
Single round-trip SIP authentication scheme with provable
security for Voice over Internet Protocol using smart card

Saru Kumari1 & Fan Wu2 & Xiong Li3,4 &

Mohammad Sabzinejad Farash5 & Qi Jiang6 &

Muhammad Khurram Khan7 & Ashok Kumar Das8

Received: 19 April 2015 /Revised: 30 August 2015 /Accepted: 5 October 2015 /
Published online: 4 November 2015
Springer Science+Business Media New York 2015

Abstract In recent years, Voice over Internet Protocol (VoIP) has gained more and more
popularity as an application of the Internet technology. For various IP applications including
VoIP, the topic of Session Initiation Protocol (SIP) has attracted major concern from re-
searchers. SIP is an advanced signaling protocol operating on Internet Telephony. SIP uses
digest authentication protocols such as Simple Mail Transport Protocol (SMTP) and Hyper

Multimed Tools Appl (2016) 75:17215–17245
DOI 10.1007/s11042-015-2988-4

* Saru Kumari
saryusiirohi@gmail.com

Fan Wu
conjurer1981@gmail.com

Xiong Li
lixiong84@gmail.com

Mohammad Sabzinejad Farash
sabzinejad@khu.ac.ir

Qi Jiang
jiangqixdu@gmail.com

Muhammad Khurram Khan
mkhurram@ksu.edu.sa

Ashok Kumar Das
iitkgp.akdas@gmail.com

1 Department of Mathematics, Ch. Charan Singh University, Meerut, Uttar Pradesh, India
2 Department of Computer Science and Engineering, Xiamen Institute of Technology, Huaqiao

University, Xiamen 361021, China
3 School of Computer Science and Engineering, Hunan University of Science and Technology,

Xiangtan 411201, China
4 Nanjing University of Information Science and Technology, Nanjing 210044, China
5 Department of Mathematics and Computer Sciences, Kharazmi University, Tehran, Iran
6 School of Computer Science and Technology, Xidian University, Xi’an 710071 Shaanxi, People’s

Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-015-2988-4&domain=pdf

Text Transport Protocol (HTTP). When a user seeks SIP services, authentication plays an
important role in providing secure access to the server only to the authorized access seekers.
Being an insecure-channel-based protocol, a SIP authentication protocol is susceptible to
adversarial threats. Therefore, security is a big concern in SIP authentication mechanisms.
This paper reveals the security vulnerabilities of two recently proposed SIP authentication
schemes for VoIP, Irshad et al.’s scheme [Multimed. Tools. Appl. doi:10.1007/s11042-013-
1807-z] and Arshad and Nikooghadam’s scheme [Multimed. Tools. Appl. DOI 10.1007/
s11042-014-2282-x], the later scheme is based on the former scheme. Irshad et al.’s
scheme suffers from password guessing, user impersonation and server spoofing attacks.
Arshad and Nikooghadam’s scheme can be threatened with server spoofing and stolen
verifier attack. None of these two schemes achieve mutual authentication. It also fails to
follow the single round-trip authentication design of Irshad et al.’s scheme. To overcome
these weaknesses, we propose a provable secure single round-trip SIP authentication
scheme for VoIP using smart card. We formally prove the security of the scheme in
random oracle and demonstrate through discussion its resistance to various attacks. The
comparative analysis shows that the proposed SIP authentication scheme offers superior
performance with a little extra computational cost.

Keywords Session initiationprotocol .Voiceover internetprotocol .Authentication .Smartcard
. Provable security

1 Introduction

Session Initiation Protocol (SIP) is a text-based signaling protocol which regulates communi-
cations over the Internet [6]. SIP is an ideal mechanism to establish, maintain and terminate the
multimedia-media sessions carried over the Internet. SIP finds application in controlling
multimedia communication sessions such as video calls, conferencing, voice calls, instanta-
neous messaging via Voice over Internet protocols (VoIP) like Simple Mail Transport Protocol
(SMTP) and Hyper Text Transport Protocol (HTTP) [27]. VoIP has revolutionized the concept
of conventional telephony of circuit-switch by introducing the notion of internet telephony and
SIP is capable to deal with all type of signaling necessities of VoIP. Generally, SIP uses the
HTTP-digest-authentication protocol mentioned in RFC2617 [11] to achieve identity authen-
tication. As compared to other signaling protocols such as H.323, SIP is more lightweight and
agile [6]. Like SMTP and HTTP, SIP is a request-response procedure carried over insecure
network, making request of a server and then awaiting a response. For instance, when a client
P (caller) wishes to establish a SIP voice call to the server Q (callee), P should be able to verify
that he/she is connected to SIP user agent of Q and not to an adversary. Thus, mutual
authentication between the requester and the responder at the opposite ends on the telephone
line is very crucial in SIP. However, Internet is subject to various security threats owing to its
open nature. Therefore, designing a secure user authentication scheme for SIP-based services
is a challenge.

7 Center of Excellence in Information Assurance, King Saud University, Riyadh, Kingdom of Saudi
Arabia

8 Center for Security, Theory and Algorithmic Research, International Institute of Information
Technology (IIIT), Hyderabad 500032, India

17216 Multimed Tools Appl (2016) 75:17215–17245

http://dx.doi.org/10.1007/s11042-013-1807-z
http://dx.doi.org/10.1007/s11042-013-1807-z
http://dx.doi.org/10.1007/s11042-014-2282-x
http://dx.doi.org/10.1007/s11042-014-2282-x

1.1 Related work

In 2002, Rosenberg et al. [26], a member in the Internet Engineering Task Force (IETF) of Multi-
PartyMultimedia SessionControl (MMUSIC)WorkingGroup proposed SIP. The Third-Generation
Partnership Project (3GPP) has chosen SIP [26] as the protocol for multimedia applications in 3G
mobile networks [12, 17]. Steep increase in multimedia services based on Voice over Internet
Protocol (VoIP) has made SIP authentication schemes a preferred field of research.

So far, many SIP authentication schemes have been proposed in literature. Many studies such
as [13, 27, 28] revealed the applicability of the server spoofing and the off-line password guessing
attacks on the original HTTP-digest-authentication [11]. In 2005, Yang et al. designed a SIP
authentication scheme [33] using the Diffie–Hellman key exchange algorithm [8]. Although, the
security of their scheme relies on the difficulty of Discrete Logarithm Problem (DLP), it is inapt
for devices with low computational power due to the high computational cost. But, according to
Tang and Liu [29] and Yoon et al. [37], stolen verifier attack is applicable on Yang et al.’s scheme.
Besides, Tang et al. [29] pointed out Denning-Sacco attack onYang et al.’s scheme.

Inspired with the design of Yang et al.’s scheme, in the same year Durlanik and Sogukpinar [9]
designed a SIP authentication scheme using elliptic curve cryptosystem (ECC) [4, 14, 18, 23, 24].
The security of their scheme relies on the Elliptic Curve Discrete Logarithm Problem (ECDLP).
ECC offers a security-level comparable to that of the classical cryptosystems which use quite
larger key sizes. Thus, Durlanik and Sogukpinar’s scheme has considerably low computational
cost and occupies less memory space as compared to Yang et al.’s scheme. In 2009,Wu et al. [31]
designed an ECC-based SIP authentication scheme to overcome the security problems of various
SIP authentication schemes. They claimed that their scheme provides mutual authentication,
confidentiality of post authentication messages and perfect forward secrecy simultaneously. They
also proved their scheme to be secure in the Canetti–Krawczyk (CK) security model [5]. In
contrast to the earlier schemes [9, 33],Wu et al.’s scheme is suitable for low powered devices with
limited memory space. Nonetheless, according to Yoon et al. [37], SIP authentication schemes
proposed by Durlanik and Sogukpinar and Wu et al., both suffer from Denning-Sacco attack [7],
off-line password guessing and stolen-verifier attacks. Moreover, Yoon et al. designed another
improved scheme for SIP authentication [37]. However, according to Liu and Koenig [21], Yoon
et al.’s scheme is prey to off-line password guessing attack. In 2009, Tsai [30] proposed a
lightweight SIP authentication scheme based on nonce. Subsequently, Lee [20] identified pass-
word guessing and insider attacks on Tsai’s scheme. In 2013, Arshad et al. [2] demonstrated that
Tsai’s scheme [30] does not resist stolen verifier, off-line password guessing, and Denning-Sacco
attacks and fails to provide perfect forward secrecy, key agreement, and known-key secrecy.
Further, they presented their own SIP authentication and key agreement scheme [2] based on
ECC. In 2012, He et al. [15], and later, in 2013, Tang et al. [29] and Pu et al. [25], independently
showed that Arshad et al.’s scheme [2] is vulnerable to off-line password guessing attack.
Additionally, they modified the Arshad et al.’s scheme in terms of improved proposals of SIP
authentication schemes. In 2010, Yoo et al. [36] proposed an ECC-based SIP authentication
scheme to overcome the weaknesses of Tsai et al.’s scheme. In 2012, Xie [32] identified off-line
password guessing and stolen-verifier attacks on Yoo et al.’s scheme. In 2013, Farash and Attari
[10] exhibited impersonation and off-line password guessing attacks on Xie’s scheme [32].

