailed description

The KITTI offers real stereo traffic datasets under different situations and we chose a typical
crossroad scene dataset to testing.

6.2 Experimental results

In the experiment, we make camera motion information and monocular successive image
frames as input, the output is text representation of the scene flow estimation results and

(a) Groundtruth optical flow (b) Reprojected scene flow

Fig. 6 Re-projected scene flow on image plane
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(a)

Fig. 7 Scene flow estimated results of our method on dataset 2

reverse depth information. By mapping results onto a two-dimensional plane displaying in
HSV color space, the moving distinction cab be seen directly. In this paper, we computed
accuracy of the scene flow by calculating the root mean square error (RMSE) as Eq. 23. Since
dataset 2 provides accurate ground truth information, two state-of-art scene flow estimation
algorithms were compared with ours on dataset 2.

— — 2
( Vv result™ Vv groundtmth)
RMSE = «

n

(23)

6.2.1 Analysis of the experimental results on dataset 1

As in Fig. 4, we chose four sequential frames from dataset 1 to test the algorithm, in order to
accelerate the iterate procedure, the integer representation of the depth map was used as the initial
depth. The experimental results shows that scene flow and inverse depth can be seen clearly in
HSV representation. That means, under static camera condition, our algorithm can restore a more
realistic point cloud motion information (e.g., The ball has no movement in the Z direction in
scene flow result, which is same as real condition), and get more accurate depth information.

6.2.2 Analysis of the experimental results on dataset 2
As in Fig. 5, we first extracted three consecutive frames from EISATS stereo datasets as input

frames, then added white noise and blurring to the ground truth depth image, made it as initial
depth (for more close to real scene). When iteration began, the ego-motion was combined into

Fig. 8 Scene flow estimated results of GCSF on dataset 2
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(b) (c)

Fig. 9 Scene flow estimated results of MVSF on dataset 2

camera matrix. Figure 5 shows, monocular scene flow can estimate scene flow under dynamic
camera relatively accurate, even with noise interference.

In addition, since the dataset 2 provides a complete ground truth optical flow motion
information, the scene flow accuracy can be evaluated by calculating the RMSE on 2D
projected image [3]. So we first re-projected scene flow on image plane as in Fig. 6, and then
computed the RMSE with ground truth flow under different pixel threshold respectively. For
evaluating the effectiveness of paper method, we also computed RMSEs of two state-of-art
algorithms, GCSF and MVSF. Our method result is shown in Fig. 7. GCSF is a simple seed
growing algorithm for estimating scene flow in a stereo setup, and it needs two calibrated and
synchronized cameras to observe a scene, simultaneously computes disparity map between the
image pairs and optical flow maps between consecutive images [17]. GCSF’s estimated result is
shown in Fig. 8. MVSF includes a 3D point cloud parameterization of the 3D structure, which
can directly estimate the desired unknowns, and its energy functional enforces multi-view
geometric consistency and imposes brightness constancy and piecewise smoothness assump-
tions directly on the 3D unknowns [4]. MVFS’s estimated result is shown in Fig. 9. According
to the scene flow assessment methods of KITTI, we computed the percentage of erroneous
pixels in total for three algorithms, under different pixel error threshold. As Fig. 10 displays, our
algorithm can achieve similar accuracy with state-of-art stereo scene flow algorithms, with only
one camera, which removes the complexity of stereo calibration and camera synchronization.
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Fig. 10 Comparison of three algorithms. X axis is pixel error threshold and Y is erroneous percentage
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Fig. 11 Our monocular scene flow estimation results on dataset 3. d-f are estimated X,Y,Z directional scene

flows
6.2.3 Analysis of the experimental results on dataset 3

We also process experiments on real scene of datasets 3, since there is no ego-motion in data,
we adopted a static sequence to verify the algorithm, and the initial depth set as unified
200 cm. As Fig. 11 shows, the monocular scene flow algorithm can still get a more accurate
estimate of the results in the real scene, without any other information except for camera
intrinsic matrix.

