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Abstract The complexity of vocal tract movement causes the difficult to record whole
information of vocal tract during speech. Dynamic articulation has been acquired by
implementing a variety of instruments, each of which has its advantages and short-
comings. However, the measurement of vocal tract movements is a difficult task to
accomplish using one type of recording technique, and this has led to the simulta-
neous application of multiple instruments. Thus, we used an ultrasound system in
combination with the electromagnetic articulography (EMA) system to record the
multi-modality movement of the tongue. Data of the vocal tract movements were
obtained by the ultrasound-based speech recording system developed by us, with
which ultrasound images and synchronized audio signals are recorded synchronously.
The EMA system is also used for the simultaneous collection of articulatory data with
the audio. The EMA and ultrasound data were registered and matched to the same
audio signal, after which these two sets of data were fused for each time point. In
addition, a method for vocal tract shape reconstruction and modeling is proposed for
the ultrasound dataset by using an active shape model. The averaged reconstruction
error does not exceed 1.26 mm.
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1 Introduction

Vocal tract (VT) recording and modeling has been the subject of investigation of many
research groups. However, the complexity of the inner structure of the VT is such that
the acquisition of sound generated in the VT remains a challenge to us. A variety of
instruments have been implemented to record dynamic articulations during speech, each
of which has its own advantages and disadvantages. However, none of these instru-
ments has the ability to record data containing all the information of the articulators.
Alongside X-ray, computed tomography (CT), and magnetic resonance imaging (MRI),
ultrasound imaging is one of the four major medical imaging techniques [17, 18]. Each
of these four instrumental techniques has its particular advantages and disadvantages in
respect to recording articulation. Ultrasound imaging technology, which is widely used
in clinics, has the advantages of being convenient, safe, fast, and offering real-time
scan results. However, due to the particularity of the imaging mechanism, ultrasound
images are noted for their extensive speckle noise and provide limited information of
the subject’s articulator [2]. On the other hand, although electromagnetic articulography
(EMA) [6, 13] data contain the precise location of sensor information, they lack
complete information of the surface of the tongue.

Therefore, in our experiment, the EMA and ultrasound systems are used simultaneously as
a complementary pair to record tongue movement as the ultrasound images provide the EMA
data with a complete tongue contour while the EMA data offer additional key point informa-
tion to the images such as information about the upper and lower tooth, lips, and tongue tip.
Information about these parts plays an important role in complementing the informa-
tion pertaining to the tongue and finding the relationship between different ultrasound
image frames. The ultrasound images and the synchronized audio were obtained by a
portable ultrasound system with the data collection software that was developed by
our team. The EMA system was used to collect the flesh-point information of speech
articulation in synchrony with the audio. Then, the ultrasound images and the EMA
data were registered and matched by using the audio stream. High speech cameras
were also used to collect facial information. In total there are four modalities of data
sources that were synchronized and recorded together. The ultrasound images and the
EMA data for each time point were also integrated spatially.

The multi-modalities articulatory data can be applied for vocal tract visualization, speech
training, and silent speech recognition applications. After recording the multi-modality data, an
active shape model-based approach was proposed to model the articulatory data.

The paper is organized as followed. Section 2 introduces the acquisition system, including
the hardware and software system. The analytical process and the procedure of integrating the
ultrasound and EMA data are described in Section 3. The active shape model-based tongue
shape reconstruction approach is presented in Section 4. The conclusion is given in Section 5.

2 Data acquisition system

2.1 Brief description of the system

The acquisition system mainly includes four parts, i.e., the portable ultrasound system for
collecting ultrasound images, EMA system for collecting EMA data, and audio system for
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collecting the synchronizing audio signal for both of these systems. The main components of
the system are shown in Fig. 1.

Details of the equipment are as follows:

& Portable ultrasound system: a Terason T3000 ultrasound system with a 8MC3 micro-
convex transducer and a stand for the transducer

& WAVE system: theWAVE system of Northern Digital Inc. with 8 channels is an instrument
for collecting EMA data. The WAVE system contains: a field generator, mounting arm,
system control unit, system interface unit, micro-sensor, and audio synchronization cable.