In 2013, Yeh et al. proposed an ECC-based SIP authentication scheme [34] to overcome
faults in the contemporary SIP schemes. They claimed their scheme to be secure for applica-
tions demanding high security. However, we observe user impersonation attack and insecure
password update in the scheme. Besides, their scheme requires one and half round-trip to

Multimed Tools Appl (2016) 75:17215–17245 17217

accomplish the authentication process. In the same year, Zhang et al. [38] pondered that most
of the proposed SIP authentication schemes require the server to store user’s verifier(s) in the
database which makes these schemes prone to server spoofing, password guessing and stolen
verifier attacks. Therefore, they proposed a new password-based SIP authenticated scheme
[38] without the need of maintaining a verification table. They claimed their scheme to be free
from many known attacks. In the same year, Irshad et al. [16] pointed out that in Zhang et al.’s
scheme, the messages transmitted between the user and the server are not fresh and hence can
be replayed. Irshad et al. also visualized that one and half round of the Zhang et al.’s scheme
could be cut short to a single round. Thus, Irshad et al. proposed a SIP authentication scheme
with single round-trip. Recently, Arshad and Nikooghadam [3] showed that in Irshad et al.’s
scheme an insidious user of the system can impersonate some other user. Then, they proposed
a SIP authentication and key agreement scheme based on Irshad et al.’s scheme. They claimed
that their scheme not only provides improved security, but is also quite efficient as compared to
the previous SIP authentication schemes.

1.2 Our contributions

This research exposes the weaknesses of Irshad et al.’s [16] and Arshad and Nikooghadam’s [3]
SIP authentication schemes for VoIP. We show that in addition to the attack mounted by Arshad
and Nikooghadam, Irshad et al.’s scheme also suffers from other security pitfalls. We explain
that in Irshad et al.’s scheme, the login-authentication phase is erroneous and a secret key of the
server can be recovered by any legal user of the system. Further, a sensitive value generated
from server’s second secret key and which is common for all registered users is not secure in the
scheme. These weaknesses pave the way to other vulnerabilities like disclosure of user’s
random key, password guessing, user impersonation and server spoofing attacks. Besides, we
exhibit that in Arshad and Nikooghadam’s scheme, an adversary can spoof the legal server to
cheat the user without requiring the user’s password or the server’s secret key. Further, the
storage of users’ verifiers in server’s database makes the scheme open to the stolen verifier
attack. In fact, both the schemes lack the attribute of mutual authentication. We observe that the
scheme proposed byArshad andNikooghadam requires one and half round-trip to complete the
authentication process which is contrary to the single round-trip in the original scheme by
Irshad et al. To lift the security and to remove the design flaws of these schemes, we then
propose a single round-trip SIP authentication scheme for VoIP using smart card, keeping the
design originality of Irshad et al.’s scheme intact. We not only discuss conventionally the
resistance of the proposed scheme to various attacks but also give formal security proof in
random oracle. Further, we compare our schemewith some existent SIP authentication schemes
to assess its efficiency. The overall analysis proves the utility of the scheme for SIP-services.

1.3 Arrangement of the paper

Here follows the layout of the remaining paper. Section 2 and 3 give review and cryptanalysis
of Irshad et al.’s SIP authentication scheme respectively. Section 4 and 5 give review and
cryptanalysis of Arshad and Nikooghadam’s SIP authentication scheme respectively. Our
proposed SIP authentication is presented in Section 6. Section 7 and 8 respectively focus on
the formal and conventional security analysis of the proposed scheme. Section 9 shows the
comparisons of the proposed scheme with some related SIP authentication schemes. Finally,
the paper is ended with conclusion in Section 10.

17218 Multimed Tools Appl (2016) 75:17215–17245

1.4 Useful preliminaries

1.4.1 Elliptic Curve Cryptography (ECC)

Here, we give a brief background of an elliptic curve and its computational problems
[4, 14, 18, 23, 24]. In elliptic curve cryptography (ECC), the elliptic curve equation is
given by Ep(f, g) : y2 = x3 + ax + b (mod p) over a finite field Fp of prime order
p>3, where, f, g∈ Fp and 4a3 + 27b2 ≠ 0 (mod p). Given an integer r∈Fp

* and a
point P∈Ep(f, g), the elliptic curve point multiplication r∙P over Ep(f, g) is defined as
r∙P = P + P +… + P (r times). Normally, the following two intractable problems
form the basis of the security of ECC:

& Elliptic Curve Discrete Logarithm Problem (ECDLP): For two given points P and Q
over Ep(f, g), ECDLP says to find out an integer r∈Fp* when Q = r∙P.

& Elliptic Curve Diffie-Hellman Problem (ECDHP): For three given points P, r∙P, and s∙P
over Ep(f, g) for r, s ∈Fp

*, ECDHP says to find out the point r∙s∙P over Ep(f, g).

1.4.2 Notations with their description

The notations and their description used throughout the paper are listed in Table 1.

Table 1 The notations with description useful throughout the paper

Notations Description

S Server

U User

Ad Adversary

username Username of U

Pw Password of U

e Randomly generated key of U

SC Smart card of U

Tl, Tp Current timestamps at the U side

TA Current timestamps at the Ad side

p, n Large prime numbers

Fp A finite field of prime order p

Ep(f, g) An elliptic curve with order n defined over Fp
P A point of Ep(f, g) called the base point, P is of order n

d, d1, d2 Secret keys maintained by S

Pub Public key of the S

G Additive cyclic group generated by P over Ep(f, g)

Zp Ring of integers modulo p

Zp
* Multiplicative group of Zp

Ek(.)/Dk(.) En(de)cryption functions with k as key

h(.), h1(.), h2(.) Cryptographic one-way hash functions

|| Concatenation operator

Multimed Tools Appl (2016) 75:17215–17245 17219

2 Review of Irshad et al.’s scheme

The details of four phases, system setup phase, registration phase, login-authentication phase
and password update phase of Irshad et al.’s scheme are reviewed as follows:

2.1 System setup phase

This phase is about defining the different parameters meant for public use or user’s interface
with the system. The server S does the following preparations to setup the system. S chooses an
elliptic curve equation Ep(f, g) of order n and P as a base point, from security view point n and
p are chosen to be two large prime numbers with high entropy. S randomly picks d1,d2∈Zp* as
two secret keys and computes the public key Pub = d2P. S chooses three one-way hash
functions h(.) : {0,1}* → {0,1}k, h1(.) : G × {0,1}* × {0,1}* → {0,1} k, h2(.) : G × G×
{0,1}* × {0,1}* → {0,1} k. Finally, S publishes the information {Ep(f, g), P, Pub, h(.), h1(.),
h2(.)} in a public directory.

2.2 Registration phase

In this phase, S validates U over a secure channel. The steps undergone by U and S for the
purpose of registration are as listed below:

1) On affirmative verification at S, U randomly generates a key e, chooses a random integer
ir∈Zp* and her password Pw. Next, she computes h(Pw | |ir) and submits
{(h(Pw||ir)||username), e} to S.

2) In response to the received information {(h(Pw||ir)||username), e} fromU, S computes R =
h(h(Pw||ir)||username) d2

−1P and I = (e||username)d1
−1. S stores R in a smart card SC and

securely provides SC = {R} & I to U.
3) U stores ir in SC and at the closing of the registration phase U owns SC = {R, ir} & I.

2.3 Login-authentication phase

When U wishes to log into S, she inserts her SC into a smart card reader and inputs her
username and Pw. Subsequently, the procedure that takes place between U and S for the
purpose of mutual authentication and session key agreement is listed below as a series of steps:

1) U selects a random integer a∈Zp* and acquires the current timestamp Tl. Then U
computes x = aR, X = ah(h(Pw||ir)||username)Pub and mu = MACe(Tl). Next, it
sends REQUEST = {realm, username, x, X, I, Tl, h(mu)} to S over a public
channel. Here MACe is message authentication code with e as key, also known as
keyed hash function since it takes as input a secret key and an a message of
arbitrary length.

2) On receiving the REQUEST, S obtains e′ = d1I, computes mu′ = MACe′(Tl) and
checks if h(mu) ‗? h(mu′). The success of this verification validates the freshness
of Tl and the REQUEST. After that, S computes X′ = d2

2(x) and checks if X ‗?
X′. On the success of this verification, it randomly selects two integers r, b ∈ Zp

*

and computes the following values: y = bP, K = bd2x, ms = MACe′(Tl + 1), sk =

17220 Multimed Tools Appl (2016) 75:17215–17245

h1(K||r||ms||username) and Auths = h2(K||X′||r||sk). Finally, S answers back with
RESPONSE = {realm, r, y, Auths} to U.

3) On receiving the RESPONSE, U computes K′ = ah(h(Pw||ir)||username)y, ms′ = MACe

(Tl + 1), sk = h1(K ′ | |r | | ms ′ | |username) and checks i f Auths ‗? h2(K
′||h(h(Pw||ir)||username)aPub||r||sk). The success of this verification validates S and U can
rely on sk = h1(K′||r||ms′||username) as the session key to establish confidential communi-
cation with S till next login.

2.4 Password update phase

This phase is initiated using a recent session key sk. The details of this phase are as given in the
following steps:

1) U chooses a new random integer irnew ∈ Zp
* and a new password Pwnew. Next, she

computes h(Pwnew||irnew) and acquires the current timestamp Tp. Then, U performs the
encryption V = Esk(username||Tp||h(Pwnew||irnew)||h(username||Tp||h(Pwnew||irnew))) using sk
and submits PU-REQUEST = {V, Tp} as a password update request to S.

