Multimed Tools Appl (2017) 76:1139-1157 CrossMark
DOI 10.1007/s11042-015-3019-1

Energy-aware and intelligent storage features
for multimedia devices in smart classroom

Mehdi Pirahandeh! - Deok-Hwan Kim!

Received: 27 March 2015 / Revised: 4 September 2015 / Accepted: 19 October 2015 /
Published online: 1 December 2015
© Springer Science+Business Media New York 2015

Abstract With the recent big-data processing in multimedia devices becoming a popular
application, a fast and energy efficient storage area network system for smart classroom
is required. Traditional storage management system for smart classroom show low perfor-
mance when small read and write operations are executed. This paper proposes a smart
classroom storage management system (SCSMS) which consists of new adaptive chunk-
ing and XOR reference matrix based erasure coding techniques for multimedia devices
with higher input/output performance and low energy consumption. The SCSI initiator is
installed in multimedia devices such as smart TVs, smart phones and personal computers.
The proposed adaptive chunking and exclusive-or (XOR) reference matrix-redundant array
of inexpensive disks (XRM-RAID)are provided at a target server based on flash array stor-
age, respectively. Adaptive chunking differs from traditional chunking in that it reduces the
number of read and write operations by merging small files into a united chunk. XRM-RAID
differs from existing RAID in that it reduces the number of XOR operations to generate par-
ity data in the RAID system. This paper provides web based monitoring application of the
proposed SCSMS. Experimental results show that the energy consumption of the proposed
SCSMS is improved by 32 %, 42 % and 58 % compared to Huang et al., Kim et al. and
Scott et al. with respect to file size and buffer size. In terms of the average write throughput,
the proposed SCSMS has higher performance by 22 %, 32 % and 56 % compared to Huang
et al., Kim et al. and Scott et al. with respect to file size and buffer size.

Keywords Smart classroom - Multimedia storage - Erasure coding - Chunking strategy -
Energy consumption

> Deok-Hwan Kim
deokhwan@inha.ac.kr

1" Department of Electronic Engineering, Inha University, Incheon 402-751, South Korea

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-015-3019-1&domain=pdf
mailto:deokhwan@inha.ac.kr

1140 Multimed Tools Appl (2017) 76:1139-1157

1 Introduction

Nowadays, data sharing among multimedia devices in smart classroom using storage area
network becomes popular [7], and the need for high throughput and low energy con-
sumption increases sharply [3, 8, 9, 18, 19]. The smart classroom storage management
system(SCSMS) consists of context-aware data initiator, storage network, chunking strat-
egy, erasure coding/replication mechanism and services management.Types of the storage
network, chunking strategy and erasure coding mechanism poses the challenges in term of
small input/output(I0) and erasure coding performance to develop storage management sys-
tem for smart classroom. The proposed SCSMS is compared to existing frameworks in terms
of storage network, chunking strategy and redundant array of inexpensive disks(RAID)
specifications in Table 1. To process information easier, chunking strategy is used to group
large amounts of information into manageable small units in storage management sys-
tem for smart classroom. Huang et al. [9] and Scott et al. [18] are applied traditional
block based chunking strategy(TBC) whereas Kim et al. [19] is applied traditional object
based chunking (TOC)strategy. These traditional SCSMSs show low performance when
small input/output(IO)operations are executed. Storage network provides a transformation
channel to store data from multimedia devices into smart classroom storage system. For
example, students and teachers can download data content (e.g. Audio files) with set-top
boxes (STBs), and store the content in a storage management system for smart classroom
[7, 18]. The stored content can then be accessed by the other multimedia devices (e.g. cam-
era). Huang et al. [9] uses Network-attached storage (NAS) and Scott et al. [18] uses peer to
peer(P2P) network whereas Kim et al. [19] uses cloud environment. Storage networks such
as NAS and P2P network performance are varied based on their bandwidth size. To provide
data redundancy, storage management system for smart classroom employs RAID storage
virtualization technology. RAID combines multiple physical disks into a single logical unit.
RAID 1 provides replication of data by coping data from original physical disks into backup
physical disks. However, traditional RAID 5 and RAID 6 are used in Huang et al. [9] and
Kim et al. [19], they provide data redundancy by employing erasure codes(EC) using expen-
sive XOR and multiplication operations between data vector and coding matrix. Erasure
coding requires huge dedicated computing processors and memory space.

This paper proposes a new adaptive block based chunking strategy(ABC) and XOR
reference matrix (XRM) based erasure coding techniques for smart classroom storage man-
agement system. The proposed SCSMS consists of initiator devices, target server with all
flash array storages and high-speed storage area network(SAN). Multimedia devices such
as smart camera, smart table, smart board, smart TV, smart phone and personal computer
are connected to flash array storage server through an Internet Small Computer System
Interface (iSCSI) initiator. The proposed chunking technique merges the small files into a

Table 1 The comparison of the developed storage management system for smart classroom

Smart classroom system Storage network Chunking strategy RAID Spec.
Huang et al. [9] NAS TBC EC/Replication
Scott et al. [18] P2P network TBC -

The proposed SCSMS SAN ABC XRM-RAID
Kim et al. [19] Cloud TOC EC/Replication

@ Springer

Multimed Tools Appl (2017) 76:1139-1157 1141

united block where the size is equal to the buffer size, which decreases the number of phys-
ical read and write operations. In addition, exclusive-or (XOR) reference matrix-redundant
array of inexpensive disks (XRM-RAID) implemented at the target storage server provides
resistance against data failure. XRM-RAID generates parity data by using XOR reference
matrix rules, XRM algorithm and an XRM table. It reduces the number of XOR operations
to encode and decode data in storage management system for smart classroom.

2 Background

Three major types of the storage management system for smart classroom are used to man-
age read and write operations of the multimedia devices as shown in Table 1. We discuss
the pros and cons of these existing storage management system as follows,

(1) Huang et al. [9] designed a Network-Attached Storage(NAS)which provides an easy
way for data sharing and backup among multiple multimedia devices in home net-
works. This paper provides a write-back policy for home (or classroom) NAS called
TESA. TESA considers both temporal and spatial information of the dirty buffers to
improve IO performance.

(i) Scott et al. [18] presented a storage system for smart classroom when various learn-
ing devices(eg. camera, personal computer) use dynamic peer to peer(P2P)storage
network to share and store data.

(i) Kimetal. [19] proposed a context-aware learning system such as classroom in a cloud
computing environment. Four smarts elastic functions(E4S) such as smart pull, smart
prospect, smart content, and smart push are designed to share and store information
from various multimedia devices into a cloud storage.

2.1 Effect of chunking strategy in smart classroom storage management system

In the traditional chunking technique used in smart classroom storage management system,
an input workload F splits a file directly into a chunk or many chunks [4, 6, 10, 12]. How-
ever, if current file f; has a file size less than the given buffer size, the last part of the chunk
is filled with zero bits. The number of read operations using traditional chunking y;eqq is
derived from (1). The symbols m, last, and i denote the number of small files, the total
number of files and the index file in workload F. The total number of write operations is
calculated by summing the numbers for parity data and y,qq [1, 2, 11, 13, 15, 21].

last

Yread = Z SiZEOffi + m. (1)

il buffersize

This paper categorizes data file into small file and large file. If the file size is less than the
buffer size, it is called as small file. Otherwise, it is considered as a large file. Figure 1 shows
the read performance of small files sized between 44 % and 67 % of large files with respect
to four SSD manufacturers. The results also shows write performance of small files sized
between 37 % and 61 % of large files with respect to four SSD manufacturers. Flash array
storage in terms of life cycle and IO performance is significantly relevant to the number of
updates, erase operations, and read and write operations [4-6].

@ Springer

1142 Multimed Tools Appl (2017) 76:1139-1157

600 - | IIIE write Small Files | | === read Small Files |---.---......._..
write Large Files || NSl read Large Files .
e S § s o I
K B 5 5 : : : :
ST NN/ NN U 30 WSSO G 3 MO
@ ' ']] ' ' ' |
w H H : : H H H |
jus) . .) . . . !
= : : : : |
e s (S S N (R (R
o ' ' ' il ' ' |
N - ' '] ' ' ' |

o ' ' ' ' ' ' '
g : : E : : : :
£ soof il R R R
O L [[- -
I I i I i I i | |

Samsung Apacer SanDisk Kingston

SSD Manufactureres (240 GB)

Fig. 1 Read and write performance of small and large files

2.2 Effect of erasure coding in smart classroom storage management system

In Huang et al. [9] and Kim et al. [19], traditional SCSMSs employ various erasure coding
schemes called parity”. Erasure coding is a widely used technique in information tech-
nology to provide fault tolerance for the data. Most schemes use a simple XOR operation,
but recent RAID 6 scheme uses two separated parities. These parity elements are gener-
ated using addition and multiplication in a particular Galois Field or various type of erasure
codes. For instance, RAID 6 requires lower space than data replication in a RAID 1 system.
The erasure codes demonstrate a range of performance in terms of encoding time, access to
memory, CPU overflow, space efficiency, and resilience to failure. Li, Shu et al. [4] catego-
rized the erasure codes into various types such as Reed-Solomon codes, parity array codes
and parity check codes based on their encoding methods. Parity check codes were con-
structed based on single parity check (SPC) codes [8, 21]. The two-dimensional horizontal
and vertical parity check (HVPC) codes are a typical representative of parity check codes
[14, 16]. SPC codes are completely based on the number of XOR operations. An HVPC
erasure code structure with m x n data elements [4, 14, 20]. This structure includes m strips,
n disks and p is the number of parity disks. All data and parities have an equal element size.
The encoding process used in erasure codes is achieved by doing bit matrixivector opera-
tions in Galois-Field Arithmetic, where the data elements are defined as the vector, and the
parity elements are defined as the erasure codes [3, 4, 8, 17]. Because there are only ones
and zeros in the coding matrix for creating the bit matrix, the matrix-vector operations are
defined based on exclusive-or operations. Therefore, the performance of the erasure code
depends strongly on the number of XOR operations conducted during the encoding execu-
tion [5, 20]. The encoding matrix equation is described based on previous research [4, 6],

@ Springer

Multimed Tools Appl (2017) 76:1139-1157 1143

(D|C) = DG = D x (I|H), where generator matrix G = (I|H) is composed of I with
wn X wn bits and H with pw x wn bits. Code words (D|C) consist of wn data bits and wp
parity bits.

3 The proposed smart classroom storage management system

Figure 2 shows an overview of the proposed smart classroom storage management system.
This system, being supported by underlying storage area network (SAN), can store and
retrieve data from multimedia devices such as game console, CCTV, video camera, smart
camera, smart table, smart board, audio player, phones, tablets and portable computers.
Smart classroom users can also monitor and manage SCSMS storage performance through
a web based application. The proposed SCSMS consists of various software components as
follows,

Data initiator Figure 3 shows the process of gathering data files from various multimedia
devices deployed in smart classroom environments. Data requests from local USB HUB
and remote iSCSI initiator will be queued at context aggregator. Then, data files will be
passed to the next component through the context aggregator function. This component also
provides all data share platform.

Adaptive chunking This is a kind of intelligent processing component. The context or
data is defined as a collection of information characterized by a group of people and gath-
ered from multimedia devices in a smart classroom during the specific period of times. The
adaptive chunking assorts data files and merges small files into a united chunk and splits
large files into several data chunks so that it can decrease the number of read and write oper-
ations. Then, data will be passed to the next component through the data element aggregator
function.

XOR reference matrix (XRM)-RAID This component provides the fault tolerance
against disk failure for data stored from the data element aggregator. This paper proposes
XRM-RAID, which strips data into data disks, and generates parity data and strips parity
data into the parity disks. XRM-RAID generates parity data by using XRM rules and an
XRM table. An XRM rule is used to reduce the search scope of the encoding and decoding

z Data Adaptive Service
&)— ‘ll Initiator | Chunkin, ALRALD Management “;e(tj)sbl\zjlssed
g i = i i n ey gL
£ <t e Data Disks iSCSInitiator|| \onitoring
=™ E g Strqumg Service
slw 7 S =
2| %, Tl c o o
HES ‘ T a|l= Splitting | p> Parity €| Adaptive = il
BT r.»,-:g. || | [Large Files =|| calculation ||Z] Chunking anl
e l@ =]Ig 2 g ' > Service _
= £|[3 &|| Merging 2l xrM 2 Fall
‘ 23 ||F Small Files 2|| Algorithm = || XRM RAID e
ol § 8% Service
5:=] g @ Parity Disks
A 2] Strippin,
2/ =

Fig. 2 Overview of the proposed smart classroom storage management system (SCSMS)

@ Springer

1144 Multimed Tools Appl (2017) 76:1139-1157

ﬁ
Teachers a“a @ Students
Multimedia devices for learning in smart classroom
grart table SEE TR SmartControl ~ Allshared platform
>,

: e o ﬂ-» Tablet
St

_T/ : e

Other multimediadevices in smart classroom

h. * & B s

Output/Input data
3 eI ES l.'ﬁ:I_ 3 E

‘ﬁ y— EE=E - IEE: ‘ﬂ) |

Fig. 3 Data interaction between multimedia devices and users at data initiator for smart classroom

aldenciladadiae o
3]
I
o
<

process when the word size is large. Then, the XRM table is applied for parity calcula-
tion instead of using real XOR operations. The XRM table stores the results of the XOR
operations when the word size is less than four.

Service management Service agent selects the correct storage services based on the
current state of multimedia devices and storage system infrastructure for smart classroom.

4 The proposed storage features for multimedia devices in smart
classroom

Energy consumption and IO performance in a SAN system highly depend on the number
of XOR operations to generate parity data and the number of updates, erases, and read and
write operations. The target storage server consists of an iSCSI target, adaptive chunking,
XRM-RAID and flash array storage. Figure 4 shows the overall architecture of the proposed
SAN system. The proposed SAN system provides storage space for multimedia devices
such as smart camera, smart table, smart board, smart TV, tablet, smart phone and personal
computer which used in smart classroom.

4.1 Adaptive chunking

The proposed adaptive chunking arranges small files in the separated workload by doing an
in-place update. The in-place update requires information such as workload type, file size,
chunk size, IO buffer size, file system type and volume size. The flash-based target storage
system enhances IO performance and energy efficiency by decreasing the number of updates
and read/write operations when the workload has many files that are smaller than the buffer
size. Therefore, we propose adaptive chunking to decrease the number of read/write oper-
ations by merging small files into a chunk where the size is equal to the buffer size. And

@ Springer

Multimed Tools Appl (2017) 76:1139-1157 1145

Local Smart Classroom (SC) l

'. Smart board Smart Control Remote SC

| iSCSI initiator Régln(: g;e crcsess
gateway Inten'et
~ ﬂ*‘—@ w (.
T Storage Server
Storage i l l'" =
Network o et Remote access

Flash Array Storage

| SSD o SSD _J= == o SSD

"SYS

w | Smart
=& phones

Fig. 4 The proposed SAN for smart classroom

so, adaptive chunking also splits a file into many chunks when the size is equal to or bigger
than the buffer size. As a result, the internet small computer system interface (iSCSI) ini-
tiator transfers chunks into the iSCSI target server through a storage network appliance. In
adaptive chunking, workload F={ fi, f2, f3, ---s fms fm+1s s flast} 18 classified into work-
load Fyu={ f1, f2, f3, ..., fm} and workload F,={ fin+1, fin+2, s flast} (F = Fy U Fy and
= F, (N F). In workload F,,, many small files are merged into one chunk using adap-
tive chunking, and in workload F;, a file will be split into many chunks. Let us set the
chunk size and threshold value as a maximum buffer size. In Fig. 5, the proposed method
classifies workload F into F, and F,, workloads based on the threshold value. And so, the
proposed adaptive chunking merges several small files in F}, into a chunk that eliminates
the small IOs and splits several large files F, into many chunks, which prevents the last part
of the chunk from being filled with zero bits. This paper also measures the effect of adaptive
chunking in the SCSMS application where m denotes the number of files with a size less
than the threshold, and r denotes the number of files with a size bigger than the threshold.

last .
, sizeof f;
= — . 2
Vread (12; threshold) @
Note that, ¥/, , denotes the number of reads using adaptive chunking in (2). In the pro-
posed method, the number of reads becomes less than the traditional method (Vyeqq >

yr’ eaq)- As a result, for input workload F, we have a condition where, as the m value
increases, then y/,, significantly decreases.

4.2 XRM-RAID
iSCSI is an Internet protocol based storage networking standard for connecting data storage

equipment. In an iSCSI target, a logical unit number (LUN) is a storage device number
addressed by the SCSI protocol in the storage network. Figure 5 also shows the proposed

@ Springer

1146 Multimed Tools Appl (2017) 76:1139-1157

Workload F File system Level Device Driver Level SAS
Adaptive Chunking XRM-RAID =
[ror | &
o)

~ : i) 20 7

—F 3| |m|2, z Sl =]
= & 8 =| & S EAREERE-0

g 3|S5 EEISR (S[C1B[B] V[

[ooc oS |8 |2 BLEIEERJE[=I8lLE %
w— fo PN IR S E S n
= | S S 2SHE|IS(REC e Fla

1) = AR A | alSF x| (5HF = =8

o alF |2 [dPSls|28 925|892 i)
2 = SRl <2 2R 5] TIRI|S o
O@EE@x > E\' QA N

o o=

= 177 & dmd = |z
3 Jus o ks

Fig. 5 The proposed iSCSI target storage server architectures

XRM-RAID structure and how it interacts with Linux mdraid device drivers. XRM-RAID is
proposed to reduce the execution time of XOR operations and memory requirements when
calculating the parity data. The XRM scheduler will write and read information by stripping
through Linux mdraid device driver from/to the flash array storage. The first step is to
calculate the sequences of XOR operations in HVPC erasure codes. The second step is to
avoid performing a real XOR operation for each pair of sequences by applying XRM rules or
retrieving data from the XRM table. The complexity of the XRM table calculation increases
when word size increases. Therefore, XRM rules are presented to restrict the search scope
and overcome the complexity of the XRM table calculation. We proposed XRM rules (1-
6) in our previously research [16]. However, XRM rules (7-9) and XRM algorithm are
proposed in this paper.

XRM rules and XRM table Figure 6 gives an example of the XRM table generated
from the possible XOR operations between operands a and b when the word size is equal
to four. The properties of the XRM table are analyzed, and these properties are used
to adopt encoding processes for various ranges of storage system scales. Let w? be the
size of a binary data block, where w = 4, 8, 16, ..., 1024, 2048. Each w? binary block
can be represented as an equivalent decimal number a, b and ¢, where operands a,b and
cef0,1,..., w? — 1}.a® b = c, where c or C,j, is the result of an XOR operation between
the operands a and b. Based on these general conditions, the XRM rules are extracted as
follows:

Rulel :ifb=0,and0<a <2¥ —1,thena ® b = a.

Rule2 :ifa=0,and0 <b <2¥ —1,thena ® b =b.

Rule3 :ifa=b,and 0 < (a,and b) < 2% — 1,thena @ b = 0.

Rule4 :ifa+b=2"—1,and0 < (a,and b) < 2% — 1,thena® b =2" —1.
Rule5 :ifa=2¥Y—1,and0<b <?2¥ —1,thena® b =2% —1—b.

Rule6 :ifb=2"—1,and0 <a <2¥ —1,thena ®b=2% —1—a.

Rule 7 : The result location, C, 5, can be searched among four parts of (A), (B), (C) and
(D), where if a or b is less than 2¥~!, the result location is in parts (B) or (C). On
the other hand, if @ and b are larger than 2%, the result location is in part (D).

Rule 8 : As shown in Fig. 6, the symmetric characteristics divide the XRM table into (A),
(B), (C) and (D) parts. Parts (A), (B), (C) and (D) have the same XOR operation

@ Springer

Multimed Tools Appl (2017) 76:1139-1157

1147

0ol1]2]3[4]5]6]7]8]9]10/n1]12]13][14]15
0/o 1 2 3 4 5 6 7|8 9 1011 1213 14 15
11 0 3 2 5 4 7 6|9 8 11 10 13 12 15 14
(202 3 0 1 6 7 4 5|10 11 8 9 14 15 12 13
33 2 L A 6 5 ¢4|n 09 P M B 12
414 5 6 1 2 3|12 13 14 g 9 10 11
's|s 4 7 6 1 0 3 2[13 121514 9 8 1110
6/6 7 4 5 2 3 0 1[14 151213 10 11 8 9
717 6 s 3 02 1 015 14 13 12 11 10 9 8
88 9 1011 1213 1415/0 1 2 3 56 7
(99 8 111013 1215 14[1 0 3 2 4 7 6
'10/10 11 8 9 14 15 12 13[2 3 0 1 7 4 5
1)1 10 9 P ¢ 2|3 2 1 gl ¢ 5
12]12 13 14 9 10 114 5 6 b 1 2 3
1313 12 15 14 9 8 11 105 4 7 1 0 3 2
14]14 15 12 13 10 11 8 9|6 7 4 203 0 1
115[15 14 13 12 11 10 9 8|7 6 5 32 1 0

Fig. 6 XRM table, where w =4

result value. Using this benefit, the size of the XRM table can be reduced to 50 %
less than the actual size. The result from part (D) can be relocated to part (A) by

applyinga =a — 2" 'andb =b—2""".
: As shown in Fig. 6, parts (A) and (C) or parts (A) and (B) have a similar pattern.

Rule 9

By subtracting an offset, 2!, the same result value of their XOR operations can
be obtained. Therefore, the search scope of the XRM table can be narrowed down
by applyinga =a — 2" 'orb=5b—2""",

If C, p is located in part (B) of the XRM table,
Ca’b = Ca_2w—l’b+ 2““1;
where, 2w_1=Ca,b—Ca_2w71,b ;

If C, p is located in part (C) of the XRM table,
Cap=Cypypur+2"" 1
where, 2“’_1=Ca,b—Ca,b_2w71;

XRM algorithm As shown in Table 2, the XRM algorithm uses symmetric rules 1 to
9 to calculate the parity chunk. The XRM algorithm notations, functions and details are
described as follows. Recall that for a given word size, w, and the number of data disks,
n, there are n-1 sequences of XOR operations between the data chunks within a horizontal
strip consisting of two decimal data blocks, P and D; . Note that results of each XOR
operation are stored in a parity chunk P, where P denotes a corresponding parity chunk. For
each iteration, by applying rules 7, 8 and 9 instead of performing an XOR operation, carry
is calculated to set the relocation offset. The XRM algorithm is built on three functions.

@ Springer

1148 Multimed Tools Appl (2017) 76:1139-1157

Table 2 The pseudo-code of the XRM algorithm
Algorithm: XRM(D[n],n,w)
Input
Din]: data chunks
n: the number of data disks
w: word size
carry: an offset value
Output
P: parity chunk

1. carry = 0; P = D1;ws = w;
2. for (j =1;j<n;j++) /* n-1 number of XOR operations */
3 while ((w > 4)
4. if XRULES(P, Dj41,w) is not NULL) /* Rules 1-6*/
5 P= XRULES(P, D 1, w);
6 break; /* break the inner loop */
7 else if (w > 4)
/* XRM Rules 7 and 9 */

8. if (Location (P, Dj41) is equal to Part B or Part C)
9. Dj+1 = Dj+1 — 2“’71;
10. carry = carry + 2@~ 1;
11. P = P + carry;
/* XRM Rules 7 and 8 */
12. elseif (Location (P, Dj11) is equal to Part D)
13. pPp=p—-2w-1
14. Djy1=Djyq —2¥— 1
15. w — —; /* Narrow down search scope */
16. else if (w = 4) P = XTable (P, Djy1,w);
17. endwhile
18. w = ws; /* Reset the word size value */
19. endfor

20. returns P;

e XRULES(a, b, w). The function applies rules 1 to 6 for given input decimal values, a, b
and word size w. The function outputs the results of the XOR operation between a and
b, or NULL if the given input values are not valid.

e XTable(a, b, w). The function searches the XRM Table for given input decimal values,
a, b and word size w, and outputs the result of the XOR operation between a and b, or
NULL if the rules are not applied to the given input values.

e Location(a, b). The function outputs the location of the XOR operation result between
a and b, where it can be in parts (B), (C) or (D) with the corresponding values, B, C or
D, for given input decimal values, a, b. Note that this function is based on XRM rule 7.

Table 2 lists the pseudo-code of the XRM algorithm using the rule-based erasure coding
mechanism. The algorithm retrieves the parity chunk P from a sequence of XOR operations
between the data chunks in a strip. To achieve this, the XRM algorithm uses the function
XRULES, the function Location for symmetric rules 7, 8 and 9, and the function XTable

@ Springer

Multimed Tools Appl (2017) 76:1139-1157 1149

instead of performing real XOR operations. Variables in line 1 are initialized. During the n-
1 number of XOR operations among n data chunks, the parity chunk is obtained. For each
XOR operation, there are three conditions, of which only one needs to be satisfied.

The first condition in lines 4 and 5 apply rules 1-6 using the XRULES function, and the
result of XOR will be stored in parity chunk P. In the second condition located in lines 7-
15, XRM symmetric rules 7, 8 and 9 are applied, while word size is more than four. During
each cycle of the while iteration, as the value of word size decreases, the search scope of
XRM is narrowed until the parity chunk P is obtained. Under this condition, an attempt is
made to determine the location of P in the XRM Table from four different parts by applying
rule 7 using the Location function. In lines 8-10, P location is relocated using rule 9 by
decreasing the P or D value. In lines 12-14, the P location is relocated by applying rule
8. The word size is then reduced, and the value of P is updated.

In the last condition located in line 16, if XRM rules 1-6 are not applied and w = 4, the
value of P can be retrieved from the XRM table using the XTABLE function. In line 18,
after each while loop is done, we need to reset the word size. Finally, in the last line, the
parity chunk P is returned.

XRM scheduler The erasure codes protect data from failure in storage systems by recon-
structing the lost data. Data failures occur for various reasons, such as disk failure, sector
failure and component failure [1, 11, 13, 15]. Encoding is also a calculation of coding infor-
mation from the actual data and generating parity and data elements [1]. Table 3 describes
the pseudo-code of the proposed XRM scheduler at the target storage server. In the first
loop, the XRM scheduler reads chunks from the iSCSI target. Note that chunks are arranged
using adaptive chunking at the initiator server. In the second iteration, data chunks are writ-
ten into data SSDs in advance. Then, the XRM algorithm is used to generate parity chunks
from data chunks. In particular, the XRM rules and table are applied to reduce energy con-
sumption and the time complexity of erasure coding. Finally, parity chunks are written into
parity SSD, respectively. The throughput of such a storage system is typically described by
the rate between strip size and encoding time in (3).

workloadsize
Throughputyrite = ——————————. 3
encodingtime
Eencoding = twaken€waken T tactive€active T tidie€idle + tcoding€coding- 4
tactive = tread + twrite- (5)
Edecoding = twaken@waken + lactiveCactive + tidle€idle + tcoding€coding - (6)

In terms of energy efficiency in the SSD-based 10 scheduler, SSDs have various power
modes, such as ON, OFF, sleep, active and idle. The SSD stays in active mode dur-
ing read and write operations, and during the rest of the time, the SSD will automatically
be in idle mode. The proposed technique removes many small random read/write opera-
tions and reduces the number of CPU cycles to encode and decode data. The total energy
cost of encoding E,ucoding 18 calculated in (4) and (5), where tyaken » tidle » tcoding » and
tacrive are denoted as the time to wake up the SSD, the idle time, the time to generate
parity, and active time, respectively. The total energy cost of decoding Ejecoding is calcu-
lated in (6). The power consumption for waken, active and idle modes are denoted as
€waken »> €active> and €;41.. And so, the power consumption of coding and decoding (ecoding,

@ Springer

1150 Multimed Tools Appl (2017) 76:1139-1157

Table 3 The pseudo-code of the proposed XRM scheduler

Algorithm: XRM Scheduler(Data chunks, last,w,n)
Input

Data chunks: a data file with a name and type.

last: Total number of data chunks after adaptive chunking.
3: The number iteration is equal to 8 = laTSt

CH|[][n]: Two dimensional decimal data chunks;

w: Word size;

n: The number data disks;

Parity[B] : One-dimensional decimal parity chunks;

/* Data chunks initialization */

1. for (i=1;i<Bsi++) /*

2. for (j =1, <mj++) /*
/* Adaptive chunking merges and splits data into chunk array
CHI|i][j] with an equal chunk size */

3. read Data chunks from host and allocate it into C'H[i][j].

4. endfor

5. endfor

/* Parity creation using XRM algorithm and IO redirection */

6. for (i =1;i<B;i++) /*

7. for (j =1, <mj++) /*
/* Stripping data chunk through Linux mdraid device driver */

8. write CH[i][j] into Data SSD[j].

9. endfor

10 Parity[i]= XRM(CH][i],w,n). /* Parity creation */

/* Stripping parity chunk through Linux mdraid device driver */
11. write Parity[i] into Parity SSD.
12. endfor

edecoding) depends on the number of XOR operations and CPU cycles. Calculating eyqken
and tyaen are excluded from (Eencodings Edecoding) because SSD does not stay in awake
mode during the encoding and decoding processes.

5 System design and implementation

XRM-RAID is implemented under the CentOS operating system using open source Jear-
sure code software [11, 13, 15]. Figures 7, 8 and 9 show the detail implementation of
SCSMS application. Figure 7 shows screen shot of monitoring application when smart
phone initiator is connected to the target server. Figure 8 shows screen shot of monitoring
application when the iSCSI target is running successfully. Finally, Fig. 9 shows web based
SCSMS application for displaying the read and write performance, and energy consump-
tion at selected date. Figure 10 shows the prototype of the proposed smart classroom using
SCSMS application. This prototype initializes various multimedia devices through directed
attached USB connection and iSCSI remote connection. Figure 11a shows the target server
hardware specifications. Figure 11b shows the SSD specifications for flash array storage.

@ Springer

Multimed Tools Appl (2017) 76:1139-1157 1151

Activities 2 _Terminal v Tue 13:02

@0 O~

File Edit View Search Terminal Help

[351617.646043] scsi7 : iSCSI Initiator over TCP/IP

[351618.154197] scsil 7:0:0:0: RAID IET Controller 0001 P
: 0 ANSI: 5

[351618.155308] scsi 7:0:0:0: Attached scsi generic sg3 type 12

[351618.157545] scsi 7:0:0:1: Direct-Access IET VIRTUAL-DISK 0001 P
J: O ANSI: 5

[351618.157892] sd 7:0:0:1: Attached scsi generic sg4 type 0

[351618.158952] sd 7:0:0:1: [sdc] 250069680 512-byte logical blocks: (128 GB/119
GiB)

[351618.161050] sd 7:0:0:1: [sdc] Write Protect is off

[351618.161052] sd 7:0:0:1: [sdc] Mode Sense: 69 00 00 08

[351618.162559] sd 7:0:0:1: [sdc] Write cache: enabled, read cache: enabled, doe
sn't support DPO or FUA

[351618.171561] sdc: unknown partition table
[351618.176160] sd 7:0:0:1: [sdc] Attached SCSI disk
[351776.310721] EXT4-fs (sdc): mounted filesystem with ordered data mode.

Fig. 7 SCSMS application Initiator server for monitoring IO performance and energy efficiency

Figure 11c lists the VA1, GC2 and SPC1 trace workloads with specific parameters.VA1 is
used for smart camera and smart TV. GS2 is used for game console and SPC1 is used for
smart phone.

Tue 12:55

Activities =~ Terminal v

Backing store path: None
Backing store flags:

root@8BayServer2:/# |J

File Edit View Search Terminal Help x
Target 4: ign.2014-12.iesl:mehdi Al Flash array target storage server
System information: :
Driver: iscsi
State: ready
I T nexus information:
IT nexus: 1
Initiator: ign.1993-08.org.debian:01:bda7df435634 alias: controller
Connection: 0
IP Address: 11.0.0.10
LUN information:
LUN: O LUN: 1
Type: controller Type: disk
SCSI-ID: IET 00040000 SCSI ID: IET 00040001
SCSI SN: beaf40 SCSI SN: beaf4l
Size: 0 MB, Block size: 1 Size: 128036 MB, Block size: 512
Online: Yes Online: Yes
Removable media: No Removable media: No
Prevent removal: No Prevent removal: No
Readonly: No Readonly: No
SWP: No SWP: No
Thin-provisioning: No Thin-provisioning: No
Backing store type: null Backing store type: rdwr

Backing store path: /dev/sdc
Backing store flags:

Fig. 8 SCSMS application using target server for monitoring 10 performance and energy efficiency

@ Springer

1152 Multimed Tools Appl (2017) 76:1139-1157

& = C | [} localhost51374/Demos/XML.aspx Q=

Web based application for monitoring 10 performance and energy efficiency

—
| Read Performance

| Select the monitoring date —_
| g wo
&
I Su Mo Tu We Th Fr Sa 2
| = 60
=
| 2
|)
| 5@
! =
| H o
: 0500AM 1200AM 600PM 1200PM
Energy Consumption Write performance

g

8

&

3
Throughput (M/Sec)
g

Energy Cost 106 Joules
5

8

06:00AM 12.00AM 6:.00PM 12.00PM 06:00AM 12:00AM 6:00PM 12.00PM

Fig. 9 Web based SCSMS application for monitoring 10 performance and energy efficiency

6 Experimental results

We have implemented a prototype of smart classroom using SCSMS application. The per-
formance evaluation is conducted on a platform of target storage server withan Inter Xeon
2,0 GHz processor, 32 GB DDR memory and six 64 GB SSDs and two 128 GB SSDs. For
given buffer sizes (1 MB, 5 MB and 10 MB), we evaluate read/write performance for various
SCSMSs applications. The experimental environment for storage management system for

Smart Classroom

Seminar Area Science Area Brain storming Area Team working Area

ﬂ'ﬂe

a e 8 5|
' - q All shared platform .D
p o gg..g e | Mg
f 'O g deam (D

oev

Fig. 10 The prototype of smart classroom using SCSMS application

@ Springer

Multimed Tools Appl (2017) 76:1139-1157 1153

a
TARGET SERVEf(;PECI}‘ICATIONS
OosS Memory CPU
Target Storage Server Cent OS 6.2 DDR332GB Intel Xeon 2.0 GHz
®)
SSD SPECIFICATIONS
Manufacturer Cactive Cidle Capacity Max read NMax write

Samsung 830 0.15watts 0.08 watts 64 GB 520MB/s 320 MB/s
Samsung 840 0.07 watts 0.05watts 128GB 530MB/s 390 MB/s

©

TRACE LIST WITH RESPECT TO VARIOUS WORKLOADS

Name Description LUNs Total size Device type
VA1l Video and Audio workload 4 1GB Video Camera
GC2 Game Console workload 6 2 GB Game Console
SPC1 Storage benchmark 2 1GB Smart Phone

Fig. 11 SCSMS application experimental environment

smart classroom is simulated by applying SCSMS application into our target and initiator
hardware infrastructure as shown in Figs. 7 and 8. As shown in Table 1, detail experimental
environment specifications of existing and the proposed SCSMSs are described as follows,

(i) Huang et al. [9] : For given flash array storage, a NAS infrastructure is build up and
RAID 6 is implemented using Linux mdraid 6 driver kernel. This SCSMS chunks
data into multiple blocks using traditional chunking strategy;

(i) Kim et al. [19] : Ceph cloud storage is build up using flash array storage. Ceph
supports erasure coding and replication mechanism where Ceph chunks data into
multiple objects using traditional chunking strategy;

(iii)) Scottetal. [18] : A P2P network is build up using flash array storage. Each multime-
dia device is considered as peer where this SCSMS does not support erasure coding
mechanism. It chunks data into multiple blocks using traditional chunking strategy;

(iv) The proposed SCSMS : For given flash array storage, a SAN infrastructure is build
up using XRM-RAID and XRM algorithm where it chunks data into multiple blocks
using adaptive chunking strategy;

6.1 10 performance results

Figure 12 shows the read performance of various storage management system for smart
classroom using given buffer size(1 MB,5 MB or 10 MB) with respect to file sizes(4
KB,16 KB,64 KB,256 KB,1 MB). The average read performance of the proposed SCSMS
is improved by 32 %, 45 % and 58 % compared to Huang et al., Kim et al. and Scott et
al. with respect to file size and buffer size. The average read performance of the proposed
SCSMS for given buffer size(10MB) is improved by 24 % and 52 % compared to those for
other buffer sizes(5 MB and 1 MB). This is because the proposed SCSMS can merge many
small files into a block as the buffer size increases. However, the average read performance
of the traditional SCSMSs (Scott et al. [18], Huang et al. [9] and Kim et al. [19]) for given
buffer size(10MB) is improved by 17 % and 32 % compared to those for other buffer sizes(5
MB and 1 MB) due to dedicating larger memory space for buffer.

@ Springer

1154 Multimed Tools Appl (2017) 76:1139-1157

I

Proposed Kim etal. Scottet al. Huang etal. Proposed Kim etal. Scottetal. Huang etal. Proposed Kim etal. Scottetal. Huang etal.

N
n

N

-

read throughput (GB/Sec)
b &

Buffer size (1 MB) Buffer size (5 MB) Buffer size (10 MB)
4k E==m116k D64k <cc---- 256k 1m
File size

Fig. 12 The read performance for SCSMS applications

Figure 13 shows the write performance of various storage management system for smart
classroom using given buffer size(1 MB,5 MB or 10 MB) with respect to file sizes(4 KB,16
KB,64 KB,256 KB,1 MB). The average write performance of the proposed SCSMS is
improved by 22 %, 32 % and 56 % compared to Huang et al., Kim et al. and Scott et al. with
respect to file size and buffer size. The average write performance of the proposed SCSMS
for given buffer size(10MB) is improved by 21 % and 43 % compared to those for other
buffer sizes(5 MB and 1 MB)due to increasing ratio of merging small chunks into a larger
block. However, the average read performance of the traditional SCSMSs (Scott et al. [18],
Huang et al. [9] and Kim et al. [19]) for given buffer size (10MB) is improved by 18 %
and 31 % compared to those for other buffer sizes(5 MB and 1 MB) due to larger dedicated
memory space.

6.2 Physical IOPS performance results

Figure 14 shows the average number of physical read and write operations per second
(IOPS) of various storage management system for smart classroom using given buffer size(1
MB,5 MB or 10 MB) with respect to file sizes(4 KB,16 KB,64 KB,256 KB,1 MB). The
average number of physical read and write operations per second (IOPS) of the proposed
SCSMS is improved by 68 %, 72 % and 74 % compared to Huang et al., Kim et al. and

25

2

15

il 1

Proposed Kimet al Scott et Huang et Proposed Kimet al Scott et Huang et Proposed Kim et al Scott et Huang et

Write through put (GB/Sec)

al. al. al. al. al. al.
Buffer sze (1MB) Buffer size (SMB) Buffer size (10 MB)
4k E=——o016k M 64Kk ----- 256k im
File size

Fig. 13 The write performance for SCSMS applications

@ Springer

Multimed Tools Appl (2017) 76:1139-1157 1155

T 8
=

x 6
"

a

S 4

Proposed Kimetal. Scottetal. Huangetal. Proposed Kimetal. Scottetal. Huangetal. Proposed Kimetal. Scottetal. Huangetal.
Buffer size (1 MB) Buffer size (5 MB) Buffer size (10 MB)
4k o 16k s 64k ceeeeeee 256k 1m
File size

Fig. 14 The physical IOPS performance for SCSMS applications

Scott et al. with respect to file size and buffer size. The average number of physical read and
write operations of the proposed SCSMS for given buffer size(10MB) is reduced by 16 %
and 48 % compared to for other buffer sizes(5 MB and 1 MB). This is because the proposed
SCSMS eliminates small physical read and write operations by merging several small files
into a larger chunk. However, the average number of physical read and write operations
of the traditional SCSMSs (Scott et al. [18], Huang et al. [9] and Kim et al. [19]) buffer
size (10MB) is 14 % and 21 % lower compared to those for other buffer sizes(5 MB and
1 MB). Note that the effect of buffer size is limited in traditional SCSMSs when workload
composes of many small files.

6.3 Energy consumption results

Figure 15 shows the energy consumption of various storage management system for smart
classroom using given buffer size(1 MB,5 MB or 10 MB) with respect to file sizes(4 KB,16
KB,64 KB,256 KB,1 MB). The energy consumption of the proposed SCSMS is reduced by
32 %, 42 % and 58 % compared to Huang et al., Kim et al. and Scott et al. with respect to
file size and buffer size. The energy consumption of the proposed SCSMS for given buffer
size(10MB) is reduced by 8 % and 23 % compared to those for other buffer sizes(5 MB and
1 MB). This is because the proposed SCSMS has steady energy consumption regardless of
file size. In XRM-RAID 6, 7,y decreases as the number of data chunks decreases, and
fcoding decreases as the number of XOR operations decreases.

140

[y
N D MmO
o o o oo o

Energy Cost(1000Joules)

o

Proposed Kimet al Scott et Huang et Proposed Kim et al Scott et Huang et Proposed Kimet al Scott et Huang et
al. al. al. al. al. al.

Buffer size (1MB) Buffer size (SMB) Buffer size (10MB)
e 4k [16k 64K =mm-- 256Kk m—1m
File size

Fig. 15 Energy consumption for SCSMS applications

@ Springer

1156 Multimed Tools Appl (2017) 76:1139-1157

7 Conclusion

Smart classroom requires lower energy consumption and faster performance storage area
network to store data which are created from various multimedia devices. This paper builds
up a smart classroom storage management system using flash array in a classroom SAN and
presents an adaptive chunking and XRM-RAID technique for various multimedia devices.
Adaptive chunking removes many small read/write operations to encode and decode data.
In the proposed SCSMS, XRM-RAID reduces the number of XOR operations by providing
an XRM scheduler to generate parity data and also to break down the XOR complexity of
Linux mdraid for SCSMS application. Experimental results show that the energy consump-
tion of the proposed SCSMS is improved by 32 %, 42 % and 58 % compared to Huang et
al., Kim et al. and Scott et al. with respect to file size and buffer size. In terms of the average
read throughput, the proposed SCSMS has higher performance by 32 %, 45 % and 58 %
compared to Huang et al., Kim et al. and Scott et al. with respect to file size and buffer size.

Acknowledgments This work was supported in part by the MSIP(Ministry of Science, ICT and Future
Planning), Korea, under the ICT/SW Creative Research program (NIPA-2014-H0502-14-3002) supervised
by the NIPA(National IT Industry Promotion Agency) and in part by the National Research Foundation of
Korea(NRF) Grant funded by the Korean Government(MOE) (2013R1A1A2006912) and in part by Inha
University Research Grant.

References

1. Blaum M, Brady J, Bruck J, Menon J (1995) EVENODD: An Efficient Scheme for Tolerating Double
Disk Failure in RAID Architectures. IEEE Trans Comput 2:44
2. Cooley JA, Mineweaser JL, Servi LD, Tsung ET (2003) Software-based erasure codes for scalable dis-
tributed storage. In: Proc. 20th IEEE/11th NASA Goddard Conference on Mass Storage Systems and
Technologies. (MSST 2003), pp 157-164
3. Gill K, Yang S-H, Yao F, Lu X (2009) A zigbee-based home automation system. IEEE Trans Consum
Electron 55(2):422-430
4. Greenan KM, Li X, Wylie JJ (2010) Flat XOR-based erasure codes in storage systems: Constructions,
efficient recovery, and tradeoffs. In: IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp 1-14
5. Hatner JL (2005) WEAVER codes: highly fault tolerant erasure codes for storage systems. In: Proc. of
the USENIX Conference on File and Storage Technologies (FAST’05), vol. 4. CA, USA, p 16
6. Hafner JL, Deenadhayalan V, Rao KK, Tomlin A (2005) Matrix methods for lost data reconstruction in
erasure codes. In: Proc. of the USENIX Conference on File and Storage Technologies (FAST’05), San
Francisco, USA, pp 183-196
7. Han D-M, Lim J-H (2010) Smart home energy management system using IEEE 802.15.4 and zigbee.
IEEE Trans Consum Electron 56(3):1403-1410
8. Han D-M, Lim J-H (2010) Design and implementation of smart home energy management systems based
on zigbee. IEEE Trans Consum Electron 56(3):1417-1425
9. Huang T-C, Chang D-W (2013) TESA: a temporal and spatial information aware writeback policy for
home network-attached storage devices. IEEE Trans Consum Electron 11(1):122—129
10. Jiang S, Ding X, Chen F, Tan E, Zhang X (2005) DULO: an effective buffer cache management scheme
to exploit both temporal and spatial locality. In: Proc. of the USENIX Conference on File and Storage
Technologies(FAST’05), vol. 4. CA, USA, pp 8-8
11. Kenchammana D, He D, Hafer JL (2005) REO: A generic RAID Engine and Optimizer. In: Proc. of the
USENIX Conference on File and Storage Technologies(FAST 07). San Francisco, USA, pp 261-276
12. Khan O, Burns R, Plank J, Pierce W, Huang C (2012) Rethinking Erasure Codes for Cloud File Systems:
Minimizing I/O for Recovery and Degraded Reads. In: Proc. of the USENIX Conference on File and
Storage Technologies, San Jose, CA
13. Kim J, Oh Y, Kim E, Choi J, Lee D, Noh SH (2009) Disk schedulers for solid state drivers. In: Proc. of
ACM international conference on Embedded software (EMSOFT *09). NY, USA, pp 295-304

@ Springer

Multimed Tools Appl (2017) 76:1139-1157 1157

14.

15.

16.

17.

18.

19.

20.

21.

Li Y et al. (2013) Energy-Aware Storage. In: Proc of the USENIX Conference on File and Storage
Technologies

Luo J, Xu L, Plank JS (2009) An efficient XOR-scheduling algorithm for erasure codes encoding. In:
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN °09), pp 504-513
Pirahandeh M, Kim D-H (2012) Adopted erasure code for SSD based RAID-6 System. In: Proc. of the
ITC-CSCC conference. Sapporo, Japan, pp 81-85

Plank S (2011) XORs Lower Bounds and MDS Codes for Storage. IEEE Information Theory Workshop,
Brazil, pp 529-551

Scott K et al. (2010) Context-Aware Services writeback policy for home network-attached storage
devices. IEEE Trans Learn Technol 3(3):214-227

Svetlana K, Song S-M, Yoon Y-I (2011) Smart Learning Services for Smart Learning Spaces. IEEE
Sensors J 11:7835-7850

Won Y et al. (2007) Energy-aware disk scheduling for soft real-time I/O requests, vol 13. Springer,
Multimedia System, pp 409-428

Xie T (2008) SEA: A Striping-Based Energy-Aware Strategy for Data Placement in RAID-Structured
Storage Systems. IEEE Trans Comput 57(6):748-761

Mehdi Pirahandeh studied BS in computer and system science, Boras University in Sweden. He is an
integrated M.S. and PhD student at Inha University in South Korea. His research interests include embedded
systems, cloud storage systems, social networking and e-health systems.

Deok-Hwan Kim received a M.S. and PhD from the Korea Advanced Institute of Science and Technology.
He is a professor at Inha University in Korea. His research interests include embedded systems, storage
systems, cloud systems, multimedia systems and brain computer interfaces.

@ Springer

	Energy-aware and intelligent storage features for multimedia devices in smart classroom
	Abstract
	Introduction
	Background
	Effect of chunking strategy in smart classroom storage management system
	Effect of erasure coding in smart classroom storage management system

	The proposed smart classroom storage management system
	Data initiator
	Adaptive chunking
	XOR reference matrix (XRM)-RAID
	Service management

	The proposed storage features for multimedia devices in smart classroom
	Adaptive chunking
	XRM-RAID
	XRM rules and XRM table
	XRM algorithm
	XRM scheduler

	System design and implementation
	Experimental results
	IO performance results
	Physical IOPS performance results
	Energy consumption results

	Conclusion
	Acknowledgments
	References