& Audio system: the audio interface Roland Octa-Capture UA-1010, a Studio Project CS5
condenser microphone, two 6.5 mm to 3.5 mm audio adapters for connecting the audio
interface and the laptops

& Helmet and stand: in order to stabilize the ultrasound probe, we developed a helmet-based
stand and a magic arm-based stand for stabilization during data recording [15].
The helmet is constructed of a special material usually used in head surgery, to
reduce its weight. The magic stand and helmet stand can be used for different
situations and purposes. The helmet-based probe stand is able to stabilize the
ultrasound probe to a greater extent than the magic arm-based stand. However, it
could affect the quality of the recorded facial information. In this work, we
selected the magic arm-based stand for experiments.

2.2 Hardware setup of the acquisition system

During experiments, it is unavoidable that the subject’s head will move. Thus, we
need a helmet to fix the probe to the subject’s chin. Ultrasound-based systems, which
have been developed to date, include ESPCI [5], HATS [16], or Palatron [12]. Our
acquisition system used to employ a helmet for stabilizing the ultrasound probe, but
this approach caused the subject to become tired after prolonged experimental record-
ing sessions. Thus, we replaced the helmet by a stand with a plier-like instrument to
stabilize the probe, as shown in Fig. 2.

(a) (b)

(c)

Fig. 1 a EMA system b
ultrasound system c Roland
Octa-Capture UA-1010
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2.3 Software part of the acquisition system

We attempt to obtain three sets of data from the experiments: ultrasound images, EMA data,
and data synchronized with audio signals. The ultrasound image acquisition program was
developed based on the SDK of Terason Ultrasound System to which selected new functions
have been added, such as file storage, information display, and synchronizations between
imaging and audio. The audio and image streams are processed in parallel using
multithreading programming techniques [15]. A timestamp is attached to each image to
facilitate synchronization with the audio signal and also the EMA data.

The EMA data includes the trajectories of the flash points and audio files provided by the
EMA system.

3 Vocal tract movement data acquisition

3.1 Description of experiment

Firstly, we set up the EMA system and place the magnetic field generator in position. Then, we
start attaching sensors to the subject. All the sensors are cleaned with alcohol and pasted to 11
points on the subject (left ear, right ear, nose, tongue tip of mid-sagittal plane, tongue blade of
mid-sagittal plane, a point between the tongue blade and tongue dorsum, tongue dorsum of
mid-sagittal plane, upper teeth, lower teeth, upper lip, and lower lip) to collect articulatory
data. Two more sensors are attached to the ultrasound probe as references. The sensor positions
on the tongue and those pasted to the probe are shown in Fig. 3. Once the sensors are
attached to the subject, their status is detected by the software together with the
location or connection. Adjustment needed to ensure all sensors are functioning.
Secondly, after the status of all sensors status is checked, the ultrasound system is
started to check whether the ultrasound probe is working properly. Then, the subject
positions his head on the ultrasound probe, which is attached with glue to improve
the quality of the images, by adjusting their head slightly. Finally, guided by the live
images on the monitor, the image parameters (including image size, image depth,

Fig. 2 Photograph showing data
being recorded with the acquisition
system
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gain, compression ratio, noise suppression, etc.) are adjusted to ensure that clear
tongue contours are observed with a more stable and higher acquisition frequency.

After finishing the preparation, the recording starts and the data is recorded sentence by
sentence. A beep sound prompts subject to start reading.

The corpus is a Chinese speech database designed for speech synthesis applications (the
database is named Corpus of speech synthesis of the National B863^ Project) [11]. For this
experiment, 350 sentences were selected from the corpus in which about 8–15 s are spent
reading each sentence at normal reading speed. The whole recording process lasts approxi-
mately one hour.

3.2 Structure of collected data

The ultrasound system collects ultrasound images and synchronizes audio files. The images
are in bitmap, 8-bit gray scale, with a resolution of 640 × 480 with a name, including a
timestamp, given by the system clock. The frame frequency of the image stream is 60 fps. The
audio file has a size of 16 bits and the sampling rate is 44.1 kHz.

The EMA system generates ‘.raw’ and ‘.wav’ files after data collection in which it stores the
articulatory data and speech sound, respectively. In ‘.raw’ files, the sensor trajectory and the
corresponding audio alignment is done through the EMA equipment. The sampling frequency
for the sensor movement is set to 100 Hz by default. As with the ultrasound system, the audio
file is recorded with a sampling rate of 22,050 Hz.