2) On obtaining PU-REQUEST from U, S decrypts V. Next, S checks the validity of the
message by computing the fresh value h(username||Tp||h(Pwnew||irnew)) and comparing
it with the received value recovered from V. For success of this verification, S
computes the new parameter Rnew = h(h(Pwnew||irnew)||username)d2

−1P and performs
the encryption W = Esk(Rnew||h(username|| Tp + 1|| Rnew)). S answers back with PU-
RESPONSE = {W} to U.

3) On obtaining PU-RESPONSE from S, U decrypts W and confirms its validity by com-
puting the fresh value h(username|| Tp + 1|| Rnew) and comparing it with the received value
recovered fromW. For success of this verification, U replaces R and ir in her SC with Rnew
and irnew respectively.

3 Cryptanalysis of Irshad et al.’s scheme

3.1 Error in login-authentication phase

During the registration phase, S provides SC = {R} & I = (e||username)d1
−1 to U.

Then, U stores the random integer ir in SC owns SC = {R, ir} & I. At the time of login, U
computesmu =MACe(Tl) using her random key e and sends REQUEST = {realm, username, x,
X, I, Tl, h(mu)} containing I to S. Our concern is that the values {e, I} are neither stored in the
memory of SC nor these are like password which can be easily memorized by the user. Besides,
if SC = {R, ir, I}, U cannot obtain e out of I as it requires the knowledge of S’s secret key d1.
Consequently, U cannot initiate the login unless both e and I are stored in SC.

3.2 Server’s first secret is at risk

During the registration phase, U submits her registration request containing a randomly
generated key e to S. Then S computes I = (e||username)d1

−1 and provides it to U. The
value I contains U’s key e protected with S’s secret key d1. Since U knows her key e and

Multimed Tools Appl (2016) 75:17215–17245 17221

username, she can obtain d1
−1 from I as d1

−1 = (e||username)−1I and further obtains the
secret key d1 of S by computing (d1

−1) −1. In this way, any legal user can get hold of the
secret key d1 of S and can use it to impersonate the other users as will be explained in
Subsections 3.6.

3.3 Secret value generated from server’s second secret is at risk

It is observable that the value d2
−1P containing S’s secret key d2 is used to compute

the parameter R = h(h(Pw||ir)||username)d2
−1P for U and similar parameters for each

of the registered user. Here, we show that any legal user can gain this sensitive value
by undergoing password update phase. U chooses a new random integer irnew ∈ Zp

*, a
new password Pwnew and submits her password update request to S. In response, U
receives the new parameter Rnew = h(h(Pwnew||irnew)||username)d2

−1P from S. Then
she can obtain d2

−1P from Rnew as (h(h(Pwnew||irnew)||username))
−1 Rnew. In this

manner, any legal user can get hold of d2
−1P, which is common for all users, without

deploying any expensive method. Having d2
−1P in hand, one can mount password

guessing and user impersonation threats on Irshad et al.’s scheme as the discussion
follows in Subsections 3.5 and 3.6 respectively.

3.4 Attack on user’s random key

We have shown in Subsection 3.2 that an adversary Ad, who is a malicious legal
user, can obtain the value d1 which is a secret key of S. Then he can obtain the
value I = (e||username)d1

−1 from an intercepted REQUEST = {realm, username, x, X, I, Tl,
h(mu)} of U. Using d1, she can gain the random key e ofU as (e||username) = d1I. Thus, Ad can
own the random secret key of any user of the system.

3.5 Password guessing attack

Suppose that the smart card of U is lost or stolen and an adversary Ad, who is actually a
malicious legal user, gains the information {R, ir, etc.} from its memory using techniques such
as power consumption or side channel attacks [19, 22, 35]. Then Ad can obtain the secret d2

−1P
using his own smart card (as discussed in subsection 3.3) to guess the password of U. Ad
guesses Pw* as a possible password ofU to compute R* = h(h(Pw*||ir)||username) d2

−1P, where
username of U is on easy access from some previously intercepted U’s REQUEST. Ad verifies
if R ‗? R*, the success of this verification implies the correctness of the guessed value Pw*,
else, Ad repeats the computation and verification process with some another guess. Thus,
password guessing is possible in Irshad et al.’s scheme.

3.6 User impersonation attack

In order to impersonate U, a malicious legal user Ad first of all obtains the secrets d1
−1 and

d2
−1P using her own smart card (as discussed in subsections 3.2 and 3.3) and then continues

further in the following manner:

1) Ad selects a random key eA to compute IA = (eA||usernameu)d1
−1. Then she

selects a random integer aA∈Zp* and computes xA = aAd2
−1P, XA = aAPub and

17222 Multimed Tools Appl (2016) 75:17215–17245

mA = MACeA(TA) using the current value of the timestamp TA. Next, it sends
REQUEST = {realm, usernameu, xA, XA, IA, TA, h(mA)} to S over a public
channel.

2) On receiving the REQUEST, S obtains (eA)′ = d1I, computes mA′ = MAC(eA)′(TA) and
checks if h(mA) ‗? h(mA′). Clearly, this verification will hold and the timestamp TA will
pass the freshness test. Afterwards, S computes (XA)′ = d2

2(xA) and checks if XA ‗? (XA)′.
Clearly, this verification, will hold since (XA)′ = d2

2(xA) = d2
2(aAd2

−1P) = aAd2P = aAPub =
XA. Consequently, S randomly selects two integers r, b ∈ Zp

* and computes the
following values: y = bP, KA = bd2x

A, ms = MAC(eA) ′(TA + 1), sk =
h1(K||r||ms||usernameu) and Auths = h2(K||(X

A)′||r||sk). Finally, S answers back with
RESPONSEA = (realm, r, y, Auths) to U.

3) On receiving the RESPONSEA, Ad computes KA = aAy, ms′ = MACeA(TA + 1), sk =
h1(K

A||r||ms′||usernameu) and checks if Auths ‗? h2(K
A||XA||r||sk). The success of this

verification validates S and ensures the correctness of the computed session key sk.
Now, Ad can communicate with S using sk.

Thus, Ad impersonates U to cheat S whereas S believes that he is communicating
with the registered user U. It is noticeable that Ad can apply a forgery attack by using
an arbitrary username usernameA instead of usernameu in the above process. We can
see that the forgery process goes on smoothly if we replace usernameu with
usernameA in the whole process and S has no way to differentiate a registered user
from a non- registered user.

3.7 Server spoofing attack

Here, we show the vulnerability of Irshad et al.’s scheme to the server spoofing attack. We
show how a malicious legal user Ad, after obtaining the secret d1 of S using her own smart card
(as discussed in subsections 3.2), can prove itself the legal server to the user. For this, Ad
performs the following steps:

1) Ad intercepts a current login request REQUEST = {realm, username, x, X, I, Tl, h(mu)}
sent by U to S.

2) Ad obtains (eA)′ = d1I = e and randomly selects two integers rA, bA ∈ Zp
*. Then, she

computes yA = bAPub , KA = bAX , mA = MAC (eA) ′ (Tl + 1) , skA =
h1(K

A||rA||mA||username) and AuthA = h2(K
A||X||rA||skA). Ad answers back with

RESPONSEA = (realm, rA, yA, AuthA) to U.
3) On receiving the RESPONSEA, U computes K = ah(h(Pw||ir)||username)y

A, mA′ =
MACeA(Tl + 1), sk = h1(K||r

A||mA′||username) and checks if AuthA ‗? h2(K||X||r
A||skA).

Clearly, this verification will hold since K = ah(h(Pw| |ir)||username)yA =
ah(h(Pw||ir)||username)b

APub = bAah(h(Pw||ir)||username)Pub == bAX = KA. This verifica-
tion not only ensures the freshness of the extension Tl + 1 of the timestamp Tl but also
makes U to believe that sk computed by her is equal to the session key skA computed at
the server side.

In this way, U is contented that the received RESPONSEA is fresh (free from any
replay) and originated from the legal server. Moreover, Ad shares a confidential
communication channel with the user by means of the established session key.

Multimed Tools Appl (2016) 75:17215–17245 17223

3.8 Mutual authentication attack

As discussed in Sections 3.6 and 3.7, an adversary Ad who is a malicious legal user can
impersonate the user and can spoof the server, therefore mutual authentication is not achieved
in the Irshad et al.’s scheme.

4 Review of Arshad et al.’s scheme

The detail of four phases, system setup phase, registration phase, login-authentication
phase and password update phase of Arshad and Nikooghadam’s scheme is reviewed
as follows:

4.1 System setup phase

This phase is exactly same as in Irshad et al.’s scheme except that S maintains only one secret
key d ∈ Zp

* with Pub = dP as the corresponding public key. S chooses a one-way hash
functions h(.) : {0,1}* → {0,1}k. Finally, S publishes the information {Ep(f, g), n, P, Pub, h(.)}
in a public directory. We avoid mentioning the rest of the similar details to avoid the
redundancy of the text.

4.2 Registration phase

In this phase, S validates U over a secure channel. The steps undergone by U and S for the
purpose of registration are as listed below:

1) U chooses a random integer ir ∈ Zp
* and her password Pw. She computes vi = h(ID||Pw||ir)

and stores ir in her memory device (portable HDDs, USB stick, etc.), where ID denotes
the identity of U. Next, she submits {ID, vi} to S.

2) After receiving the information {ID, vi} from U, S checks if ID already exists in its
database or not. If ID is absent in the database then S computes R = h(ID||d) ⊕ vi and
stores {ID, R} in its database.