7 Conclusion

This paper proposes a scene flow estimation algorithm for monocular image sequences, and
innovatively combines inverse depth to consistency functional. Different from traditional
methods, this monocular scene flow method:

1) Needs only one camera with existing navigation system, which makes it more flexible in
traffic environment;

2) Restores the depth and scene flow simultaneously by putting inverse depth into
total functional, gets the cloud points position and moving information at the
same time;

3) Takes an anisotropic operator for scene flow smoothing and an isotropy oper-
ator for inverse depth smoothing, which maintains disparity between objects in
the scene, and reduces noise in object area, making the results more close to
nature;

4) Makes 3 reasonable assumptions according to dynamic scene attributes, extends
coarse-to-fine framework to monocular scene flow estimation and gets the global mini-
mum of the total energy functional as numerical solution.

The solution accuracy depends on velocity consistency in this algorithm, when scene
objects take tiny and continuous movements, the estimation result will be good. If an object
takes a non-rigid motion, the algorithm may be not so ideal. The future work of this paper will
focus on overcoming similar problems and pay more attention to its application in related
areas, such as societal health.
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Appendix
Iterative process

Our iterative process is divided into two layers. The outer layer is constructed by the Gaussian
pyramid from coarse to fine, iterations at this level is for getting unknown quantity itself. At
each layer of the pyramid, the inner iteration can get the unknown variables incremental from
SOR iteration. As Fig. 12 shows, the Gaussian pyramid layers is built according to input outer
layer iteration value, during the build process, we calculate the scaling factor for each layer. In
order to ensure correct correspondence between the image space and the world space, the
scaling factor should not only work for image resolution, but also for focal length of the
camera and the optical center position. At the inner iteration process, the scene flow quantity
initial values are set to zero. By setting the value of inner iteration times, starting from the
lowest resolution level of Gaussian pyramid, SOR iteration obtains the unknown value
increment before convergence or reaching the number of iterations. Every final value of inner
iteration will be added to current outer layer, and set as initial value of next outer layer.
Algorithm 2 shows the whole iteration process.

It is necessary to determine the number of iterations of the inner and outer layers
in the iterative process. The number of iterations of outer layers determines the

V=V +af { D Out level 1
E Out level 2

Vn—l = rn—2 + A\?n—Z
Out level n-1
vn = Vn—l + Avn—l

Out level n

Inner Iteration(SOR)

Fig. 12 The two-level iteration, the outer iteration is processed on Gaussian pyramid layers, the inner iteration is
processed on each outer layer by SOR method
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pyramid layers. Our experiments set the outer iteration number as 10 due to memory
limitations. Figure 13 shows the relationship between erroneous percentage and inner
iteration numbers, the iterations are processed at the last outer layer. We set the
number of inner iteration as 10, for the polyline shows: iterations more than 10 will

cause over smooth.

Algorithm 2 Iteration Process

Input: n,k,dy { n - the total number of outer iterations,
k - the total number of inner iterations, dy - the initial
depth(from depth map or a unified value)}
Initialization: logaImageSize < n { Make sure Gaussian
pyramid is suitable for the images’ resolution}

8:
9:
10:
11:

: Build Gaussian pyramid of input images by setting lay-

ers as n
2: 1 < 0 { ¢ - current number of outer iterations }

3: 170 — 6,A‘70 +« 0O { V; - the unknown value of ith
outer iteration, AV? - the unknown value of jth inner
iteration of ith outer iterationn}

while i <n do

j =0{j - the current number of inner iterations }
while j < k and |[AV/ — AV/7!| > € { € - the
threshold of inner iteration, a tiny value} do

do iteration of AI_/;j

j=7+1
e_pd wlLile .
Vvi = Av;k_l + Vvi—l
AV 0

12: end while
13: return (V,,d,)

The erroneous percentage

1051

851

Mr

3 L L L L 1 L )
0 2 4 6 8 10 12 14

Value of inner iteration times

Fig. 13 Erroneous percentages of different number of inner iterations at the last layer of outer iteration
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