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Abstract In this paper, an application of sparse optimization in the error concealment area is
proposed. The spatial and temporal formulations of the pixels in the current frame and reference
frame are proposed to solve the problem. Based on the sparse characteristics of nature images,
we form sparse optimization problems for both formulations. The optimization problem is
solved by the primal-dual interior point method. The solutions are combined for better results.
By solving for a limited numbers of significant predictors using the sparse optimization, our
algorithm performs subjectively and objectively better for the concealed result; compared to
two state-of-the-art spatial-temporal hybrid error concealment methods, the proposed methods
can improve by up to 0.19 dB and 1.12 dB in PSNR (Peak Signal-to-Noise Ratio).

Keywords Video communication . Packet loss . Error concealment . Sparse optimization .

Primal-dual interior point method

1 Introduction

In video compression technology, the transmission and storage of video signals have become
more and more popular. For the network environment, various channel/network errors result in
damage or loss of compressed video information during transmission or storage. H.264/AVC is
the most popular compression coding standard [16], outperforming the previous standards. It
has removed redundancy in the spatial and temporal domain of a video, thus the bitstream is
very sensitive to transmission error during the network. Unfortunately, packet errors are
unavoidable, which will cause serious display quality degradation.
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The loss of transmitted packets influences the quality of the received video. For combatting
the transmission error, on one hand, error resilience adds redundant information at the encoder
with the penalty of decreasing the compression efficiency. On the other hand, error conceal-
ment conceals the errors in the post-processing stage after receiving the information at the
decoder side without modifying source and channel coding schemes. Since the real time
transmission of video stream aims to reduce the delay, it is not possible to retransmit all
erroneous or lost packets. Therefore, there is a need for post-processing methods that try to
reduce the visual artifacts caused by bitstream error. The simplest error concealment method
used in H.264/AVC is the frame copy method. In this method, the lost frame is estimated
directly by copying the co-located pixels from the previous frame; this method would result in
the frame discontinuity, especially for the high motion sequences. An alternative method called
motion copy is also adopted in H.264/AVC, providing another option for error concealment.
The concept of the motion copy method is that the motion vectors of the previous frame are
used for concealing the current lost frame.

The error concealment algorithms in the literatures can be categorized into three sets: spatial
approaches, temporal approaches, and hybrid approaches. Spatial approaches restore the
corrupted macroblock by the information of surrounding macroblocks or pixels that are
correctly received and decoded. A spatial error concealment method proposed by Wang
et al. minimized the first-order derivative-based smoothness measurement [15], and Zhu
et al. enhanced it by using second-order derivative that could suppress the induced blurring
artifact [22]. In [12], an algorithm based on selective directional interpolation was proposed
that could efficiently recover the smooth and edge areas.

Temporal approaches exploit temporal correlation between successive received frames to
reconstruct the corrupted blocks. The most important part in temporal approaches is finding the
appropriate blocks in previous frames that can be used as information to restore the corrupted
blocks. The appropriate blocks are found by estimating lost motion vectors (MV). Much research
has been proposed to recover the MVs of the corrupted block. The well-known boundary
matching algorithm proposed in [9] used the information between the internal and external
boundary of reconstructed blocks to select the MV that minimized the total variation. There are
also more sophisticated algorithms [13,18] to obtain better replacements for the corrupted blocks.