4.3 Login-authentication phase

When U wishes to log into S, the following process takes place between U and S for the
purpose of mutual authentication and session key agreement:

1) U chooses a random integer a∈Zp* and computes x = aPub = adP. Then, it sends
REQUEST = {ID, x} to S over a public channel.

2) On receiving REQUEST, S checks its database for the existence of ID. S terminates the
session in case ID is absent in database. Otherwise, S randomly selects an integer b ∈
Zp

*and computes y = bP, K = bd−1x = baP andms = h(ID||y||K). Then, S answers back with
RESPONSES = {realm, y, ms} to U.

3) On receiving RESPONSES, U computes K′ = ay = abP and checks if ms′ ‗? h(ID||y||K′).
The success of this verification authenticates S. Thereby, U retrieves ir from her

17224 Multimed Tools Appl (2016) 75:17215–17245

memory device to compute vi = h(ID||Pw||ir). Next, she computes mu =
h(ID||y||realm||K′||vi), the session key sk = h(ID||y||K′||realm) and replies with
RESPONSEU = {ID, realm, mu} to S.

4) On receiving RESPONSEU, S computes vi = R ⊕ h(ID||d) and checks if mu′ ‗?
h(ID||y||realm||K||vi). The success of this verification authenticates U and thereby S
computes the session key sk = h(ID||y||K||realm).

4.4 Password update phase

This phase is initiated using a recent session key sk. The details of this phase are as given in the
following steps:

1) U chooses a new random integer irnew ∈ Zp
* and a new password Pwnew. She retrieves ir

from her memory device, to computes vinew = h(ID||Pwnew||irnew). Next, it computes z =
h(ID||Pw||ir) ⊕ vinew = vi ⊕ vinew, Z = z ⊕ h(ID||sk) = vi ⊕ vinew ⊕ h(ID||sk), V =
h(ID||vinew||sk||vi) and submits PU-REQUEST = {ID, Z, V} as a password update request
to S.

2) On obtaining PU-REQUEST from U, S computes vi = R ⊕ h(ID||d), vinew = Z ⊕
vi ⊕ h(ID||sk). Next, S checks the validity of the message by computing the fresh
value h(ID||vinew||sk||vi) and comparing it with the received value V. For success of
this verification, S computes the new parameter Rnew = R ⊕ z = h(ID||d) ⊕
h(ID||Pw||ir) ⊕ h(ID||Pw||ir) ⊕ h(ID||Pwnew||irnew) = h(ID||d) ⊕ h(ID||Pwnew||irnew)
and replaces vi with vinew in its database. S answers back with PU-RESPONSE =
{h(ID||vi||accept||vinew||sk)} to U.

3) On obtaining PU-RESPONSE from S, U checks the validity of the message by computing
the fresh value h(ID||vi||accept||vinew||sk) and comparing it with the received value. For
success of this verification, U replaces ir with irnew in her memory device.

5 Cryptanalysis of Arshad et al.’s scheme

5.1 Server spoofing attack

Now, we show that Arshad et al.’s scheme is susceptible to an impersonation attack as an
adversary Ad can spoof the legal server to cheat any registered user of the system. Here follows
the description of the attack:

1) When U wishes to log into S, she sends REQUEST = {ID, x} to S, where x = aPub = adP
with a as a random integer belonging to Zp

*.
2) Ad intercepts and blocks the REQUEST, and chooses a random integer bA ∈ Zp

*. Computes
yA = bAPub = bAdP, KA = bAx = bAaPub = bAadP and mA = h(ID||yA||KA). Sends
RESPONSEA = {realm, yA, mA} to U.

3) On receiving RESPONSEA, U computes KA′ = ayA = abAPub = abAdP and checks ifmA′ ‗?
h(ID||yA||KA′). Clearly, this verification will hold by virtue of the equality of KA′ and KA.
Thus, U believes that the received RESPONSEA originated from the legal S and proceeds
further. Retrieves ir from her memory device to compute vi = h(ID||Pw||ir). Next, she

Multimed Tools Appl (2016) 75:17215–17245 17225

computes muA = h(ID||yA||realm||KA′||vi), the session key skA = h(ID||yA||KA′||realm) and
replies with RESPONSEUA = {ID, realm, mA} to S.

4) On receiving RESPONSEUA, Ad computes the session key sk = h(ID||yA||KA||realm) to
communicate with U.

Consequently, U believes that she is connected with the legal server whereas it is the
adversary Ad at the opposite end who is not only connected with U but has also established a
secure communication channel with U. The noticeable thing about this attack is that for this the
adversary Ad neither requires U’s smart card or password nor needs S’s secret key d.

5.2 Stolen verifier attack

S stores {ID, R} in its database, where R = h(ID||d) ⊕ vi = h(ID||d) ⊕ h(ID||Pw||ir) is used by S
during the authentication to verifyU. Assume the leakage of S’s secret key d, in such situation,
an adversary Ad can obtain U’s verifier h(ID||Pw||ir) from R as h(ID||Pw||ir) = R ⊕ h(ID||d).
Further, if Ad happens to access the memory device ofU then he can extract the random integer
ir from it to guess U’s password. He guess Pwg as U’s possible password and computes
h(ID||Pwg||ir). Compares the two values h(ID||Pw||ir) and h(ID||Pwg||ir) of the verifier, the
equality yields the correct password otherwise he tries with another guess. He can keep
guessing continue until success is achieved.

5.3 Lacks mutual authentication

As described in section 5.1, an adversary Ad can cheat a legal user by spoofing as the legal
server. Therefore, mutual authentication is shattered in Arshad and Nikooghadam’s scheme.

6 The proposed scheme

Here, we propose our improved scheme to conquer the weaknesses of Irshad et al.’s scheme.
Similar to Irshad et al.’s scheme, our scheme is also divided into four phases as listed and
detailed below along with figure:

6.1 System setup phase

This phase is exactly same as that of Irshad et al.’s scheme except that S maintains only one
secret key d ∈ Zp

*with Pub = dP as the corresponding public key. We avoid mentioning the rest
of the similar details to avoid the redundancy.

6.2 Registration phase

In this phase, S validates U over a secure channel. The steps undergone by U and S for the
purpose of registration are as listed below:

1) On affirmative verification at S, U randomly generates a key e, chooses a random integer
ir ∈ Zp

* and her password Pw. Next, she computes h(Pw) + ir and submits {username,
h(Pw) + ir, e} to S.

17226 Multimed Tools Appl (2016) 75:17215–17245

2) In response to the received information {username, h(Pw) + ir, e} from U, S computes
R′ = (h(Pw) + ir) + h(username||d) and I = (e + h(d||username)). S stores I in a smart card
SC and securely provides SC = {I} & R′ to U.

3) U computes R = R′ − ir = h(Pw) + h(username||d), Z = (e + h(username||Pw)) and stores
them in her SC. At the closing of the registration phase, U owns SC = {I, R, Z}.

6.3 Login-authentication phase

When U wishes to log into S, she inserts her SC into a smart card reader and inputs her
username and Pw. Subsequently, the procedure that takes place between U and S for the
purpose of mutual authentication and session key agreement is listed below in a series of steps:

1) U selects a random integer a∈Zp* and acquires the current timestamp Tl. ThenU computes
x = aP, X = a(R− h(Pw))Pub = ah(username||d)dP, e = Z− h(username||Pw) and mu =
h(username||X||e||Tl). Next, it sends REQUEST = {realm, username, x, I, Tl, mu} to S over
a public channel.

2) On receiving the REQUEST, S obtains e′ = I − h(d||username), computes X′ =
xh(username||d)d, mu′ = h(username||X′||e′||Tl) and checks if mu ‗? mu′. The success of
this verification validates the freshness of Tl, freshness of REQUEST and hence authen-
ticatesU. S randomly selects an integer b ∈ Zp* and computes the following values: y = bP,
K = bx = abP, sk = h1(K||X′||e′||username) and Auths = h2(K||sk||Tl + 1). Finally, S answers
back with RESPONSE = (realm, y, Auths) to U.

3) On receiving the RESPONSE, U computes K′ = ay = abP, sk = h1(K′||X||e||username) and
checks if Auths ‗? h2(K′||sk||Tl + 1). The success of this verification validates S and U can
rely on sk = h1(K′||X||e||username) as the session key to establish confidential communi-
cation with S till next login.

6.4 Password update phase

This phase is initiated using a recently agreed session key sk immediately after the session key
is establsihed. The details of this phase are as follows:

1) U chooses a new random integer irnew ∈ Zp
* and a new password Pwnew. Next, it computes

h(Pwnew) + irnew and acquires the current timestamp Tp. Then, U performs the encryption
V = Esk(username||Tp||h(Pwnew) + irnew ||h(username||Tp||h(Pwnew) + irnew)) using sk and
submits PU-REQUEST = {V, Tp} as a password update request to S.

2) On obtaining PU-REQUEST from U, S decrypts V. Next, S checks the validity of the
message by computing the fresh value h(username||Tp||h(Pwnew) + irnew) and comparing it
with the received value recovered from V. For success of this verification, S computes the
new parameter (Rnew)′ = (h(Pwnew) + irnew) + h(username||d) and performs the encryption
W = Esk((Rnew)′||h(username|| Tp + 1||(Rnew)′)). S answers back with PU-RESPONSE =
{W} to U.

3) On obtaining PU-RESPONSE from S, U decrypts W and confirms its validity by
computing the fresh value h(username|| Tp + 1||(Rnew)′) and comparing it with the
received value recovered from W. For success of this verification, U computes

Multimed Tools Appl (2016) 75:17215–17245 17227

Rnew = (Rnew)′ − irnew = h(Pwnew) + h(username||d), Znew = Z − h(username||Pw) +
h(username||Pwnew). Then U replaces R and Z in her SC with Rnew and Znew respectively.

7 Analysis of security properties of the proposed scheme

7.1 Secret key of the server is safe

During the registration phase, U submits her registration request containing a randomly
generated key e to S. Then S computes R′ = (h(Pw) + ir) + h(username||d), I = (e +
h(d||username)) and provides SC = {I} & R′ to U. Although a malicious user can obtain
h(username||d) from R′ as h(username||d) = R′ − (h(Pw) + ir), he cannot obtain S’s secret key d
from h(username||d) due to the one-way property of the hash function. Similar hindrance is
posed by the value I for recovering d from it. Moreover, she needs to extract [19, 22, 35] I from
her SC which is a costly method. Even though, an adversary Ad can take I by intercepting a
login request REQUEST = {realm, username, x, I, Tl, mu} of U from the network, he cannot
gain d from it without knowing U’s random secret key e and due to the one-way property of
the hash function. In this way, neither a legal user nor an adversary can get hold of the secret
key d of S.

7.2 Password guessing attack

Suppose that the smart card of U is lost or stolen and an adversary Ad gains the information {I,
R, Z} from its memory using techniques such as power consumption or side channel attacks
[19, 22, 35]. Then Ad has two choices, R & Z, for guessing U’s password. In order to guess
user’s password from Z, Ad requires the knowledge of U’s username and random secret key e.
However, username can be taken from an intercepted login request; e is not obtainable by any
means. On the other hand, guessing of Pw from R is not feasible as it additionally requires the
knowledge of S’s secret key d. Ad can take username from an intercepted login request and can
guesses Pw*. Next, he computes e*← Z − h(username||Pw*), (h(d||username))* = I + e*. But,
the value (h(d||username))* is of no help to verify the guessed Pw* from R = h(Pw) +
h(username||d) as it contains h(username||d) which is different from h(d||username). Thus,
password guessing is not possible in the proposed scheme.

7.3 User impersonation attack

In order to impersonate as U, Ad should be able to compute a workable login request involving
U’s specific secrets. Ad cannot compute the correct value of X as he does not know S’s secret
key d. Ad cannot obtain e from I available in login request of U because it involves the secret
key d of S. Further, he cannot obtain U’s random secret key e from her lost or stolen SC as it
requires U’s password Pw. Thus, it is not possible to impersonate a legal user.

7.4 Server spoofing attack

To spoof the server, Ad should be able to compute a valid RESPONSE in reply to a current
REQUEST sent by U. For this purpose, Ad requires S’s secret key d to compute X′ =
xh(username||d)d, needs U’s random secret key e to compute sk = h1(K||X′||e′||username)

17228 Multimed Tools Appl (2016) 75:17215–17245

embedded in the authenticating value Auths = h2(K||sk||Tl + 1). In the absence of d & e, Ad
cannot spoof the server.

7.5 Replay attack

The login request REQUEST = {realm, username, x, I, Tl, mu} sent byU to S contains the fresh
timestamp Tl. The parameter mu = h(username||X||e||Tl) responsible for the verification of the
REQUEST contains the timestamp Tl. On obtaining the REQUEST, S computes e′ = I−
h(d||username), X′ = xh(username||d)d, mu′ = h(username||X′||e′||Tl) and checks if mu ‗? mu′.
The success of this verification validates the freshness of Tl and ensures that the REQUEST has
not been replayed. The response message RESPONSE = (realm, y, Auths) sent by S to U
contains the extension Tl + 1 of Tl. The session key sk = h1(K||X′||e′||username) is embedded in
Auths = h2(K||sk||Tl + 1) which is responsible for the verification of the RESPONSE = (realm, y,
Auths). On obtaining the RESPONSE, U computes K′ = ay = abP, sk = h1(K′||X||e||username)
and checks if Auths ‗? h2(K′||sk||Tl + 1). The success of this verification validates the freshness
of Tl +1 and ensures that the RESPONSE has not been replayed. Thus, the contribution of fresh
timestamp and its extension in REQUEST and RESPONSE respectively, protects the scheme
against replay attack.

7.6 Forward secrecy

Forward secrecy ensures the security of already established session keys even if long term
secrets (user’s password or server’s secret key) of any of the communicating participants are
compromised. If U’s password Pw or S’s secret key d or both are compromised, an adversary
Ad has to face the Elliptic Curve Discrete Logarithm Problem (ECDLP) to gain a or b from x =
aP or y = bP respectively, otherwise, computation of K = bx = ay = abP is not feasible. Since
the value of K = abP involved in the session key sk = h1(K||X′||e′||username) = h1(K′||X||e
||username) is independent of Pw and d, therefore, the proposed scheme provides strong
forward secrecy.

7.7 Mutual authentication

The server S authenticates U by checking the freshness of Tl and hence the validity of the
received REQUEST = {realm, username, x, I, Tl, mu} through the equivalence mu ‗? mu′ after
computing e′ = I−h(d||username), X′ = xh(username||d)d and mu′ = h(username||X′||e′||Tl). On
the other hand, U authenticates S by checking the freshness of the extension Tl +1 of Tl and
hence the validity of received RESPONSE = (realm, y, Auths) through the equivalence Auths ‗?
h2(K′||sk||Tl + 1) after computing K′ = ay = abP, and sk = h1(K′||X||e||username). Thus, both user
and the server authenticate each other in the proposed scheme.

7.8 Insider attack

During registration phase, U submits h(Pw) + ir, where ir is a random integer chosen
from Zp

*. Thus, the insider of the system at the server has no knowledge of users’
passwords. Moreover, owing to the random choice of ir and the one-way property of
hash function, he cannot reveal Pw from h(Pw) + ir. Therefore, insider attack is not
applicable on the proposed scheme.

Multimed Tools Appl (2016) 75:17215–17245 17229

7.9 Stolen verifier attack

The server does not store any information of its registered users and completes the authenti-
cation process using the information possessed by it and received from the user. Therefore, an
adversary Ad has no way of stealing and misusing the information stored in some database at
the server. Thus, the scheme is free from the stolen verifier attack.

7.10 Secure password update facility

To update her password, U inserts his smart card in a card reader to connect with the server. U
uses the session key to communicate his encrypted password update request to S. In reply, S
encrypts the parameters required to update the password with the same session key and
transmits to U. An adversary Ad cannot update the password of U using the lost/stolen smart
card of U unless he knows the session key. Thus, the scheme provides a secure password
update phase.

7.11 Denning-Sacco attack

In Denning-Sacco attack [7] an adversary Ad attempts to guess the secret keys (such as server’s
secret key or user’s password or a current session key) of any of the communicating
participants from some previously disclosed session key. The proposed scheme utilizes the
one-way hash function and ECC to compute the session key sk = h1(K||X||e||username) =
h1(abP||ah(username||d)dP||e||username). Since sk is independent of the user’s password and
server’s secret key is protected under the one-way of hash function, an attacker Ad cannot
obtain any secret key used in the protocol using a compromised previous session key. If Ad
tries to guess the value d from sk, he requires to possesses the random secret key e of the user
along with the random values a and b. However, to reveal a and b from x = aP and y = bP
respectively, Ad has to face the intractable ECDLP. Therefore, the proposed scheme resists the
Denning-Sacco attacks.

8 Formal security analysis of the proposed scheme

In this section, we show that our protocol is secure in the random oracle model. We start with
the formal security model and the algorithm assumption that will be used in our proof.

8.1 Security model

In order to make our scheme resist the known attacks to the authentication protocols, we use
the method of provable security. The security proof is based on the model proposed by Abdalla
and Pointcheval [1]. The model that we use is as follows:

8.1.1 Participants

An authentication protocol Π runs in a network of a number of interconnected participants
where each participant is either a client U ϵ U or a trusted server S ℱ. The set ℱ is assumed to
involve only a single server for simplicity. Each of the participants may have several instances

17230 Multimed Tools Appl (2016) 75:17215–17245

called oracles involved in distinct executions of the protocol Π. We refer to i-th instance of U
(respectively S) in a session as ΠU

i (resp. ΠS
j). Every instance ΠU

i (resp. ΠS
j) has a partner ID

pidU
i (resp. pidS

j), a session ID sidU
i (resp. sidS

j), a session key skU
i (resp. skS

j). pidU
i (resp. pidS

j)
denotes the set of identities that are involved in this instance. sidU

i (resp. sidS
j) denotes the flows

that are sent and received by the instanceΠU
i (resp.ΠS

i). An instanceΠU
i (resp.ΠS

i) is said to be
accepted if it holds a session key skU

i (resp. skS
j), a session identifier sidU

i (resp. sidS
j), and a

partner identifier pidU
i (resp. pidS

j). Two instances ΠU
i and ΠS

i are considered partnered if and
only if (i) both of them have accepted, (ii) pidU

i = pidS
j , (iii) sidU

i = sidS
j , (ii) skU

i = skS
j .

8.1.2 Adversary model

The communication network is assumed to be fully controlled by an adversary A, which
schedules and mediates the sessions among all the parties. The adversaryA is allowed to issue
the following queries in any order:

Execute(ΠU
i , ΠS

j): This query models passive attacks in which the attacker eavesdrops on
honest executions among the client instance ΠU

i and trusted server instance ΠS
j . The

output of this query consists of messages that were exchanged during the honest
execution of the protocol Π.
SendClient(ΠU

i , m): The adversary makes this query to intercept a message and then
modify it, create a new one, or simply forward it to the client instance ΠU

i . The output of
this query is the message that the client instance ΠU

i would generate upon receipt of
message m . Additionally, the adversary is allowed to initiate the protocol by invoking
SendClient(ΠU

i , start).
SendServer(ΠU

i , m): This query models an active attack against a server. The adversary
makes this query to obtain the message that the server instance ΠS

j would generate on
receipt of the message m.
Reveal(ΠU

i): This query models the known session key attack. The adversary makes this
query to obtain the session key of the instance ΠU

i .
Corrupt(U): This query returns to the adversary the long-lived key PwU for
participant U.
Test(ΠU

i): Only one query of this form is allowed to be made by the adversary to
a fresh oracle. To respond to this query, a random bit bϵ{0,1} is selected. If b=1,
then the session key held by ΠU

i is returned. Otherwise, a uniformly chosen
random value is returned.

8.1.3 Fresh oracle

An oracle ΠU
i is called fresh if and only if the following conditions hold: (i) ΠU

i has accepted,
and (ii) ΠU

i or its partner (if exists) has not been asked a Reveal query after their acceptance.

8.1.4 Protocol security

The security of an authentication protocol Π is modeled by the game (Π, A). When playing
this game, the adversaryA can make many queries mentioned earlier toΠU

i andΠS
j . IfA asks

a single query, Test(ΠU
i), where ΠU

i has accepted and is fresh, then A outputs a single bit b′.

Multimed Tools Appl (2016) 75:17215–17245 17231

The aim of A is correctly guessing the bit b in the test session. More precisely, we define the
advantage of A as follows:

AdvΠ;D Að Þ ¼ 2Pr b0 ¼ b½ �−1j j
The protocol Π is said to be secure if AdvΠ; D Að Þ is negligible.

8.2 Computational assumption

We define the Decisional Diffie-Hellman (DDH) assumption which we use in the security
proof of our scheme.

Definition 1 The DDH assumption can be precisely defined by two experiments, ExpP,p
ddh− real

(W) and ExpP,p
ddh− rand (W). An adversary W is provided with uP, vP and uvP in the experiment

ExpP,p
ddh− real (W), and uP, vP and wP in the experiment ExpP,p

ddh− rand (W), where u, v and w are
drawn at random from Zp

*. Define the advantage of W in violating the DDH assumption,
AdvP,p

ddh (W), as follows:

AdvddhP;p Wð Þ ¼ max Pr Expddh−realP;p Wð Þ ¼ 1
h i

−Pr Expddh−randP;p Wð Þ ¼ 1
h i���

���
n o

8.3 Security proof

Theorem 1 Let D be a uniformly distributed dictionary of passible passwords with size |D|.
Let Π describes the improved authentication protocol defined in Fig. 1. Suppose that DDH
assumption holds, Then,

AdυΠ;D Að Þ≤ q2h þ q2h1 þ q2h2
2k

þ qs þ qeð Þ2
p2

þ 2qe⋅Adυ
ddh
P;p Wð Þ þ 2max

qh1
2k

;
qs
Dj j

� �
;

where qs denotes the number of Send queries; qe denotes the number of Execute queries; qh,
qh1 and qh2 denote the number of hash queries to h, h1 and h2, respectively.

Proof This proof consists of a sequence of hybrid games, starting at the real attack G0 and
ending up at game G4 where the adversary has no advantage. For each game Gi(0≤i≤4), we
define Succi as the event that A correctly guesses the bit b in the test session.

Game G0: This game is the real protocol, in the random-oracle model. In this game, all the
instances of U and the trusted server S are modeled as the real execution in the random
oracle. By definition of event Succi, which means that the adversary correctly guesses the
bit b involved in the Test-query, we have

AdvΠ; D Að Þ ¼ 2 Pr Succ0½ �− 1

2

����
���� ð1Þ

Game G1: This game is as the same as the game G0 except that we simulate the hash
oracles h, h1 and h2 as usual by maintaining hash lists hList, h1List and h2List with entries of
the form (Inp,Outp). On hash query for which there exists a record (Inp,Outp) in the hash

17232 Multimed Tools Appl (2016) 75:17215–17245

list, return Outp. Otherwise, randomly choose Outp ϵ {0,1}k, send it to A and store the
new tuple (Inp, Outp) into the hash list. We also simulate all the instances, as the real

Fig. 1 The proposed scheme

Multimed Tools Appl (2016) 75:17215–17245 17233

players would do, for the Send-query and for the Execute, SendClient, SendServer,
Reveal, Corrupt and Test queries. From the viewpoint of the adversary, we easily see
that the game is perfectly indistinguishable from the real attack. Hence

Pr Succ1½ � ¼ Pr Succ0½ � ð2Þ
Game G2: In this game, we simulate all the oracles in game G1, except we cancel the
game in which some collisions appear on the partial transcripts (x,y) and on hash values.
According to the birthday paradox, the probability of collisions in output of hash oracles
are at most qh

2/2k+1, qh1
2 /2k+1 and qh2

2 /2k+1 where qh, qh1 and qh2 denote the maximum
number of hash queries. Similarly, the probability of collisions in the transcripts is at most
(qs+qe)

2/2p2, where qs represents the number of queries to the SendClient and SendServer
oracles and qe represents the number of queries to the Execute oracle. So we have

Pr Succ2½ �−Pr Succ1½ �≤ q2h þ q2h1 þ q2h2
2kþ1 þ qs þ qeð Þ2

2p2
ð3Þ

Game G3: In this game, we consider the probability of the attacker forging all hash results
without hash queries. We divide the game to two cases:

Case 1: To forge the message {realm, username, x, I, mu}, h(Pw), h(username||Pw) and
h(username||X||e||Tl) should be queried. The probability for h(username||X||e||Tl) is qs

2k
,

while the other two are qh
2k
.

Case 2: To forge the message{realm, y, Auths}, sk = h1(K||X′||e′||username) and Auths =
h2(K||sk||Tl + 1) should be asked. The probability for the former is qh1

2k
and for the latter is qs

2k

since Authsis transmitted as part of the message.
So, it can be easily seen that this game is perfectly indistinguishable from the previous

game G2. Hence,

Pr Succ3½ �−Pr Succ2½ �j j≤ 2qh þ qh1 þ 2qs
2k

ð4Þ

Game G4: In this game, we consider that the adversary can ask the random oracles. Also
we assume A can solve CDH problem with the advantage AdvP,p

cdh (t).Two cases can be
divided to analyze this game:

Case 1: It is the online password guessing attack. Since the passwords are retrieved from
D and there are qs times for the attacker to try, the probability for this case is qs

Dj j.

Case 2: It is the off-line password guessing attack. A should query the h1 query with
asking K and that denotes the adversary breaks the CDH problem. We can find K by the
bound 1

qh1
. A can use two ways to finish that attack.

SubCase 1 : The first is querying Execute(ΠU
i , ΠS

j). Since there are 6 scalar multiplica-
tions in one Execute process, the probability for this subcase is qh1AdvP,p

cdh(t+6qetem).
SubCase 2: The second is querying Send queries successively. Since there are 3
scalar multiplications at most in one Send query, the probability for this subCase
is qh1AdvP,p

cdh(t+3qstem)

17234 Multimed Tools Appl (2016) 75:17215–17245

So we can see that Game G4 is indistinguishable from G3, and

Pr Succ4½ �−Pr Succ3½ �j j≤ qs
Dj j þ qh1Adv

cdh
P;p t þ 6qetemð Þ þ qh1Adv

cdh
P;pð Þdh t þ 3qstemð Þ

≤
qs
Dj j þ 2qh1Adv

cdh
P;p t þ 6qe þ 3qsð Þtemð Þ

ð5Þ

Game G5: In this game, we consider the forward security. According to the notion of
Fresh, Corrupt queries can only be asked after Test query. So we use the old games. Like
the SubCase 2 of Game G4, the probability for we find x,y, K in the same session is
bounded by 1

qsþqeð Þ
2. We have

Pr Succ5½ �−Pr Succ4½ �j j≤2qh1 qs þ qeð Þ2AdvcdhP;p t þ 6qe þ 3qsð Þtemð Þ ð6Þ

A has no advantage in guessing b and Pr[Succ5] = 1/2. Combining the above games,
the theorem can be obtained.

9 Formal verification with Proverif

We give the formal verification of our scheme via the popular tool Proverif. Following codes
can be checked via the reference (http://proverif.rocq.inria.fr/index.php)

(*——————channels————————*)
free ch: channel. (*public channal*)
free sch: channel [private]. (*private channel*)
(*—————shared keys——————*)
free sku: bitstring [private].(*the user’s session key*)
free sks: bitstring [private]. (*the server’s session key*)
(*————S’s secret key————*)
free d:bitstring [private].
(*———constants——————————*)
free username:bitstring.
free PW:bitstring [private].
const P:bitstring. (*the base point*)
const realm: bitstring.
const one: bitstring. (*for replacing 1 in the authentication

process*)
table t(bitstring). (*table stored in S for auditing U*)
(*—————functions————————*)
fun h(bitstring):bitstring. (*hash function*)

Multimed Tools Appl (2016) 75:17215–17245 17235

http://proverif.rocq.inria.fr/index.php

fun h1(bitstring):bitstring. (*hash function*)
fun h2(bitstring):bitstring. (*hash function*)
fun mul(bitstring,bitstring):bitstring. (*scalar

multiplication*)
fun add(bitstring,bitstring):bitstring. (*addition*)
fun sub(bitstring,bitstring):bitstring. (*substraction*)
fun con(bitstring,bitstring):bitstring. (*string

concatenation*)
(*————equations—————————*)
equation for all m:bitstring,n:bitstring; mul(m,(n,P)) =

mul(n,(m,P)).
equation for all m:bitstring,n:bitstring; sub(add(m,n),n) = m.
(*————————aims for verification———————*)
query attacker(sku).
query attacker(sks).
query id:bitstring; inj-event(UserAuth(id))==>inj-

event(UserStart(id)).
(*—————————event————————*)
event UserStart(bitstring). (*User starts authentication*)
event UserAuth(bitstring). (*User is authenticated*)
(*————User’s process————*)
let User=
new se:bitstring;
new ir:bitstring;
out(sch,(username,add(h(PW),ir),se));
in(sch,(rI:bitstring,rR’:bitstring,Pub:bitstring));
let R = sub(rR’,ir) in
let Z = add(se,h(con(username,PW))) in
!
(
event UserStart(username);
new a:bitstring;
new Tl: bitstring;
let x = mul(a,P) in
let X = mul(a,mul(sub(R,h(PW)),Pub)) in
let e = sub(Z, h(con(username,PW))) in
let mu = h(con(con(con(username,X),e),Tl)) in
let Request = (realm,username,x,rI,Tl,mu) in
out(ch,Request);
in (ch,(rrealm:bitstring,ry:bitstring,rAuths:bitstring));
let K’ = mul(a,ry) in
let sku = h1(con(con(con(K’,X), e), username)) in
if rAuths = h2(con(con(K’,sku),add(Tl,one))) then
0
).
(*————S’s process—————*)
let SReg =

17236 Multimed Tools Appl (2016) 75:17215–17245

in(sch,(rusername:bitstring,rr1:bitstring,re:bitstring));
let sPub = mul(d,P) in
insert t(rusername);
let R’ = add(rr1,h(con(rusername,d))) in
let I = add(re,h(con(d,rusername))) in
out (sch,(I,R’,sPub)).
let SAuth =
in (ch,(xrealm:bitstring,xusername:bitstring,xx:
bitstring,xI:bitstring,xTl:bitstring,xmu:bitstring));
let e’ = sub(xI,h(con(d,xusername))) in
let x’ = mul(xx,mul(h(con(xusername,d)),d)) in
let mu’ = h(con(con(con(username,x’),e’),xTl)) in
if xmu = mu’ then
get t(=xusername) in
event UserAuth(xusername);
new b:bitstring;
let y = mul(b,P) in
let K = mul(b,xx) in
let sks = h1((con(con(con(K,x’), e’), xusername))) in
let Auths = h2(con(con(con(K,sks),sks),add(xTl,one))) in
let Response = (xrealm,y,Auths) in
out(ch,Response).
let S = SReg | SAuth.
process !User | !S
The results for the codes are listed as follows:
– Query inj-event(UserAuth(id)) ==> inj-event(UserStart(id))
nounif mess(sch[],(rusername_4217,rr1_4218,re_4219))/-5000
Completing…
Termination warning: begin(UserStart(username[]), @sid_301 =

@sid_5119, Pub = Pub_5120, rR' = rR'_5121, rI = rI_5118, @sid =
@ s i d _ 5 1 2 2 , @ o c c 9 = @ o c c _ c s t) & &
mess(sch[],(rI_5118,rR'_5121,Pub_5120)) -> attacker(rI_5118)

Selecting 1
200 rules inserted. The rule base contains 177 rules. 14 rules in

the queue.
Starti ng quer y inj- event(UserAuth(id)) ==> inj-

event(UserStart(id))
RESULT inj-event(UserAuth(id)) ==> inj-event(UserStart(id)) is

true.
– Query not attacker(sks[])
nounif mess(sch[],(rusername_12050,rr1_12051,re_12052))/-5000
Completing…
Termination warning: mess(sch[],(rI_12947,rR'_12948,Pub_12949))

-> attacker(rI_12947)
Selecting 0
200 rules inserted. The rule base contains 142 rules. 11 rules in

the queue.

Multimed Tools Appl (2016) 75:17215–17245 17237

Starting query not attacker(sks[])
RESULT not attacker(sks[]) is true.
– Query not attacker(sku[])
nounif mess(sch[],(rusername_18830,rr1_18831,re_18832))/-5000
Completing…
Termination warning: mess(sch[],(rI_19727,rR'_19728,Pub_19729))

-> attacker(rI_19727)
Selecting 0
200 rules inserted. The rule base contains 142 rules. 11 rules in

the queue.
Starting query not attacker(sku[])
RESULT not attacker(sku[]) is true.
So our scheme passes the verification.

10 Comparisons of performance with some related SIP schemes

Here, we compare the proposed scheme for its strength with schemes proposed by Zhang et al.
[38], Yeh et al. [34], Irshad et al. [16] and Arshad and Nikooghadam [3]. First of all, Table 2
introduces the notations with description for the purpose of comparison. Afterwards Tables 3
and 4 compare these schemes for computational complexity and security features respectively.

We begin the efficiency comparison of these schemes from the very first phase, that is,
registration phase. During this phase, our scheme adds only one one-way hash operation at the
user as compared to other four schemes [3, 16, 34, 38]. While at the server, our scheme
remarkably cuts the computational cost in relation to the schemes [16, 34, 38] and adds only
one extra one-way hash operation than in Arshad and Nikooghadam’s scheme. Computational
complexity/cost at the user during password update phase is least in Yeh et al.’s scheme, higher
and quite same in schemes [3, 16, 38], and only two one-way hash operations are more in our
scheme than in [3, 16, 38]. For the same phase, the computational complexity/cost at the server
is least in Yeh et al.’s scheme, slightly more in Arshad and Nikooghadam’s scheme, highest
and exactly same in schemes [16, 38], for our scheme it is higher than in schemes [3, 34] but
lower than in schemes [16, 38]. Although registration phase is deployed only when a user has
to register at the server and password update phase is deployed only when a user wishes to

Table 2 Notations used in comparison

Notation Description

tem Time complexity to execute an elliptic curve scalar point multiplication

tea Time complexity to execute an elliptic curve point addition

tsy Time complexity to execute a symmetric key encryption or decryption

tmi Time complexity to execute a modular inversion

tha Time complexity to execute a one-way hash function

tkh Time complexity to execute a keyed hash function also called message authentication code MAC

Yes If a scheme resists an attack or offers a feature

No If a scheme does not resist an attack or does not offer a feature

N/A If an attack or a feature is not applicable in a scheme due to some missing characteristic

17238 Multimed Tools Appl (2016) 75:17215–17245

update a new password in her smart card or memory device, most frequently used
phase is the login-authentication phase. Computational complexity/cost for login-
authentication phase at the user is least in Arshad and Nikooghadam’s scheme, and
noticeably higher in schemes [16, 34, 38]. In our scheme, at the user there is only
one elliptic curve scalar point multiplication and one one-way hash operations extra
than in Arshad and Nikooghadam’s scheme. At the server, computational complexity/
cost for this phase in our scheme is quite same to that in Arshad and Nikooghadam’s
scheme and least among the considered schemes. If we look at the overall computa-
tional complexity/cost of these schemes, we observe the least load in Arshad and

Table 3 Comparison of efficiency: memory space, communication cost and computational cost/complexity

Schemes→
↓Computational complexity

Zhang
et al.’s [38]

Yeh
et al.’s [34]

Irshad
et al.’s [16]

Arshad and
Nikooghadam’s [3]

Ours

Registration phase
(Ui /SCi)

1tha 1tha 1tha 1tha 2tha

Registration phase (Si) 1tem + 1tmi
+1tha

1tem + 2tha 1tem + 2tmi
+1tha

1tha 2tha

Password update phase
(Ui /SCi)

2tsy + 3tha 1tha 2tsy + 3tha 5tha 2tsy + 5tha

Password update phase (Si) 1tem + 2tsy
+1tmi + 3tha

2tha 1tem + 2tsy
+1tmi + 3tha

3tha 2tsy + 3tha

Login-authentication phase
(Ui /SCi)

5tem + 1tea +6tha 4tem + 3tea
+6tha

3tem + 2tkh
+5tha

2tem + 4tha 3tem + 5tha

Login-authentication
phase (Si)

4tem + 2tea
+4tha

4tem + 3tea
+5tha

4tem + 2tkh
+3tha

2tem + 1tmi
+4tha

3tem + 5tha

Sum of computational
complexity of login-
authentication phase

9tem + 3tea
+10tha

8tem + 6tea
+11tha

7tem + 4tkh
+8tha

4tem + 1tmi
+8tha

6tem + 10tha

Table 4 Comparison of performance: security characteristics

Schemes→
↓Security Characteristics

Zhang
et al.’s [38]

Yeh
et al.’s [34]

Irshad
et al.’s [16]

Arshad and
Nikooghadam’s [3]

Ours

Resists password guessing attack No Yes No Yes Yes

Resists user impersonation attack No No No Yes Yes

Resists server spoofing attack Yes Yes No No Yes

Resists replay attack Yes Yes Yes Yes Yes

Resists insider attack Yes Yes Yes Yes Yes

Resists stolen verifier attack Yes Yes Yes No Yes

Denning-Sacco attack Yes Yes Yes Yes Yes

Provides security of S’s key No Yes No Yes Yes

Provides forward secrecy Yes Yes Yes Yes Yes

Provides mutual authentication No No No No Yes

Provides Pw update facility Yes Yes Yes Yes Yes

Provides secure Pw update facility Yes No Yes Yes Yes

Offers single round authentication No No Yes No Yes

Problem on which security relies ECDLP ECDLP ECDLP ECDLP ECDLP

Multimed Tools Appl (2016) 75:17215–17245 17239

Nikooghadam’s scheme. Our scheme uses two elliptic curve scalar point multiplication
and two one-way hash operations extra than in [3] but it does not make use of costly
modular inversion. Collectively, it can be stated that our scheme adds only little
computational load and offers promising security features as the discussion along
with Table 4 follows.

The extra computational load at some places at user/server in our scheme is justified as
displayed in Table 4. Our scheme is safe from various potential attacks to which the other
considered schemes are victim. None of the schemes [3, 16, 34, 38] except our’s provides
mutual authentication, the reason being the applicability of either the user impersonation
attack or the server spoofing attack or both. Arshad and Nikooghadam’s scheme has least
computational load at most of the places (as shown in Table 3) but it is insecure to server
spoofing and stolen verifier attack. Besides, this scheme requires one and half round-trip to
complete the authentication process unlike Irshad et al.’s scheme. On the other hand, our
scheme follows the single round-trip design of Irshad et al.’s scheme. Like other four
schemes in Table 3, the security of our scheme is based on ECDLP and hence it exhibits
the virtue of forward secrecy. It is clear from this table that our scheme is superior as
compared to other schemes for different security attributes. The increased efficiency and
security of our scheme over the other schemes [3, 16, 34, 38] is evident from the results
displayed by Tables 3 and 4.

Like predecessor schemes given by Irshad et al.’s and Arshad and Nikooghadam’s, in our
scheme also, a user cannot freely change his/her password without server’s assistance. In order
to update a new password in his/her smart card, a user is required to interact with the server. On
one hand, this is an additional load on the server and on the other hand this is a limitation for
user. Since server has sufficiently large computational capacity and a user has to occasionally
change his password, this does not affect our scheme much.

11 Conclusion

In this paper, we have focused on the shortcomings of both Irshad et al.’s and Arshad
and Nikooghadam’s ECC-based SIP authentication schemes for VoIP. We have re-
vealed that Irshad et al.’s scheme not only suffers from user impersonation attack but
threats like password guessing and server spoofing also exist. Further, we have
exhibited that some secrets of both user and the server are at the risk of disclosure
in their scheme. Next, Arshad and Nikooghadam’s scheme is shown to be inflicted
with server spoofing and stolen verifier attack. With a view to settle the security
weaknesses of these schemes, we have designed an efficient SIP authentication
scheme for VoIP based on Irshad et al.’s scheme. It has been displayed that the
proposed scheme resists all the attacks and is free from all the weaknesses present in
two aforementioned schemes. Like most of the SIP authentication schemes, the
security of our scheme is also based on the Eliptic Curve Discrete Logarithm
Problem (ECDLP) and offers forward secrecy. Our scheme is simple, high in perfor-
mance and has provable security; hence it offers a viable authentication mechanism
for SIP-services for VoIP.

In future, we would try to propose a SIP authentication scheme facilitating user to change
his/her password freely without interacting with the server and yet preventing any unautho-
rized person to update a false password in user’s smart card.

17240 Multimed Tools Appl (2016) 75:17215–17245

Acknowledgments The authors extend their sincere appreciations to the Deanship of Scientific Research at
King Saud University for its funding this Prolific Research Group (PRG-1436-16). This research is also
supported by the National Natural Science Foundation of China under Grant No. 61300220, and it is also
supported by PAPD and CICAEET.

References

1. Abdalla M, Pointcheval D 2005 Interactive Diffie-Hellman assumptions with applications to password-based
authentication. In: Proceedings of FC’05, LNCS 3570 341–356.

2. Arshad R, Ikram N (2013) Elliptic curve cryptography based mutual authentication scheme for session
initiation protocol. Multimed Tools Appl 66(2):165–178

3. Arshad H, Nikooghadam M (2014) An efficient and secure authentication and key agreement scheme for
session initiation protocol using ECC. Multimed Tools Appl. doi:10.1007/s11042-014-2282-x

4. Branovic I, Giorgi R, Martinelli E (2004) A workload characterization of elliptic curve cryptography
methods in embedded environments. ACM SIGARCH Comput Archit News 32(3):27–34

5. Canetti R, Krawczyk H (2001) Analysis of key-exchange protocols and their use for building secure
channels. In: Proc. Eurocrpt 2001, Lecture Notes in Computer Science, 2045: 453–474

6. Dalgic I, Fang H (1999) Comparison of H.323 and SIP for IP telephony signaling. In: Proc. of photonics
East. SPIE, Boston

7. Denning D, Sacco G (1981) Timestamps in key distribution systems. Commun ACM 24:533–536
8. Diffie W, Hellman M (1976) New directions in cryptology. IEEE Trans Inf Theory 22(6):644–654
9. Durlanik A, Sogukpinar I (2005) SIP authentication scheme using ECDH. World Enformatika Soc Trans

Eng Comput Technol 8:350–353
10. Farash MS, Attari MA (2013) An enhanced authenticated key agreement for session initiation protocol.

Inform Technol Control 42(4):333–342
11. Franks J, Hallam-Baker P, Hostetler J, Lawrence S, Leach P, Luotonen A, Stewart L (1999) RFC2617: HTTP

authentication: basic and digest access authentication. IETF
12. Garcia-Martin M, Henrikson E, Mills D (2003) Private header (P-Header) extensions to the session initiation

protocol (SIP) for the 3rd-generation partnership project(3GPP). IETF RFC3455
13. Geneiatakis D, Dagiuklas T, Kambourakis G, Lambrinoudakis C (2006) Survey of security vulnerabilities in

session initial protocol. IEEE Commun Surv Tutorials 8:68–81
14. Hankerson D, Menezes A, Vanstone S (2004) Guide to elliptic curve cryptography. LNCS, Springer, New

York
15. He D, Chen J, Chen Y (2012) A secure mutual authentication scheme for session initiation protocol using

elliptic curve cryptography. Secur Commun Netw 5(12):1423–1429
16. Irshad A, Sher M, Rehman E, Ashraf Ch S, Hassan MU, Ghani A (2013) A single round-trip SIP

authentication scheme for Voice over Internet Protocol using smart card. Multimed Tools Appl. doi:10.
1007/s11042-013-1807-z

17. Jo JH, Cho JS (2008) Cross-layer optimized vertical handover schemes between mobile Wimax and 3G
networks. KSII Trans Internet Inf Syst (TIIS) 2(4):171–183

18. Koblitz N (1987) Elliptic curve cryptosystems. Math Comput 48:203–209
19. Kocher P, Jaffe J, Jun B (1999) Differential power analysis. In: Proceedings of advances in cryptology, Santa

Barbara, CA, U.S.A. 388–397
20. Lee CC (2009) On security of an efficient nonce-based authentication scheme for session initiation protocol.

Int J Netw Secur 9:201–203
21. Liu FW, Koenig H (2011) Cryptanalysis of a SIP authentication scheme. In: 12th IFIP TC6/TC11

International Conference, CMS 2011, Ghent, Belgium 134–143
22. Messerges TS, Dabbish EA, Sloan RH (2002) Examining smart-card security under the threat of power

analysis attacks. IEEE Trans Comput 51(5):541–552
23. Miller V (1986) Uses of elliptic curves in cryptography. In: Advances in cryptology CRYPTO’85, Lecture

Notes in Computer Science Springer-Verlag 218: 417–426
24. NIST (1999) Recommended elliptic curves for federal government use Available on csrc.nist.gov
25. Pu Q, Wang J, Wu S (2013) Secure SIP authentication scheme supporting lawful interception. Secur

Commun Netw 6:340–350
26. Rosenberg J, Schulzrinne H, Camarillo G, Johnston A, Peterson J, Sparks R, Handley M, Schooler E (2002)

SIP: session initiation protocol. IETF RFC3261
27. Salsano S, Veltri L, Papalilo D (2002) SIP security issues: the SIP authentication procedure and its processing

load. IEEE Netw 16(6):38–44

Multimed Tools Appl (2016) 75:17215–17245 17241

http://dx.doi.org/10.1007/s11042-014-2282-x
http://dx.doi.org/10.1007/s11042-013-1807-z
http://dx.doi.org/10.1007/s11042-013-1807-z
http://csrc.nist.gov

28. Sisalem D, Kuthan J, Ehlerts S (2006) Denial of service attacks targeting a SIPVoIP infrastructure: stack
scenarios and prevention mechanisms. IEEE Netw J 20:26–31

29. Tang H, Liu X (2013) Cryptanalysis of Arshad et al’.s ECC-based mutual authentication scheme for session
initiation protocol. Multimed Tools Appl 65(3):321–333

30. Tsai JL (2009) Efficient nonce-based authentication scheme for session initiation protocol. Int J Netw Secur
9:12–16

31. Wu L, Zhang Y, Wang F (2009) A new provably secure authentication and key agreement protocol for SIP
using ECC. Comput Stand Interfaces 31(2):286–291

32. Xie Q (2012) A new authenticated key agreement for session initiation protocol. Int J Commun Syst 25(1):
47–54

33. Yang CC, Wang RC, