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Abstract In camera networks, dynamic node selection is an effective technique that enables
video stream transmission with constrained network bandwidth, more economical node
cooperation for nodes with constrained power supplies, and optimal use of a limited number
of display terminals, particularly for applications that need to obtain high-quality video of
specific targets. However, the nearest camera in a network cannot be identified by directional
measurements alone. Furthermore, errors are introduced into computer vision algorithms by
complex background, illumination, and other factors, causing unstable and jittery processing
results. Consequently, in selecting camera network nodes, two issues must be addressed: First,
a dynamic selection mechanism that can choose the most appropriate node is needed. Second,
metrics to evaluate the visual information in a video stream must be modeled and adapted to
various camera parameters, backgrounds, and scenes. This paper proposes a node selection
method based on approximate reinforcement learning in which nodes are selected to obtain the
maximum expected reward using approximate Q-learning. The Q-function is approximated by
a Gaussian Mixture Model with parameters that are sequentially updated by a mini-batch
stepwise Expectation–Maximization algorithm. To determine the most informative camera
node dynamically, the immediate reward in Q-learning integrates the visibility, orientation, and
image clarity of the object in view. Experimental results show that the proposed visual
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evaluation metrics can effectively capture the motion state of objects, and that the selection
method reduces camera switching and related errors compared with state-of-the art methods.

Keywords Camera selection . Approximate reinforcement learning . Gaussianmixture model
(GMM) . Video analysis . Camera networks

1 Introduction

Camera networks have recently received increased research interest for the effective resolution of
partial and full occlusions, and the continuous tracking of targets over large areas where the
limited field of view (FOV) of a single camera is insufficient. Such networks are used extensively
in areas such as security, surveillance, human–computer interaction, navigation, and positioning.
However, the utilization of camera networks is beset by challenges related to the deployment and
control of the camera nodes, real-time fusion of high-resolution and high frame-rate video
streams, and selection and coordination of the cameras [5, 30]. Camera selection involves
determining which one (or more) camera(s) should be selected to obtain the maximum informa-
tion or comfortable visual effects. Thus, camera selection is a fundamental challenge in applica-
tions such as target tracking and positioning [10, 18], area coverage [29], surveillance and
behavior analysis [24, 33], and video summarization [8]. Dynamic node selection is an effective
solution to problems such as video stream transmission with constrained network bandwidth,
more economical node cooperation for nodes with constrained power supplies, and a limited
number of display terminals. Such issues are faced by emerging applications such as security
surveillance and smart homes, which need to obtain high-quality video of specific targets. For
example, from the cameras deployed to survey some critical area, users need select only one
optimal viewpoint to be displayed on a mobile device. However, in contrast to node selection in
general sensor networks [11, 21], the nearest camera in a camera network cannot be identified by
directional measurements alone. Furthermore, some errors are introduced in computer vision
algorithms by complex background, illumination, and other factors, which cause processing
results to be unstable and jittery in the time sequence. Consequently, in selecting nodes in camera
networks, two issues must be addressed: First, a dynamic selection mechanism should be
established that ensures the selected node captures the maximum expected amount of information
and outputs comfortable video based on current and historical observations. Second, metrics to
evaluate the visual information of a video stream must be modeled according to the demands of
applications, and these should be adapted to various camera parameters, background, and scenes.

Previous studies have investigated the issue of node selection in camera networks from the
viewpoint of selectionmechanisms and visual information evaluation. The consequent methods
proposed for node selection in camera networks can be divided into three categories: In the first
category, the node that maximizes the current visual information is selected. For example,
Tessens et al. [33] proposed a distributed principle viewpoint determination method for smart
cameras, in which factors such as the visibility, direction of movement of targets, distance
between the center of mass of the object and the camera, and the results of face detection are
summarized into a score. The camera with the maximum score is then designated as the
principle viewpoint. In [23], cameras are ranked and selected according to the target’s location
and look-up tables stored locally at each node. A camera selection approach for object tracking
was presented by Monari et al. [22], in which the relevant subset of cameras is determined
according to the current or predicted state of the target object and prior geometrical knowledge.
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However, most methods in this category do not consider the dynamics of visual information and a
target’s state in scenes, overall visual effects, network communications, or energy costs. The second
category of node selection methods uses a reward or cost function to integrate the constraints, and
the selection process is optimized using historic and current system states. For example, in a method
proposed by Li and Bhanu [16], the best-view estimation is obtained by iterative bargaining based
on game theory. A best-view selection algorithm that generates a smooth video sequence was
proposed by Jiang et al. [13], who solved the resulting optimization problem using dynamic
programming. Daniyal et al. [7] presented a best-view selection method based on a dynamic
Bayesian network according to the states taken from a certain historical time window, and used
the resulting output for video production. Although thesemethods do not predict the state transitions
and the relay of rewards, the fact that the reward will be reflected after the action, and thus affect
subsequent states and actions, is not considered. In the third category, dynamic selection decisions
are made according to current system states and predicted future states. For example, Partially
Observable Markov Decision Processing (POMDP) may be used to find the optimal scheduling
policy in tracking and surveillance camera networks [17, 31] by predicting the future reward of an
action according to certain assumptions. However, these methods require clear state transitions,
which are difficult to explicitly define in complex dynamic systems. Additionally, the computational
complexity grows exponentially with the state space because of the Bcurse of dimensionality.^

On the other hand, the main aim of visual information evaluation is to extract effective
visual features and map them to comparable scores. Feature extraction is the key process, and
is usually related to the application. For example, the visibility of a target [9], the location in an
image or the real world [12, 22, 23], and the image area size [13] of the target are often used in
tracking applications, whereas behavior analysis applications are more concerned with the
orientation [33], body pose, and appearance [25, 27] of moving targets and the movement of
the scene [7]. Surveillance applications for critical areas typically require front view, high-
resolution video of the target of interest, and frequently switch views to prevent errors in visual
computing. The front view of the target is determined by pose estimation and face detection;
however, body pose estimation from a single perspective is still a nonlinear and ill-posed
problem [1], and face detection has high error rates that are influenced by the video resolution
and the relative position of the target with respect to the cameras. Therefore, the results of
visual computing with both methods are often unstable and have high computational
complexity.

In this paper, we address the problem of dynamic camera selection for the surveillance of
critical areas. Our aim is to obtain the most informative camera node while simultaneously
reducing camera switching. To achieve this, we model the dynamic selection of nodes in
camera networks as a Markov Decision Process (MDP), and learn the selection strategy via
reinforcement learning. For dynamic scenes, a state transition model is implicit, and the state
space is continuous. We adopt an approximate Q-learning algorithm to find the optimal
solution online, using a Gaussian Mixture Model (GMM) to represent the approximated Q-
function. Model parameters are updated by a mini-batch stepwise Expectation–Maximization
(EM) algorithm for the incoming episode state and Q-value. To evaluate the visual informa-
tion, we design a function to integrate the visibility, orientation, and image resolution of the
target, and conduct a trade-off between the video switching frequency and the amount of visual
information.

The remainder of this paper is organized as follows. Section 2 discusses the problem of node
selection in camera networks, before Section 3 presents our proposed selection policy-learning
method based on Q-learning. Section 4 outlines how the Q-function is approximated with a GMM
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updated bymini-batch stepwise EM. Section 5 discusses visual informationmeasures, andSection 6
presents the results of extensive experiments. Finally, we summarize this paper in Section 7.

2 Problem formulation

The camera node selection problem can be described as follows. There are N smart cameras
(C1,C2…CN) consisting of an image sensor, a processor, and a wireless communication
module with partially or completely overlapped FOVs, as illustrated in Fig. 1. We assume
that the communication between the cameras is synchronized and delay-free. A designated
central controller node schedules the cameras according to a selection policy. At a given time
instant t=0,1,2,…, the camera nodes in the network extract the target’s visual features from
their video streams, and convert them to a visual score that indicates the quality of the video
stream. This score is then sent to the central controller. To obtain the maximum reward from
the camera selection action, the central controller selects camera C∗ as the optimal camera at
that time instant according the previously selected camera and the visual scores. Therefore,
camera C∗ outputs its surveillance video for the interval (t,t+Δt).

In the selection process, the central agent dynamically selects the video camera that can best
obtain a high-quality surveillance video. Thus, it can be considered a sequential decision-
making process based on the analysis and evaluation of visual content. Because the state
transition and the expected reward only depend on the current system state and the previous
selection result, this can be modeled as an MDP. An MDP can be formally defined as a 4-tuple
<A,S,T,R>, where A is a finite set of candidate cameras {C1,C2…CN}, S is the set of all
possible underlying states, and the system state st∈S at time t is represented as a vector st=(Pt,
Ot,at−1), where Pt is the Δt target position {(xt

1,yt
1),(xt

2,yt
2),…(xt

Δt,yt
Δt)} between the previous

time point t−1 and the current point t, Ot is the sequence of target orientations {θt
1,θt

2,…θt
Δt},

and at−1∈A is the node selected at time point t. T is a state transition function T:S×A→S, and
R(st,at) is an immediate reward function R:S×A→ℝ that assigns real-valued rewards to the
selection actions performed in each of the underlying process states. To simplify the notation,
we represent the immediate reward R(st,at) as rt. Consequently, the MDP model can be used to

derive a selection policy π*(s):s↦a that yields the maximized expected reward Vπ* sð Þ over
some decision steps according to the history of states and actions, i.e.,

Vπ* sð Þ ¼ max
π*

E
X∞
t¼0

γtrt s0 ¼ sj
" #

ð1Þ

(a) Scene A and trajectory of the target (b) Scene B and trajectory of the target  

Fig. 1 Example of scenes
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where γ∈[0,1] is a discount factor that controls the impact of future rewards, causing the effect
of a reward to decay exponentially with elapsed time. When the transition and reward
functions are known, the model can be computed iteratively offline using dynamic program-
ming. However, the transition model for the movement of the target is difficult to obtain for
any real scene.

Reinforcement learning methods, in which agents interact with an unknown envi-
ronment, synthesize, and improve their behavior through trial and error, have been
extensively researched in recent years. We use a Q-learning-based algorithm to learn
the optimal policy online, requiring no knowledge of the transition probabilities of the
underlying MDP. The classic Q-learning algorithm maps every state-action pair to a
real number (or Q-value) using a look-up table. The system described herein has a
continuous state and discrete actions. Hence, a large storage space is needed to store
all state-action pairs, and convergence is typically slow because it is not feasible to
train all pairs within a large domain. Therefore, in this paper, we use a function
approximated with a GMM and updated via stepwise EM for every episode sample to
represent the Q-function.

3 Selecting camera-based Q-learning

3.1 Architecture of the proposed method

The general architecture of the node selection method for camera networks based on
approximate Q-learning is depicted in Fig. 2. The key symbols used in this paper are
given in Table 1. Target tracking is carried out by each camera node, and communi-
cation between cameras is used to enhance the fusion of the target state and association
for a specific target. Visual scores are calculated and transferred to the central controller
node, and the selected node then receives instructions from the central node to output
its video stream.

The central controller has action and learning modules that can be executed in
different parallel threads, and the Q-function Q(s,a) is approximated by a group of

Fig. 2 Architecture of the proposed approximate Q-learning-based method
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GMM models in which qa(s),a=1…N represents the expected Q-value for state s and
camera a, that is, Q(s,a)=E[qa|s]. In the action module, the central agent selects
camera node at at time step t using the action selection strategy presented in
Section 3.4. To accelerate the learning, the target’s current state and scene topology
are used as a priori knowledge to initialize the Q-function, as described as Section 3.3.
As a result, the selected camera index is transmitted to all nodes in the camera
network, and the selected camera obtains the immediate reward rt+1 and observes
the next state st+1. The new sample 4-tuple <st,at,rt+1,st+1> is added to the sequence
(or episode) s0,a0,r1,s1,…,st,at,rt+1,st+1,…,sT−1,aT−1,rT,sT. Each episode ends when
the target leaves the monitoring area or the number of selection actions reaches some

Table 1 Key symbols and notation

Symbol Notation Symbol Notation

Ci Camera i th ξqa ; j Sample j of Q-value

st, at State vector, selected camera at time t K Number of Gaussian components

rt Immediate reward at time t D Dimension of sample

π* Optimal selection policy μk, Σk Mean, covariance of k th Gaussian component

Vπ* sð Þ Expected long-term reward with
policy π* for state s

ηk Mixture weights of k th Gaussian component

γ Discount factor for expected
long-term reward

ℒu Log-likelihood function for iteration u

Q(st,at) Q-value for (st,at) Θ Parameter collection of Gaussian component

ρ Learning rate for Q-Learning Suffj
k Sufficient statistics triple for component k

and sample data ξj
qat stð Þ Approximate Q-function for (st,at) rj

k Update rate of sufficient statistics for
component k and sample data ξj

q̂at stð Þ Sampled Q-value for state-action
pair (st,at)

ik Number of update samples for component k

Φ Sample set for state-action pair
and Q-value

β Constant to scale variance of new component

(xa,ya) Position of camera a q sð Þ Conditional mean expectation of GMM for state s

(xs,ys) Position of the target Σqq Conditional covariance expectation
matrix of GMM for state s

θa Angle between x -axis and the
orientation of camera a

Mat
tþ1

Mean visual score

θs Angle between x -axis and target’s
front side

Mv, Md, Mc Target visibility, orientation and clarity score

pat Probability of camera at being
selected in exploration

w0 Q-function initialization weight

εt Exploration probability at time t wv, wd, wc Weight of visual score, orientation score
and clarity score

ε0 Initial exploration probability ws Weight of camera switching cost

εΔ Exploration probability coefficient ξj Sample j of state and Q-value

τ Weight coefficient for t ξs,j Sample j of state
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pre-assigned value. In our method, a collection referred to as the EpisodeList is used
to store the episodes produced by the action module. The EpisodeList is sent to the
learning module to provide training samples when the number of episodes reaches a
certain threshold.

In the learning module, the Q-value samples can be trained with the 4-tuple samples in
EpisodeList and the current qa(s) by the Q-learning algorithm, described in Section 3.2. The
parameters of the GMM for the cameras can then be updated online via mini-batch stepwise
EM with the Q-value samples. The new approximation function q 'a(s) is then input to the
action module as the basis of camera selection.

3.2 Q-learning

In reinforcement learning, an agent generally receives a reward for actions that are
beneficial along the path to achieving some long-term goal. Q-learning is a well-
known model-free reinforcement learning method that estimates the optimal action-
value function [34] with no explicit knowledge of the dynamic environment. In this
paper, every state-action pair is mapped to a real number by the function Q(st,at),
which is an estimated incremental function for the state-action pair (st,at) based on the
temporal difference principle in Q-learning, i.e.,

Q st; atð Þ←Q st; atð Þ þ ρ rtþ1 þ γmax
a

Q stþ1; að Þ−Q st; atð Þ
h i

ð2Þ

where ρ∈[0,1] is the learning rate controlling how fast the Q-function estimations are
modified (we set ρ=0.1), γ is the discount factor for expected long-term rewards, and
camera node a is selected to maximize the discounted sum of rewards max

a
Q stþ1; að Þ.

Q-learning converges to the optimal Q-function if each state-action pair is performed
infinitely often and ρ is satisfied for each (st,at) pair: ∑ρ=∞ and ∑ρ2<∞ [34]. When
the Q-function converges, the optimal camera selection policy π(s) can be obtained by
maximizing the function, i.e.,

π sð Þ ¼ argmax
a∈A

Q s; að Þ ð3Þ

We assume there is some approximate function qa(s) that corresponds to each camera a such
that the Q-value for the state-action pair (s,a) is the expectation of the function qa(s) for state s, i.e.,

Q s; að Þ ¼ E qa sð Þ½ � ¼ μ qa sð Þ½ � ð4Þ
For every piece of sample data in EpisodeList, an initial Q-value sample < st; at; q̂at stð Þ >

is calculated for the state-action pair (st,at), and the current approximate function is given by
Gaussian Mixture Regression with the corresponding GMM model. The Q-value q̂at stð Þ is

iteratively updated using:

q̂at stð Þ←q̂at stð Þ þ ρ rtþ1 þ γmax
a

qa stþ1ð Þ−q̂at stð Þ
h i

ð5Þ

When the iterative learning has been completed for all samples in EpisodeList, the state st,
selected camera at, and Q-value q̂a sð Þ are added to the Q-value sample collection Φ ¼
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< st; at; q̂at stð Þ�
>g. The subset Da ¼ < st; at; q̂at stð Þ�

> a ¼ atj g for camera at is used to

update the GMM approximation function for the corresponding camera. The pseudo-code for
this process is outlined in Algorithm 1.

Algorithm 1: Q-learning 

Q-learning Procedure

Input: EpisodeList, GMM , γ , ρ
1:   initialize Q-function sample collection Φ = ∅
2:   for 1...l L=  times (the time of the iteration) 

3:     for 0,..., 1t T= −  (the time steps of the episode) 

4:       retrieve the sample 1 1, , ,t t t ts a r s+ +< >  from EpisodeList
5:       if 1l = then

6:          compute ˆ ( )
ta tq s  with GMM 

7:          ˆ{ , , ( ) }
tt t a ts a q sΦ ← Φ < >

8:       end if

9:       t+1 1 ˆˆˆ ( ) ( ) [ + max ( ) ( )]
t t ta t a t a t a ta

q s q s r q s q sρ γ +← + −

10:       Update ˆ, , ( )
tt t a ts a q s< >  in Φ

11:    end for

12:  end for

13:end procedure

14:output Φ

As can be seen from Algorithm 1, the immediate reward rt+1 is the visual score of the target
between t and t+Δt, as outlined in Section 5.

3.3 Q-function initialization

Q-learning starts from an arbitrary initial Q-function Q0(s,a) that can be updated
without requiring an a priori model. Thus, Q-learning often suffers from slow con-
vergence when there are a large number of states and action spaces. Considering that
the camera node with the maximum visual score can be selected greedily if the
target’s state remains stable in a subsequent period of time, we use the target’s current
state and scene topology as a priori knowledge, and initialize Q0(s,a) with the
immediate reward for greedy selection in state s0. This accelerates the convergence
speed of the learning. Assuming that the hardware configuration of the cameras in the
scene is the same, the immediate reward for greedy selection is associated with the
relative position and angle between the target and the selected camera. Thus, the
initial pair value Q0(s,a) can be defined as

Q0 s; að Þ ¼ w0 sin
θs−θaj j
2

� �� �
þ 1−w0ð Þ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xs−xað Þ2 þ ys−yað Þ2

q
MaxDis

0
@

1
A ð6Þ
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where w0 is a predefined weight, (xs,ys) and (xa,ya) give the position of the target and
camera a, MaxDis is the maximum distance to normalization, and θa, θs are the angles
of offset from the x -axis in camera a and the target’s front side, respectively, in state
s. This equation implies that a closer distance and smaller angle between the camera
and the target will result in better-quality monitoring videos.

3.4 Action selection strategy

In reinforcement learning, action selection must address the trade-off between explo-
ration (that is, exploring the world to gather information about the system) and
exploitation (which involves executing actions with the current policy). To obtain a
greater initial exploration probability that gradually decreases with time until a steady
state is reached, we implement an improved ε‐greedy action selection policy [32],
where greedy action at is selected with a probability of 1−εt, i.e., at=argmaxaQ(st,a),
whereas a non-greedy action is selected with probability εt. We set εt as the sum of
the initial exploration probability ε0 and an exponential function of time t produced
with exploration probability coefficient εΔ, i.e.,

εt ¼ ε0 þ εΔe−t=τ ð7Þ

where the weight coefficient τ is set to 300 in this study. In the case of a non-greedy
action, the probability of selecting a candidate camera with a larger Q-value is
enhanced by using a Gibbs distribution to select the exploratory action instead of a
random distribution. That is, at time t during the exploration, camera at is selected
with probability

pat ¼
eqa stð ÞεtX N

b¼1
eqa stð Þεt

ð8Þ

where N is the number of cameras in the scene.

4 Q-function approximation

Compared to the full-state representation using Q-values, the function approximation
method can reduce the required storage space and accelerate convergence by
exploiting the similarity of Q-values between adjacent state-action pairs in the con-
tinuous state. Function approximation methods in reinforcement learning include linear
parameter representations [28], fuzzy rules [4], neural networks [3], and kernel-based
techniques [14]. Approximation based on GMMs is a non-parametric function approx-
imation method [2] that can represent complex systems by changing the number of
Gaussian components. In this paper, we present an approximate Q-function method
based on GMMs, whereby the GMM parameters are sequentially updated by the mini-
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batch stepwise EM algorithm. The procedure is divided into offline model initializa-
tion and online updating. In the initialization stage, we sample randomly from the
state space, and first set the Q-value as the score of the corresponding state, as
described in Section 3.3. The initial model parameters are then obtained by offline
stepwise EM. In the online update stage, the set of samples Φ learnt from Q-learning
are divided into blocks of size m, and the online stepwise EM iterates over each
block to update the approximate model parameters.

4.1 GMMs

GMMs are a popular method for representing general probability density functions in
multidimensional spaces by the weighted sum of some Gaussian component densities
[20], with the number of components adjusted according to the complexity of the
problem. In this paper, we assign each camera a GMM, and define the training set of

the approximate Q-function for camera a as Φa ¼ ξ j
� �

J
j¼1 ¼ ξs; j; ξqa; j

n o
J
j¼1 (written

as Φ for simplicity), where ξs,j=sj, ξqa; j ¼ q̂ j
a, and J is the number of samples. The

probability distribution of ξj is then the weighted sum of K Gaussian densities, given
by:

p ξ j
� � ¼XK

k¼1

ηkN ξ j;μ
k ;Σk� � ð9Þ

N ξ j;μ
k ;Σk� � ¼ 1

2πð ÞD=2 Σk
		 		1=2 exp −

1

2
ξ j−μk� �0Σ−1

k ξ j−μk� �
 �
ð10Þ

with mean vector μk and covariance Σk for Gaussian component k; where D is the dimension

of the samples, and ηk,k=1…K are the mixture weights that satisfy the constraint ∑
K

k¼1
ηk ¼ 1.

Therefore, these parameters are collectively represented by the notation Θ={ηk,μk,Σk}k=1
K .

For the training set Φ, the log-likelihood function is defined as:

ℒ Φ;Θð Þ ¼ ln ∏
J

j¼1
p ξ j;Θ
� � ¼XJ

j¼1

ln p ξ j;Θ
� �� � ð11Þ

The GMM parameters are traditionally trained in batch mode (i.e., using the
whole training set) using the iterative EM algorithm. An initial model Θ0 is
generated by sampling randomly in the state space to give a rough estimation,
and the uth iterative model Θu={ηu

k,μu
k,Σu

k}k = 1
K is estimated via E-steps and M-

steps until convergence:
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E-step:

puþ1 k
			ξ j

� 
¼ ηkuN ξ j;μk

u;Σ
k
u

� �
XK
k¼1

ηkuN ξ j;μ
k
u;Σ

k
u

� � ð12Þ

Ek
uþ1 ¼ puþ1 kð Þ ¼

XJ

j¼1

puþ1 k
			ξ j

� 
ð13Þ

M-step:

ηkuþ1 ¼
1

J
Ek
uþ1 ð14Þ

μk
uþ1 ¼

XJ

j¼1

puþ1 k
			ξ j

� 
ξ j

Ek
uþ1

ð15Þ

Σk
uþ1 ¼

XJ

j¼1

puþ1 k
			ξ j

� 
ξ j−μk

uþ1

� �
ξ j−μk

uþ1

� �T
Ek
uþ1

¼

XJ

j¼1

puþ1 k
			ξ j

� 
ξ jξ

T
j

Ek
uþ1

−μk
uþ1 μk

uþ1

� �T ð16Þ

The iteration terminates when ℒ uþ1

ℒ u
−1

			 			 < C1, where C1 is a small number. It is

worth noting that the GMM parameters ηu + 1
k , μu + 1

k , and Σu + 1
k can be regarded as the

weighted means of the sufficient statistics for the triple {1,ξj,ξjξj
T} with the posterior

probability pu+1(k|ξj).

4.2 Stepwise EM

Because the approximate function trainer obtains the training episode data in multiple batches,
the GMM needs to be sequentially updated online to conserve storage space and accelerate
convergence. In this paper, we utilize the stepwise EM algorithm [19, 26] to sequentially
update the GMM parameters in mini-batch mode with the Q-value of the sampling episode. In
each update, the new Q-value samples, initial model parameters, and the number of historic
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update samples for each component are provided as input, and the algorithm is divided into E-
steps and M-steps. Finally, the updated model parameters and the number of historic update
samples are output. The pseudo-code for online stepwise EM is outlined in Algorithm 2.

In the E-step of Algorithm 2, the posterior probability p(k|ξj) of Gaussian component k for
sample ξj is calculated using (12). If all posterior probabilities of the GMM components are
less than the threshold ThredNew, the new sample is deemed to be too far from the present
GMM component to be explained by the current stochastic model. In this case, a new
component is produced to account for the new sample data and added to the model. Otherwise,
a sufficient statistics triple Suffj

k={<<1>> j
k,<<ξ>> j

k,<<ξξT>> j
k} for the kth component is

stepwise updated with sample data ξj, in which the component <<f(x)>> j
k is a time-discounted

weighted sum defined as

<< f xð Þ > >k
j ¼ 1−rkj

� 
<< f xð Þ > >k

j−1 þ rkj p k
			ξ j

� 
f xð Þ ð17Þ
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where {rj
k}j≥1 is a decreasing sequence with the number of historic update samples ik for

component k, which should satisfy ∑jrj
k=∞ and ∑j(rj

k)2<∞ (we set rj
k=(ik+2)

−α), and α∈[0.6,
0.9].

In the M-step, to stabilize the algorithm, we update m samples at once; more specifically,
the training set is divided into mini-batches. Thus, for sample ξj (jmodm=0), the update

function Θ Suf f 1j ;…Suf f Kj
� 

for the model parameters is defined as:

Θ : ηkj ¼
<<1 > >k

jXK
k¼1

<<1 > >k
j

ð18Þ

μk
j ¼

<< ξ > >k
j

<< 1 > >k
j

ð19Þ

Σk
j ¼

<< ξξT > >k
j

<< 1 > >k
j

−μk
jμ

k
j
0 ð20Þ

Initialization of GMMs Each model component is initialized prior to sequential updating.
First, we conduct random sampling in the state space, and set the initial Q-value for the states,
as described in Section 3.3. Algorithm 2 is then executed iteratively to update the components

of the GMM according to the camera ID in the state sample until ℒ uþ1

ℒ u
−1

			 			 < C1 or the

maximum number of iterations for (11) is reached.

Component production We use a minimum likelihood criterion to recognize a new sample
as belonging to a mixture component. For the incoming sample, the algorithm verifies whether
it minimally fits any component, and then decides whether a new Gaussian component should
be produced and added to the model. Because the probability N(ξj;μ

k,Σk) is interpreted as a
likelihood function of the kth component for sample ξj, sample ξj is not recognized as
belonging to any component in the model if its probability N(ξj;μ

k,Σk) is lower than the
minimum likelihood threshold of all components, i.e.,

N ξ j;μ
k ;Σk� �

<
τmin

2πð ÞD=2 ffiffiffiffiffiffiffiffiffi
Σkj jp ∀k ð21Þ

where τmin is a previously specified acceptable likelihood for a fraction of the minimum
likelihood value, making the minimum likelihood criterion independent of the covariance
matrix. If the sample is rejected by all Gaussian components of the model for the correspond-
ing camera, then it is considered to include a new concept. In this case, a new component K+1
is added to the model, and the initial parameters of the new component are given by

ηKþ1
j ¼ 1

1þ
XK
k¼1

<< 1 > >k
j

ð22Þ
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μKþ1
j ¼ ξ j ð23Þ

ΣKþ1
j ¼ βdiag d1; d2;…; dDð Þ ð24Þ

where d1,d2,…,dD in (24) are the ranges of variances, and β is an appropriate
positive constant for scaling these variances. To control the number of Gaussian
components and ensure that the complexity is within a certain range, we set the
maximum number of Gaussian components to MAXcomp. When a new component is
required and K+1>MAXcomp, the most infrequently updated component with the
minimum sufficient statistics <<1>> j

k; i.e., argmink = 1
K <<1>> j

k, is replaced by the
new component.

4.3 Gaussian mixture regression

The approximate Q-value is calculated with the current state and GMM in the action
module. To obtain the initial Q-value q̂at stð Þ and max

a
qa stþ1ð Þ in (5), we estimate the

expectation of the Q-value for state s using Gaussian Mixture Regression (GMR) [6].
In a generic regression problem, we are given a set of predictor variables X∈ℝp and
response variables Y∈ℝg, and the aim of GMR is to estimate the conditional expec-
tation of Y given X on the basis of a set of observations {X,Y}. For the GMM model

Θ that encodes the sample set ξ j ¼ ξs; j; ξqa; j
n o

, the state and Q-value of the

Gaussian component k for camera a are also separated, i.e., we define

μk ¼ μs;k ;μq;k

n o
; Σk ¼ Σss;k Σsq;k

Σqs;k Σqq;k

� �
ð25Þ

Therefore, the conditional probability of the Q-value q is the mixture of the probability that
component k is responsible for state s; specifically,

p q
			s� 

¼
XK
k¼1

βkp qk
			s; k� 

¼
XK
k¼1

βkN qk ; qk sð Þ;Σqq;k

� 
ð26Þ

Where

qk sð Þ ¼ μq;k þΣqs;k Σss;k
� �−1

s−μs;k

� � ð27Þ

Σqq;k ¼ Σqq;k−Σqs;k Σss;k
� �−1

Σsq;k ð28Þ

βk ¼
p kð Þp s

			k� 
X K

i¼1
p ið Þp s

			i�  ¼ ηkN s;μs;k ;Σss;k
� �

X K

i¼1
ηiN s;μs;i;Σss;i
� � ð29Þ
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Finally, as a mixture of K Gaussian components, the estimation of the conditional expec-
tation of q(s) given s (that is, the conditional mean expectation q sð Þ) and conditional covari-

ance expectation matrix Σqq are computed using (26) and

q sð Þ ¼
XK
k¼1

βkqk sð Þ ð30Þ

Σqq ¼
XK
k¼1

β2
kΣqq;k ð31Þ

Thus, by evaluating q sð Þ;Σqq
� �

for different states s, we can obtain the generalized form of data

point ξ̂ ¼ s; q sð Þf g with the associated covariance matrixΣqq, which gives the estimated Q-value.

5 Measures of visual information

In this paper, the immediate reward described in Section 3 is presented as a set of metrics that
evaluate the quality of visual information. To reflect the target information in the video and the

visual comfort level of the output video stream, the reward rt+1 is composed of Mat
tþ1, the

average visual score per frame for the target from two adjacent selections (positive reward),
and the cost for view switching (negative reward). This can be expressed as follows:

rtþ1 ¼ wvM
at
tþ1−wsδ at; atþ1ð Þ ð32Þ

Mat
tþ1 ¼

1

T

XtþT

k¼tþ1

Mat
k ð33Þ

δ at; atþ1ð Þ ¼ 0 at ¼ atþ1

1 otherwise



ð34Þ

In (32), wv,ws∈[0,1] is a normalized weight for the visual score and switching, Mat
tþ1 is the

mean visual score of the selected camera at for T frames after the selection time t in (33), and
the switching cost is expressed as a δ function δ(at,at+1) in (34). Further, for the selected
camera at, the visual score of the target at time t is composed of the visibility score Mai

v ,
normalized orientation score Mai

d , and the clarity score Mai
c ; that is,

Mai ¼ Mai
v wdM

ai
d þ wcMai

c

� � ð35Þ
In (35), wd and wc (wd+wc=1) are the weights of the orientation and clarity scores,

respectively. They define the importance of each metric, and can be learned and modified.
Higher the weight, greater the emphasis on the corresponding metric. To simplify the problem,
we represent the target visibility score, orientation, and image resolution as being camera-
independent; that is, Mv, Md, and Mc.
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In the process of calculating the visual information score, we first track the target in the
selected camera’s video, and detect the target’s bounding box. We then obtain the target’s
trajectory Pt+1 between time t and t+1 in the ground plane, using the bottom center of the
bounding boxes and the calibration parameters of the camera. The metrics for measuring the
visual information are outlined below.

Visibility The ability of a camera to capture the target is a crucial metric for camera selection.
In this paper, we infer the visibility of the target for a particular camera according to the
maximum area of the specified target’s motion region in the video frames from human motion
detection. That is, when the area of motion is smaller than a predetermined threshold, it can be
inferred that the target is invisible, i.e., Mv=0; otherwise, Mv=1.

Orientation We infer the orientation from the trajectory of the target. Suppose that the
target’s front is consistent with its direction of movement, and its trajectory can be considered
as a straight line over a short period of time. The orientation angle θt

Δt of the target at time t+
Δt for the target position sequence Pt+1={(xt

1,yt
1),(xt

2,yt
2),…(xt

Δt,yt
Δt)} can be approximated by

the slope of the line fitted from the closest l points {(xt
Δt− l+1,yt

Δt− l+1),(xt
Δt− l+2,yt

Δt− l+2),
…(xt

Δt,yt
Δt)}, as illustrated in Fig. 3. Further, fitting such a line can reduce the errors

introduced by tracking and calibration. As in (6), the orientation score of the selected camera
node at time t+Δt can be defined as

Md ¼ sin
θkt −θa
		 		

2

 !
ð36Þ

The above equation implies that the more positive the direction of motion with respect to
the selected camera, the larger the value ofMd. This score reaches a maximum when the angle

Fig. 3 Orientation angle based on
a target’s position sequence
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between the direction of motion and the orientation of the camera is 180°, that is, the camera is
facing forward towards the target’s front.

Clarity The image clarity of a target reflects the ability of the camera to obtain detailed
information under different perspectives, and can usually be represented by an average gradient
or information entropy of the image region. Because the size of a target’s image will vary from
different viewpoints, and to compare the resolutions from different views for the same target,
we zoom the target region image to the same heightH. If the width of the scaled image isW, we
represent the mean gradient of the zoomed image as the clarity score Mc for camera c, i.e.,

Mc ¼ 1

W−1ð Þ H−1ð Þ
XW−1

x¼1

XH−1

y¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂I x; yð Þ

∂x

� �2

þ ∂I x; yð Þ
∂y

� �2
s

ð37Þ

where I(x,y) is the gray value at point (x,y).

6 Experiments and results

6.1 Experimental setup

We conducted simulations and actual scene experiments using an Intel Core i7-3770 2.4 GHz
CPU PC with 8 GB RAM. Section 6.2 discusses the simulation experiments, including various
scenes and camera parameters under noisy conditions. We used simulations to compare the
correctness and convergence of the proposed algorithm with that of greedy selection and
classic Q-learning algorithms because simulations can effectively compensate for the limits of
hardware and space in real experiments. The convergence rate using the Q-value function
initialized as in Section 3.3 was compared with that of the traditional method, which sets the
initial Q-value to zero. We also analyzed various effects of the selection results with different
time intervals by comparing greedy selection (Max), game theory [16] (Game), and POMDP
[31] with the proposed method. These three comparative methods are based on maximizing
the current visual information, optimization, and scheduling policies, and are convenient
for comparing performance within the framework of scoring and selection. In Section 6.3,
the visual features proposed in Section 5 are evaluated and the selection performance of
Max, Game, POMDP, and our method are compared. In our method, the learning rate
and exploration probability for Q-learning were determined by the values of ρ=0.1, ε0=
0.1, and εΔ=0.2 according to the general reinforcement learning method. The discount
factor in (2) was set to γ=0.85, which satisfies γT<0.02 and ensures that the currently
selected action will not affect the state after T steps for T>10. For the Q-function
approximation, our experiments show that better iteration results can be achieved when
the stepwise weight exponent α is set to 0.8 and the maximum number of GMM
components is set to MAXcomp=30, with the initial number set to 10. Moreover, we set
the scaling constant to variance of new component β as 0.6 and the acceptable likelihood
τmin=0.02. As described in Section 5, the visual feature weights reflect the degree of
importance of each feature in different applications; here, we set the weights to wv=0.5,
ws=0.5, wd=0.6, and wc=0.4. To increase the stability of line-fitting when computing the
orientation, we set the number of trajectory points involved in fitting l to 10, and the
height of the scaled image region of the target H to 300.
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6.2 Results of simulation experiments

We conducted a number of simulation experiments by deploying 12 static cameras in a virtual
rectangular region of length 12 m, width 8 m, and height 2 m. In this paper, we analyze the
simulation results for example scenes A and B shown in Fig. 1. The cameras were deployed at the
edge of scene Awith overlapped or partially overlapped FOVs. In scene B, there were some static
obstacles that necessitated handoffs between cameras. 20,000 trajectories were sampled in each
scene to form a training dataset. In these trajectories, the target states consisted of the position
coordinates (x,y) and orientation angles θ, which were obtained from the positions in the previous
time step, i.e., θ=arctan((yt−yt−1)/(xt−xt−1)). To simulate a more realistic data process, Gaussian
noise with mean zero and covariance σ was added as observation noise. To evaluate the visual
information, we adopted the visibility, orientation, and clarity metrics proposed in Section 5. The
visibility in scene A is defined as the angle between the target-camera line and the center axis
being less than a certain threshold and the distance between the target and camera line being less
than the radius of the FOV. In scene B, we additionally consider whether the target-camera line
intersects the region of occlusion. If the camera configuration in both scenes is the same, the
resolution of the target image in the simulation experiments can be represented by the distance

between the target and the camera; that is, the clarity score for a target at (xs,ys) and camera at

xci ; yci
� �

is Mai
c ¼ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xs−xaið Þ2 þ ys−yai

� �2q
=MaxDis, which is similar to (6).

To analyze the effectiveness and convergence, we used the 20,000 trajectories to train

greedy selection (Max), discrete Q-learning (Discr_Q), and the proposed method (Appr_Q) 10

times for each scene. In the greedy selection method, the camera with the maximum visual

score was selected. In the discrete Q-learning method, the system state space was discretized

into 60×40×8 grids; more specifically, the virtual region was represented as a 60×40 grid

according to the length and width, and the orientation angle was denoted as one of eight states,

each covering 45°. Each method executed a selection decision at intervals of Δt=20 samples.

The average immediate reward AvgReward ¼ 1
T ∑

T

t¼1
rt, where T is the total number of total

selection points, was calculated for each trajectory, and the average number of camera switches

AvgSwitchNum ¼ 10
T ∑

T

t¼1
δ at; atþ1ð Þ was computed for each group of 10 selections.

The mean AvgReward curves for scenes A and B are shown in Fig. 4a and b, where the
shaded areas represent the standard deviation of discrete Q-learning and approximate Q-
learning, respectively, for 10 training sessions. Further, the AvgSwitchNum curves for scenes
A and B are shown in Fig. 4c and d, where shaded areas around the discrete Q-learning and
approximate Q-learning curves represent the standard deviation over 10 training sessions. As
can be seen from Fig. 4, reinforcement learning methods outperform greedy selection in terms
of immediate reward and switching number after they have converged. Further, the approx-
imate function method converges faster than discrete Q-learning. In addition, the approximate
method is marginally better than the discrete method in terms of both reward and switching
number, because it is able to represent the model states more compactly.

We initialized the Q-value with the GMM in accordance with Section 3.3
(Initiation_Appr_Q) and compared the results to those when the initial Q-value was set to zero
(Without_Initiation_Appr_Q) and discrete Q-Learning (Without_Initiation_Discr_Q), for
60,000 trajectories and 10 training sessions. The mean curves for AvgSwitchNum and
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AvgReward are shown in Fig. 5. The figure shows that the Q-value initialized with the target
location and camera parameters tends to produce convergence after approximately 500 trajec-
tories. In contrast, the Q-values initialized to zero for approximate Q-learning and discrete Q-
Learning (especially) produce slower convergence. These experimental results show that the
learning process can be accelerated to a significant degree if a priori knowledge of camera
parameters and topology information about the environment is utilized, even though the state
transitions, that is, the model of target movement in the scene, are not known in advance.

Because the node selection results may be affected by the use of different time intervals, we
conducted the experiments for 50 trajectories using time intervals of 10–120 samples (in incre-
ments of 10), and set the exploration probability of the approximated Q-function to εt=0 (that is,

there was no exploration in this test). The average visual score AvgVisScore ¼ 1
T ∑

T

t¼1
Mat

tþ1, total

switching number TotalSwitchNum ¼ ∑
T

t¼1
δ at; atþ1ð Þ, and AvgSwitchNum were then compared

for Max, Game, POMDP, and the proposed method (ARL). For comparison, the visual scores of

(a) Average immediate reward for scene A (b) Average immediate reward for scene B

(c) Average switch number per 10 selectionsfor scene A (d) Average switch number per 10 selectionsfor scene B

Fig. 4 Average reward and switch number for scenes A and B (see Fig. 1)

(a) Average immediate reward (b) Average switch number per 10 selections

Fig. 5 Comparison between initialized Q-value and uninitialized Q-value
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Max, Game, and POMDP were calculated using the proposed visual measurement. The resulting
AvgVisScore, TotalSwitchNum, andAvgSwitchNum for the abovemethods are shown in Fig. 6. It is
clear that the total switching number reduces as the time interval increases, whereas the average
switching number per 10 selections increases and the average visual score tends to decrease with
the reduced correlation between the current state and the next state. Further, the results of our
approach are slightly superior to those given by the other three methods.

6.3 Real-life experimental results

We deployed 12 traditional calibrated non-smart cameras in an indoor scene. Natural video
sequences were captured simultaneously by the cameras, and the visual processing for
different video streams was conducted in parallel, thus simulating a distributed smart camera
network. The action and learning modules of Q-learning in the control agent were also
processed using multiple threads. A total of 120 video groups of 10 min in length were
recorded as training data, and another five video groups of 60 min length were selected as test
data. Neither exploration nor policy updating was performed during the test process. We found
that the learning convergence during training was faster than for the simulations described in
Section 6.2. This is because the target trajectories were more regular in the real scene than in
the simulation environment, and a smaller state space was needed for training with respect to
objects such as tables and chairs occupying certain spaces. The tracking algorithm itself is not
the focus of this study; we used the VTD tracker [15] and manually revised the object location

(a) Average visual score (b) Total switching number 

 

(c) Average switching number  

Fig. 6 Simulation results under different time intervals
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when it was in danger of being lost during tracking. The sampling image and target tracking
results for video sequence 1 are shown in Fig. 7, with the orientation scoreMd

i and clarity score
Mc

i for camera i calculated using (36) and (37). The orientation and clarity scores are illustrated
in the figures; the target has a higher orientation score when it moves directly towards the
camera, and has a higher clarity score when it is closer to the camera.

The orientation, clarity, and total scores for camera 1 (Cam1) and camera 4 (Cam4) for
frames 1–2000 of sequence 2 are shown in Fig. 8a–c. For the orientation curves, the angle in
radians of the target relative to the x-axis of Cam1 and Cam4 in frames 90 and 830 is 0.09 and
2.65, respectively. The orientation scores of 0.007 and 0.75 in frame 90, and 0.97 and 0.84 in
frame 830 better reflect the orientation of the target relative to that of the camera. Although the
target reappears in the scene, some parts of the orientation curves (e.g., Cam4 near frames
1950 and 1350) are unstable, which causes varying degrees of jitter in the total score curves.
This is mainly because the initial tracker performance is unstable, and some fitting errors are
introduced when there are fewer fitting points. The resolution curves show images from frames
210, 380, 1650, and 1870. When the target is far away from the camera, the resolution of the
target image is lower and the score is smaller. The resolution curves appear to have a certain
amount of jitter in some areas (e.g., frame 1150 of Cam1), signifying errors in the tracking and
calibration algorithm and a complex background.

We compared our method (ARL) with Max, Game, and POMDP on five test video
sequences. As in the simulation experiments, all the cameras were set to obtain tracking
results, and the proposed visual evaluation metrics were used for comparison. Figure 9 shows
the selection results for sequences 2 and 3, with a selection decision made every 20 s. In the
figure, it can be seen that Max and Game make some false selections. This is because of the
inconsistency between the visual score and the real target state in some views for some target

(a) Cam1, 1 1=0.64 0.73d cM M, (b) Cam2, =0.49 0.822 2
d cM M, =0.07 0.753 3

d cM M, =0.12 0.844 4
d cM M,

=0.17 0.805 5
d cM M, =0.23 0.676 6

d cM M, =0.79 0.597 7
d cM M, =0.81, 0.618 8

d cM M

=0.92, 0.78
9 9
d cM M

10 10
=0.99, 0.86d cM M =0.99, 0.81

11 11
d cM M

(c) Cam3, (d) Cam4,

(e) Cam5, (f) Cam6, (g) Cam7, (h) Cam8,

(i) Cam9, (j) Cam10, (k) Cam11, (l) Cam12, =0.95, 0.82
12 12
d cM M

Fig. 7 Sample frames and tracking results for sequence 1
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errors. In particular, when the visual scores of multiple perspectives are similar or below a
certain threshold, the Game selection result tends to produce jitter effects. For example, there is
frequent switching in steps 65–75 of sequence 2 and steps 90–100 of sequence 3. In contrast,

 

(a) Orientation score curves for Cam1 and Cam4 

 

(b) Clarity score curves for Cam1 and Cam4 

 

(c) Total visual information score curves for Cam1 and Cam4 

Fig. 8 Visual information score curves for Cam1 and Cam4
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our method effectively reduces the incidence of false selection and obtains stable results
because of the Q-value learning from the training data.

The switching numbers and visual scores per step for five video sequences are shown in
Fig. 10a and b. Greedy selection obtained a higher visual score per step for these sequences,
although the scores for each method are generally similar. The proposed method has obvious
advantages over the other methods in terms of the total switching number, especially greedy
selection and Game.

7 Conclusion

As camera networks become extensively utilized in areas such as surveillance and human–
computer interaction, finding the most informative and comfortable view from the mass of real-
time video is of increasing importance. In this paper, we have proposed a dynamic node selection
framework for surveillance applications in critical areas. To deal with the unknown state transi-
tions of target motion and maximize the long-term reward, we trained a selection policy using
reinforcement learning in the central controller. The chosen camera nodes extract effective visual
features from their video streams and send the immediate reward to the central controller. To
accelerate the learning process and reduce storage space, the target’s current state and scene
topology were used as a priori knowledge to initialize the Q-function, and an exploration strategy
based on Gibbs’ distribution was adopted to guarantee that the camera with the greatest Q-value
had a greater exploration probability than under traditional random exploratory action selection.
We utilized GMMs to represent the approximate Q-value function, and updated the GMM
parameters sequentially via the mini-batch stepwise EM algorithm to meet the learning require-
ments of episodic sample updating. In addition, we measured the visual information and comfort
of visual effects given by different cameras by integrating metrics on visibility, orientation, target

(a) Results of camera selection for sequence 2 (b) Results of camera selection for sequence 3

Fig. 9 Results of camera selection for sequences 2 and 3

(a) Average visual scores per frame (b) Total switching numbers

Fig. 10 Comparison of visual scores and switching numbers for the various methods
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clarity, and the cost of switching cameras. Our study of single node selection and scheduling to
maximize the expectation of visual information shows that good results can be achieved when
fewer targets are in a partial overlap region. The implementation of the proposed approach on a
camera network test-bed is planned for future work.

In terms of bandwidth consumption, because feature extraction and scoring are
conducted on each camera node and the target association and fusion are distributed
across all nodes, each camera need only send its current state and immediate reward
to the central controller, and the central node transmits the selected camera’s index to
all nodes. The process of node selection is thus distributed, and the network band-
width consumption is relatively small. However, a central controller is still needed,
and the learning and approximation are centralized. Therefore, a decentralized selec-
tion policy is of interest, that is, cooperation and coordination between smart camera
nodes should be considered.
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