Hybrid approaches combine the spatial and temporal approaches. A priority-driven region
matching algorithm was proposed to exploit the spatial and temporal information in [4].
Specifically, the work in [19] proposed an auto-regression model that considers spatial and
temporal information to recover the lost pixels. The work in [21] first performs a temporal
method, called motion vector extrapolation, from the motion vectors in the previous frame to
estimate the lost MVs. Then, based on the spatially neighboring available motion vectors
around the lost MB, the estimated MVs are improved. The work of Yan et al. [17] considers
whole frame loss, and the error concealment algorithm uses the motion extrapolation technique
and received depth map to recover the lost frame from the previous frame. A recent work in
[10] proposes a dynamic programming method to estimate the missing motion vectors in
consecutive blocks, and the block merging procedure is performed for similar motion vectors.
A loss frame error concealment method is proposed in [20] for wireless multimedia sensor
networks using the inter-view information. In this paper, we propose a novel way to recover
the lost pixel by using the theory of sparse optimization based on [19] and considering the
sparse characteristics of nature images. Spatial and temporal sparse optimization problems are
formulated for the spatial and temporal method. After the problems are solved, the solutions
are combined to recover the lost pixels.
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The differences between the proposed work and important related works References
[12,15,16,22] are spatial approaches for error concealment, and references [9,13,18] are
temporal approaches for error concealment, whereas the proposed method is a spatial-
temporal approach for the problem. For other recent works, the work in [4] must first pre-
process the pixels to find the edges in an image for recovery, whereas the proposed method can
directly find lost motion vectors from pixels and the relations among them. The work in [17]
performs the error concealment algorithm for color frame based on the depth frame; however,
the proposed work does not deal with the transmission of depth frames. Furthermore, the work
in [17] solves the problem in the case of whole frame losses, but the proposed work solves the
problem for the packet losses in the checkerboard patterns. The algorithms in [10] discuss the
lost pattern for consecutive lost blocks, whereas the proposed work focuses on the packet loss
in the checkerboard pattern. The work in [20] concentrates on the loss recovery for the multi-
view videos, while the proposed work is designed for single-view videos.

The proposed work is most similar with [19] since they both formulate the spatial and
temporal relations among neighboring pixels and solve the problem based on matrix compu-
tation. Also, in [21], missing motion vectors are estimated using the established mathematical
formulations among neighboring motion vectors. These two papers are similar to the proposed
paper in that their approaches all depend on the developed mathematical and matrix formu-
lations. Therefore, in this paper, we compare the proposed work against the state-of-the-art
works in [19] and [21], due to the similarities among the works, to show the significance of the
proposed method.

This paper is organized as follows: Section 2 introduces the theory of sparse optimization.
Section 3 discusses the spatial and temporal formulation between pixels in the current and
reference frames. The spatial and temporal sparse optimization problems are constructed and
solved. Section 4 demonstrates the experimental results compared to two state-of-the-art
methods objectively and subjectively. Section 5 concludes the paper.

2 Sparse optimization

The signal processing field proposed an exciting theory, known as Bsparse optimization^
[1–3,6]. In this new method, the sampling frequency can be greatly reduced and keep the
quality of the reconstructed signal. The original signal must be consistent with the sparsity,
which means the signal has a more concise expression with the appropriate basis. Considering
a 1-D vector f∈ℝn and its orthogonal basis Ψ=[ψ1,ψ2,…,ψn], such as the basis of DCT, it can
be expressed as:

f tð Þ ¼
Xn

i¼1

ziψi tð Þ ð1Þ

where zi=f(t),ψi(t). This relationship translated into a matrix expression is shown as such:

f ¼ Ψz ð2Þ
where f represents a n×1 vector, Ψ=[ψ1,ψ2,…,ψn] represents a n×1 matrix, and z
represents a n×1 vector. We define the sparsity of signal as: when a signal is combined
by orthogonal basis Ψ, and when most of the values in z are zero and only have K non-zero
values, we consider f to be K -sparse. This means that, by restoring signal f , which has n
data, we only need sampling K−point K < nð Þ in the basis domain, and f could be
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reconstructed completely. However, we will not sample in the basis domain but in the
signal domain. For example, an n-point signal is transmitted, and only m points are
received. In this case, when restoring the signal, matrix theory states that there should
be infinite solutions when m<n. But what amazes us about sparse optimization is that we
could reconstruct the signal perfectly and uniquely. When considering Eq (2) and assum-
ing f is K -sparse, if we want to solve the unique z, it can be obtained through the following
optimization problem:

z ¼ arg min
~z∈Rn

jj~zjj0 s:t: Ψ~z ¼ f ð3Þ

where ~z0 is ℓ0 -norm representing the number of non-zero values in ~z. Therefore, we can find ~z,
which has the least non-zero values and also conforms to the condition ofΨ~z ¼ f . However, it
is very complicated to solve the ℓ0 -norm problem. Fortunately, [3] and [5] proposed an
approximated solution to ℓ0 -norm:

z ¼ arg min
~z∈Rn

jj~zjj1 s:t: Ψ~z ¼ f ð4Þ

Works [1] and [5] prove that the problem has high probability to restore the K -sparse
signal with m≥cK log n=Kð Þ data, where c is a constant. Therefore, the sparser the signal,
the easier it can be restored perfectly by the sparse optimization technique. In [14] and [7],
the works discuss more methods of sparse optimization to restore the signal and how to
restore the information when there is noise present (or when it is near-sparse). The ℓ1 -
norm optimization problem in Eq (4) can be efficiently solved by the primal-dual interior
point method in [8].

3 The Spatial and Temporal Sparse Optimization (STSO)

In this section, we collect data from the available pixels surrounding the lost MB as well as
pixels in the reference frame, as done similarly in [10]. Pixels in two frames away are also used
for the proposed method. The mathematical formulations of these two mechanisms are
formulated, and the predicting coefficients are solved by sparse optimization in section 2.
We then combine these two mechanisms to form an overall algorithm. We denote this
proposed method as STSO (Spatial and Temporal Sparse Optimization).

3.1 Spatial Formulation of Sparse Optimization

For the spatial mechanism, the idea can be explained with Fig. 1. The gray area is the lost
block. The initial motion vector is derived by averaging the motion vectors in the neighboring
available MVs around the lost MB. The initial motion vector is used by pixel A in the
neighboring blocks to point back to reference pixel B in the reference frame. Pixel B is used
as a center to form a 3×3 subblock in the reference frame, as shown in Fig. 1. These 3×3=
9 pixels are used to predict pixel A by predicting coefficient α:

xt i; jð Þ ¼
X1

k¼−1

X1

l¼−1
α k; lð Þxt−1 iþ dyþ k; jþ dxþ lð Þ ð5Þ



where xt−1 is the reference frame pixel, xt is the current frame pixel, and α(k,l) is the weight on
the reference pixel xt−1(i+dy+k,j+dx+l) to the current pixel xt(i,j). The (dx,dy) is the initial
motion vector.

This procedure is repeated for all the pixels in the spatial neighbors in the lost block, and
their corresponding 9 reference pixels can be located and collected. With the collected data and
Eq (5), we write a formulation in a matrix form for the optimization problem:

xt ¼ Xt−1αT ð6Þ

The xt is a vector containing the neighboring available pixels of the lost MB, and the Xt is
the matrix containing corresponding reference pixels according to Eq (5).αT is a 9×1 vector of
predicting coefficients that we aim to determine. Figure 2 is a visual demonstration of the
spatial pixel relation in Eq (6). Nine bases (256×1) are multiplied with corresponding 9×1
coefficients α and summed to form the target vector.

The sparse characteristics of nature images are discussed in [11]. We use this property to
recover the lost pixels in nature images in the error concealment application. We solve for
optimal αT by the sparse optimization technique in section 2: we aim to find a coefficient
vector αSO with minimal 1-norm, such that the relation between neighboring available pixels
and the reference pixels in Eq (6) holds:

αSO ¼ arg min
α∈Rn

α1

s:t: xt ¼ Xt−1αT ð7Þ

This optimization problem is a perfect fit for the sparse optimization technique introduced
in section 2 and can therefore be solved efficiently by the primal-dual interior point method in
[8]. After αSO is obtained, the pixels in the lost MB can be found by:

x
̂ lostMB

t; spatial ¼ XlostMB
t−1 αT

SO ð8Þ

where x ̂
lostMB
t; spatial is a (16×16)×1 vector containing the pixels in the lost MB and recovered by

the spatial method. Xt− 1
lostMB is a matrix containing the corresponding pixels in the reference

frame according to Eq (5) and the initial motion vector (dx,dy).

Fig. 1 Nine pixels in the reference
frame to predict one available
neighboring pixel in the current
frame using initial estimated
motion vectors
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3.2 Temporal Formulation of Sparse Optimization

In this subsection, the temporal relations between pixels in a different frame are considered, as
done similarly in [19]. Specifically, the pixels in one frame before the current frame and two
frames before the current frame are considered, as shown in Fig. 3. The initial motion vector
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Fig. 2 The pixel illustration of the
values in nine columns (each of
size 256×1) in Xt−1 as nine bases
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(dx,dy) is used to point from the current pixel to pixel C one frame before the current frame.
And the available motion vectors in the previous frame are used to point back to pixel D two
frames before the current frame. Centered at D, we collect the surrounding 3×3=9 pixels to
predict pixel C. After considering all pixels in the reference frame, the matrix formulation can
be written as:

xt−1 ¼ Xt−2β
T ð9Þ

The xt−1 is a vector containing the available pixels one frame away, and the Xt−2 is the
matrix containing corresponding reference pixels two frames away. βT is a predicting coeffi-
cient vector describing the temporal relationship. Figure 4 visually demonstrates the temporal
formulation in Eq (9), where nine bases with their corresponding temporal predicting vector β
are used to form the target vector xt−1. Again, based on the sparse characteristics of nature
images [11], we aim to find a temporal coefficient vector βSO with minimal 1-norm, such that
the relation among temporally neighboring available pixels in Eq (9) holds:

βSO ¼ arg min
β∈Rn

β1

s:t: xt−1 ¼ Xt−2β
T

ð10Þ

The problem is identical to the one in section 2 and can be solved efficiently by [8]. After
βSO is found, the pixels in the lost MB can be found by:

x̂
lostMB

t; temporal ¼ XlostMB
t−1 βT

SO ð11Þ

where x ̂
lostMB
t; temporal is a vector containing the pixels in the lost MB and recovered by the temporal

method. Xt−1
lostMB is the same as in Eq (6).

3.3 Combined algorithm STSO

After spatial and temporal sparse optimization are done, we combine the results to obtain the

final estimated lost pixels x ̂
lostMB
t :

Fig. 3 Temporal relations of pixels
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x
̂ lostMB

t ¼ τ � x
̂ lostMB

t; spatial þ 1−τð Þ � x
̂ lostMB

t; temporal ð12Þ

The balance τ between the temporal solution and spatial solution is the same as in [19]. The
whole STSO algorithm is shown in Fig. 5.
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Fig. 4 The pixel illustration of the
values in nine columns (each of
size 256×1) in Xt−2 as nine bases
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4 Experimentresult

In this section, we discuss the experimental results that compare our method against existing
ones. The video encoder is H.264 (JM 18.0). We use IPPPP (I means Intra frame, and P means
Predictive frame) as an encoding GOP (Group Of Pictures) structure with a size of 15 frames.
We use dispersed mode in FMO (Flexible Macroblock Ordering) so that the packets are
encoded/lost in a checkerboard manner. We use various QPs (quantization parameters) from 16
to 38. The videos crew, container, md, carphone, mobile, soccer, stefan, football, and foreman
are considered. The video resolution is 176×140. We compare our proposed STSO method
against the state-of-the-art spatial-temporal hybrid Zhang’s method in [19] and Zhou’s method
in [21].

The PSNR (Peak Signal-to-Noise Ratio) is used as a metric to compare the performance.
The PSNR is computed between the uncompressed video and the concealed video. Table 1

Corrupted

MB

InitialMV

derivation

Collect spatial data in

eq (6)

Collect temporal data

in eq (9)

Perform spatial sparse

optimization in

problem (7) for

optimal α SO

Perform temporal

sparse optimization in

problem (10) for

optimal βSO

Combine the results

by eq (12)

Conceal corrupted

MB

Recover lost pixels

spatially by eq (8)

Recover lost pixels

temporally by eq (11)

Fig. 5 Proposed STSO method
for error concealment
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Table 1 PSNR (dB) performance comparisons for different QPs

Video QP STSO Zhang [19] Gain Zhou [21] Gain

Crew 16 30.41 30.26 0.15 30.03 0.47

20 29.01 28.91 0.10 28.72 0.43

24 28.99 28.92 0.07 28.82 0.39

Container 20 40.59 40.49 0.10 40.12 0.27

22 39.78 39.73 0.05 39.35 0.19

24 38.76 38.72 0.04 38.37 0.16

Md 24 37.15 36.97 0.18 36.88 0.62

26 36.66 36.61 0.05 36.47 0.44

28 35.37 35.30 0.07 35.21 0.39

Carphone 20 30.18 29.99 0.19 29.60 1.12

24 29.79 29.62 0.17 29.38 0.98

28 28.92 28.77 0.15 28.55 0.85

Mobile 22 33.78 33.68 0.10 32.55 0.81

24 32.66 32.58 0.08 31.70 0.76

28 31.79 31.62 0.17 30.97 0.63

Ssoccer 24 27.56 27.44 0.12 26.81 0.32

26 26.79 26.71 0.08 26.13 0.17

32 26.02 25.95 0.07 25.93 0.09

Sstefan 26 28.52 28.37 0.15 28.27 0.38

28 27.67 27.58 0.09 27.50 0.29

32 27.03 26.96 0.07 26.95 0.17

Football 32 27.63 27.51 0.12 27.11 0.52

34 27.11 27.04 0.07 26.66 0.45

38 26.32 26.30 0.02 25.91 0.41

Foreman 30 28.19 28.07 0.12 27.69 0.50

34 27.84 27.74 0.10 27.47 0.37

38 27.47 27.43 0.04 27.18 0.31

The gain is the improvement the proposed STSO method has over the compared methods

(a) Zhou (Frame

PSNR is 28.72 dB)
(b) Zhang (Frame

PSNR is 30.26 dB)
(c) STSO (Frame

PSNR is 30.41 dB)

Fig. 6 Error concealment performance comparisons for crew, 193th frame in QP=20
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shows the PSNR comparison among the proposed STSO method, Zhang’s method [19], and
Zhou’s method [21] for different video sequences and different QPs. Due to page limits, we
choose representative cases for discussion. First, videos of slow motion (crew, container, md,
carphone, andmobile) are discussed. And the videos of higher motion (soccer, stefan, football,
and foreman) are discussed later.

For the slower videos, for crew video, it can be seen that the STSO performs better than
Zhang by 0.15 dB, 0.10 dB, and 0.07 dB with different QPs. STSO works much better than
Zhou by 0.47 dB, 0.43 dB, and 0.39 dB. These show outstanding performances of the STSO
over the existing works. And the winning margin against Zhou is larger since Zhou does not
utilize the information from the past two frames, as done in Zhang and STSO, so Zhou’s
performances are usually lower. For container, the trends remain the same; the STSO is better
than Zhang by 0.1 dB, 0.05 dB, and 0.04 dB, and the winning margin is even larger against
Zhou by 0.27 dB, 0.19 dB, and 0.16 dB in QP=20, 22, and 24, respectively. Similarly, in md,
the performance gains of STSO are 0.18 dB, 0.05 dB, and 0.07 dB over Zhang, and they are
0.62 dB, 0.44 dB, and 0.39 dB over Zhou (larger gains as discussed) for different QP settings.
For the carphone sequences, the improvements of 0.19 dB, 0.17 dB, and 0.15 dB are made
over Zhang, and larger improvements of 1.12 dB, 0.98 dB, and 0.85 dB are made over Zhou.
When comparing in mobile, the winning margin of 0.10 dB, 0.08 dB, and 0.17 dB are
achieved against Zhang, and larger margins of 0.81 dB, 0.76 dB, and 0.63 dB are made
against Zhou. Therefore, we can first conclude that the STSO is better than Zhang and Zhou
for the videos with slower motion.

For the videos of higher motion, for soccer, STSO is better than Zhang by 0.12 dB,
0.08 dB, and 0.07 dB, and STSO is further better than Zhou by 0.32 dB, 0.17 dB, and

(a) Zhou (Frame

PSNR is 40.12 dB)
(b) Zhang (Frame

PSNR is 40.49 dB)
(c) STSO (Frame

PSNR is 40.59 dB)

Fig. 7 Error concealment performance comparisons for contrainer, 252th frame in QP=20

(a) Zhou (Frame

PSNR is 36.88 dB)
(b) Zhang (Frame

PSNR is 36.97 dB)

(c) STSO (Frame

PSNR is 37.15 dB)

Fig. 8 Error concealment performance comparisons for md, 112th frame in QP=22
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0.09 dB in QP settings being 24, 26, and 32, respectively. In stefan, similar situation occurs; by
STSO, the improvement of 0.15 dB, 0.09 dB, and 0.07 dB are made over Zhang, and that of
0.38 dB, 0.29 dB, and 0.17 dB are achieved against Zhou in different QPs; again, Zhou has the
lowest performances as discussed. In football, the performances of STSO are better than Zhang
by 0.12 dB, 0.07 dB, and 0.02 dB, and they are also better than Zhou by an even larger margin
0.52 dB, 0.45 dB, and 0.41 dB for QP=32, 34, and 38. Finally, in foreman, for QP=30, 34,
and 38, the winning margins of STSO over Zhang are 0.12 dB, 0.10 dB, and 0.04 dB, and they
are 0.50 dB, 0.37 dB, and 0.31 dB over Zhou. From these discussions, it can be summarized
that the STSO works better than the existing methods of Zhang and Zhou, even for fast videos.

To conclude from the data analyses and comparisons in Table 1, it can be understood that
the proposed STSO performs better than the state-of-the-art Zhang and Zhou methods for
various QP settings and different videos with different textures and motions. Furthermore, as
discussed, the winning margin of STSO over Zhang is usually larger than Zhou because the
method in Zhou only uses information from the previous frame and does not use information
from the previous two frames, which is done by STSO and Zhang. Therefore, the perfor-
mances of STSO and Zhang are better. Finally, for the largest gain among all the comparisons,
STSO improves over Zhang’s method by up to 0.19 dB and over Zhou’s method by up to
1.12 dB, both for carphone sequence at QP=20. Note that both compared methods are state-
of-the-art methods, which means that they have the most outstanding performance in the
current technology; therefore, it is very difficult to outperform them by a very large margin.

In addition to the objective improvement in PSNR, our algorithm mostly performs better in
subjective experience as well. Figure 6 to Fig. 14 show the different concealed frames using
three different concealment methods. In Fig. 6, compared to Zhou’s method, we can observe
that the proposed method reduces the discontinuities in the concealed edges, and compared to

(a) Zhou (Frame

PSNR is 29.60 dB)
(b) Zhang (Frame

PSNR is 29.99 dB)

(c) STSO (Frame

PSNR is 30.18 dB)

Fig. 9 Error concealment performance comparisons for carphone, 191th frame in QP=24

(a) Zhou (Frame

PSNR is 31.70 dB)
(d) Zhang (Frame

PSNR is 32.58 dB)
(d) STSO (Frame

PSNR is 32.66 dB)

Fig. 10 Error concealment performance comparisons for mobile, 201th frame in QP=24
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Zhang’s method, the proposed algorithm performs better in the detail area; for example, the lines
on the clothes. In Fig. 7, since the video is simpler and slower, the performance differences are
not obvious. But as the bird flies fast over the frame, the proposed method produces less shadow
objects. In Fig. 8, the results of different methods are similar. But for the detail continuity and
integrity of the fingers, the proposed method performs better. In Fig. 9, the proposed method has
better facial detail and smoother line connection in the background. In Fig. 10, for the faster part
in the ball area, we have a more complete result. In Fig. 11, where the video is of higher motion,
the proposed method conserves more integrity in the hand and leg area. Figure 12 is also a fast
video. The proposed method produces better image integrity of the player and provides more
complete English lines in the background. In Fig. 13, in this fast video, we provide a better
image integrity in the fast moving player. In Fig. 14, we perform better in the edge areas,
especially on the edge of the hat, edge of the face, as well as the detail of the face.

The improved results of the proposed method can be due to the fact that the sparse
optimization can always find the solution with a minimal number of important and represen-
tative predictors. Therefore, by restricting the solutions to a limited number of important
predictors and suppressing the effects of other unimportant predictors, our proposed error
concealment algorithm can perform better in objective and subjective measurements.

Complexity analysis We discuss the complexities of the three discussed error concealment
algorithms. For Zhou’s method [21], it is less complicated since it only needs the generated
extrapolated motion vector and the surrounding available motion vectors to perform the
motion vector estimation for vertical and horizontal directions. The processing time with
Zhou’s method for each lost MB is 0.0064 s. For Zhang’s method [19] and the proposed

(a) Zhou (Frame

PSNR is 26.81 dB)

(b) Zhang (Frame

PSNR is 27.44 dB)
(c) STSO (Frame

PSNR is 27.56 dB)

Fig. 11 Error concealment performance comparisons for soccer, 96th frame in QP=26

(a) Zhou (Frame

PSNR is 27.50 dB)
(b) Zhang (Frame

PSNR is 27.58 dB)
(c) STSO (Frame

PSNR is 27.67 dB)

Fig. 12 Error concealment performance comparisons for stefan, 236th frame in QP=28
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STSO method, the complexities are comparable since the data collection process and pixel
arrangement are similar; for a lost MB, an initial motion vector is first generated by surround-
ing available motion vectors. With this vector, matrices in Eq (7) are formed, and α’s are
solved by Zhang and STSO in different ways. Similarly, with the same initial motion vector
and the motion vector in the previous frame, the matrices in Eq (10) are formed, and’s are
solved by Zhang and STSO in different ways. The usages of α and β are combined in Eq (12).
The main computational complexities in Zhang and STSO are the optimization processes to
find α and β; thus, the computational time is higher than Zhou’s method; for a lost MB,
Zhang’s method requires 0.038 s and STSO requires 0.043 s. Especially for the STSO, the
sparse optimization technique is used; therefore, the processing time is slightly higher with the
advantages of higher recovered image quality.

5 Conclusion

In this paper, we use the facts that the nature images has sparse representation. We proposed a
spatial-temporal hybrid sparse optimization error concealment STSO method. Our algorithm
limits the predictors to numerically useful ones so the performance of the error concealment
scheme will not be distorted by other less-useful predictors. As shown in the experimental
results, the proposed algorithm improves subjectively and objectively from the two state-of-
the-art spatial-temporal hybrid algorithms by up to 0.19 dB and 1.12 dB. These are meaningful
results considering these two state-of-the-art algorithms are ones of the most outstanding
methods in the existing literatures.

(a) Zhou (Frame

PSNR is 27.11 dB)
(b) Zhang (Frame

PSNR is 27.51 dB)
(c) STSO (Frame

PSNR is 27.63 dB)

Fig. 13 Error concealment performance comparisons for football, 124th frame in QP=32

(a) Zhou (Frame

PSNR is 27.47 dB)
(b) Zhang (Frame

PSNR is 27.74 dB)
(c) STSO (Frame

PSNR is 27.84 dB)

Fig. 14 Error concealment performance comparisons for foreman, 52th frame in QP=34
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