3.3 Date analysis and fusion

3.3.1 Synchronization

Two groups of audio files are recorded during a single acquisition procedure which is
synchronized with the ultrasound images and EMA data, respectively. The two audio signals
are generated by the same microphone and is transferred from the audio interface to the two
computers; hence, theoretically the two audio files should be identical and have the same
length. Although the impedance difference between the soundcards of the different computers
causes an amplitude difference, the basic features of the two audio files are similar. After we
locate the beep sound position and use it as a reference, the two sets of audio files can be
completely co-registered. With the two audio files, the ultrasound images and EMA data can
be aligned on the time axis. Figure 4 shows the waveform of the audio files for a certain
sentence in Chinese for both data sets.

(a) (b)

Fig. 3 a Sensors positions on the
tongue and b sensors on the probe
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3.3.2 Fusion of multi-modal data in the space

As described above, the EMA system collects articulatory data and stores it in ‘.raw’ files
which contain 5D information including the position and the rotation for each sensor at each
timestamp. The ultrasound system collects ultrasound images of the mid-sagittal plane of the
tongue in 640 × 480 bitmap image format which can be considered as a 2D matrix. In order to
fuse the two different kinds of data together, we need to find the relationship between the two
coordinate systems and perform a coordinate transformation to incorporate them into the same
coordinate system.

1) Finding the mid-sagittal plane:

We have to locate the mid-sagittal plane so as to fuse the EMA data and ultrasound images
together. The mid-sagittal plane for the EMA data can be determined by using the three points
(left ear, right ear, and nose) as the reference after compensating for the movement of the head.
We specify the points on the left ear, right ear, and nose as point A, B, and C, respectively. We
obtain the mid-sagittal plane of the head by using the three points A, B, and C. Points A and B

form the vector AB
�!

, which is perpendicular to the mid-sagittal plane, whereas point C is
located on the plane.

We obtain the three-dimensional (3D) coordinates of the points A, B, and C from the EMA
data with which we can obtain the equation of the mid-sagittal plane:

axþ byþ czþ d ¼ 0 ð1Þ
where a, b, c, and d are constants, determined by the coordinates of the points A, B, and C.

The intersection point of the plane and the connection line of the two ears (vectorAB
�!

) is set
as the origin of the plane-coordinate system. The direction from the origin to the point of the
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EMA Audio
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-0.5
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Ultrasound Audio

Fig. 4 Signals of two different audio files corresponding to the EMA data (top) and ultrasound data (bottom)
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nose (point C) is the direction of the X-axis. The Y-axis is perpendicular to the X-axis, pointing
down from the nose to the tongue.

To convert the 3D EMA data to 2D data, we project the other EMA points onto the mid-

sagittal plane and obtain the plane coordinates. After given a point P
!

X ; Y ; Zð Þ, we can obtain
its projection point P

!
0 X 0; Y 0; Z0ð Þ on the mid-sagittal plane. P0

�!
is calculated by the

following formula.

P
!

0 ¼ P
!þ at; bt; ct½ � ð2Þ

Here, a, b, and c are constant in Eq. (1) and t is defined by:

t ¼ − aX þ bY þ cZ þ dð Þ
.

a2 þ b2 þ c2
� � ð3Þ

where X, Y, and Z are the coordinates of point P
!

and a, b, c, and d are constant in Eq. (1).

2) Transforming the coordinates:

After determining the mid-sagittal plane of EMA data and transferring the points
onto it, we can say, the EMA and ultrasound coordinates are in the same plane.
Simple coordinate transformation is used here by performing three steps: scaling, rotation, and
translation.

Once the point P
!

0 on the EMA coordinate is known, we can use the coordinate transfor-

mation as follows to obtain the new coordinateP
!

uin the ultrasound coordinate system.

P
!

u ¼ s� P
!

0 � r
� �

þ t ð4Þ

where s, r, and t are parameters corresponding to the values of scaling, rotation, and
translation, respectively, s is a constant that represents enlargement or reduction during the
coordinate transformation, r is the degree representing the angle of rotation, and t is a vector
representing the distance and direction of translation.

Among the three parameters above, the scaling value s is a certain value which can
be decided in the following way. The unit length is 1 mm in the EMA system. In
order to calculate the value of the scaling parameter, we need to know the unit length
of the coordinate system of the ultrasound image which corresponds to 1 pixel in an
image. When we configure the parameters of the ultrasound image, we set the depth
(the height of the sector) as 8 cm as is shown in Fig.5. This enables us to calculate
the unit length of the ultrasound image, which is 0.223 mm, and the scaling parameter
s is 4.4875 in the coordinate transformation.

3) Locating the reference image and adjusting the other images automatically:

Firstly, a reference image corresponding to the silent posture is selected and then the
parameters of translation and rotation are manually selected to match the EMA data to the
ultrasound image. For the same sentence shown in Fig. 4, the reference image is chosen and
the mapping result is shown in Fig. 6. The rotation degree is −20° and the translations along the
X- and Y-axes are −10 and 90 pixels, respectively.
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After selecting the reference image, we obtain the position of the probe as a reference. For
the other images, the translation of the probe means the translation of the image. Thus, the
position of each sensor is determined by subtracting the translation of the probe as a

42.5 pixels

401.5 pixels

8cm

Fig. 5 Scan depth of ultrasound
signal for the ultrasound imaging
system as indicated by the distance
between the two red lines

Mapping Result
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Fig. 6 Reference image and mapping result. The red, white, green, and yellow points represent the four sensors
pasted on the tongue. The blue line is the result of interpolation between the four points
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complement. This approach enables us to reduce the effect of the moving probe. Figure 7
shows the result before and after the complementary process, whereas Fig. 8 shows the
mapping result of the sentence as a function of time.

3.4 Validation

Verification of the precision of the method requires us to quantify the distance between the
EMA mapping results and the real contour of the tongue. A tool named EdgeTrak is used here
for extracting the contour of the tongue semi-automatically [10]. Although EdgeTrak needs
several manually selected contours as a reference, which will undoubtedly introduce errors, it
is a preliminary and a convincible method for validating the mapping results.

In total, 365 ultrasound images are used for calculating the average error using the
following equation:

Errave ¼

Xk

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xcð Þ2 þ yi−ycð Þ2

q
k

ð5Þ

where (xc,yc) and (xi,yi)are the coordinates of the reference points on the labeled contour of the
EMA points respectively, k represents the total number of points, and the average error is 1.8 mm.

3.5 Date set description

In this study, we recorded data for three subjects. One of the subjects recorded 350 sentences,
which included a one-hour dataset. The other two subjects each recorded 100 sentences that
included 20–30 min of data. The corpus we used is a Chinese speech database designed for
speech synthesis applications as described in the previous section. The data was preprocessed
by performing de-noising and data cleaning. The annotation was conducted manually.
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Fig. 7 Mapping result a without and b with the complementary process
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Fig. 8 Mapping results of the sentence at different times
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4 Modeling the tongue movements

4.1 Active shape model

Active Shape Model (ASM) has been successfully used to automatically track objects from
images. ASM was proposed by Cootes and Taylor in 1995, as a statistical point distribution
model (PDM) [4]. The shapes of the object are represented by a set of points (controlled by the
shape model). The ASM algorithm is targeted at matching the model to an unseen image. This
approach has been widely used to analyze images of faces [9], mechanical assemblies, and
medical images (in both 2D and 3D).

An ASM describes the image shape of the object of interest by obtaining a statistical shape
model in examples from a training set. ASM minimizes the difference between the synthesized
image from the model and an unseen image by tuning the model parameters, when it is applied
to image interpretation or segmentation [1, 3, 8, 14, 19, 20, 21]. The vocal tract shapes
obtained from articulatory images can be applied to acoustic simulations [7].

The ASM was built in the following steps of our study [3]. Before implementing ASM, the
contours on the mid-sagittal ultrasound images of the tongue shape were semi-automatically
annotated for both static vowels and vowel-vowel (VV) sequences by the tool EdgeTrak [10].
In order to find the relationship between different frames, the EMA points are used as identical
points in different ultrasound images which also play the role of segmenting the tongue contour
into a small piece from the tongue dorsum to the tongue tip as shown in Fig. 9. All those labeled
images were adopted to form the training set. In the training set, n evenly distributed points were
used to describe each contour of the tonguewhere n = 41. We define xi = (x1,x2,…,xn,y1,y2,…,yn)
as the i-th contour, where (xk, yk) are the coordinates of the k-th point.

Firstly, we calculated the covariance matrix of the adjusted shape vectors. The covariance
matrix is defined as follows:

S ¼ 1

N

XN
i¼1

xi−x
� �

xi−x
� �T

ð6Þ

where x is the mean shape of all the vectors in the training set [4].

Mapping result of vowel /a/

Tongue contour
Tongue dorsum
Tongue tip

Mapping result of vowel /a/

Tongue contour
Tongue dorsum
Tongue tip

(a) (b)
Fig. 9 Tongue contour a before and b after segmentation by the EMA points (tongue tip and tongue dorsum)
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Secondly, we calculate the eigenvalue sequence of S = (λ1, λ2, …, λn), where λi≥λi+1, and
where i = 1,2,…n-1. We choose the first t eigenvalues under the following conditions

X t

i¼1
λi

,X m

i¼1
λi≥90% ð7Þ

Then, we calculate the corresponding eigenvector of the first t λi to form P, recorded as
P = (p1, p2, …, pt).

After we obtain the mean shape vector x and the eigenvector P of the training set, our
tongue shape model can be expressed asx ¼ xþ Pb. Thus, we can obtain a b vector of a
certain shape through the known model, b = (b1, b2, …, bt). At the same time, if we have a
known b, we can also obtain a certain tongue shape.

4.2 Experiments and results

4.2.1 Initialization of the ultrasound images and tongue labeling

In our experiment, the training set contains a total of 145 mid-sagittal ultrasound figures of/a/,/
i/and/u/, which include dynamic tongue shapes in articulation. A total of 41 points were used
to represent each contour of the training set.

4.2.2 PCA analysis of the training data

After processing the training set, we conducted the PCA analysis to extract the parameters of the
following model and calculate the mean shape of the training set. The result is presented in Table 1.

Table 1 Contribution of the first two factors

λ Eigenvalue Percentage Accumulated
percentage

λ1 32,438.24 71.32 % 71.32 %

λ2 11,046.71 24.29 % 95.61 %

vowel /a/

 

 

Original Contour
 Reconstructed Contour

vowel /i/

 

 

Original Contour
 Reconstructed Contour

vowel /u/

 

 

Original Contour
 Reconstructed Contour

(a) (b) (c)
Fig. 10 Original and reconstructed tongue contour of vowel (a)/a/(b)/i/(c)/u/
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We choose the first two eigenvalues to be the main factors; the accumulated contribution
rate reached 95.61 %, as shown in the Table 1. Then, we calculated the corresponding pi
(i = 1,2), and obtained one of the parameters P = (p1,p2) of the ASM of our dataset. The tongue
ASM was built by these coefficients.

4.3 Synthesizing tongue shape by using ASM

The tongue shapes were synthesized by using the ASM model described in the last
section. The results are shown in Fig. 10, in which the reconstructed tongue shapes
are compared with the original annotated tongue shapes of three isolated Chinese
vowels/a/,/i/, and/u/. Thus, these results denoted that our approach is feasible for
synthesizing articulation. The main cause of the differences between synthesized and
real shapes is that only the first two components have been adopted in this ASM
modeling procedure. The averaged error calculated following equation (5) over 40
points along the tongue contour is 1.26 mm, where k = 40 × 145 indicates the total
number of sample points along the contours.

5 Conclusions

This paper introduces our acquisition system for observing ultrasound images and EMA data,
which we analyzed and combined into a single dataset. The data combination procedure
involved synchronization of these two datasets using the audio files from each set as reference
to determine the alignment image with both the EMA information and ultrasound image. A
dataset that included ultrasound and EMA data recorded by three subjects was built by using
this data recording system and data fusion protocol.

We also proposed a method to synthesize the shapes of the vocal tract by using the
recorded dataset. We trained a set of parameters of the ASM-based model to control
the deformation of the shape of the tongue, thereby facilitating the determination of
the relationship between different frames. Furthermore, we realized the synthesis of
tongue shapes by interpolating the control parameters of the ASM-based model.
Finally, we evaluated our method by carrying out a comparison between the synthe-
sized and real tongue shapes. The results indicated that our method has the capability
to reconstruct tongue shapes with errors not exceeding 1.26 mm, indicating that the
system could be applied for vocal tact visualization in the future.
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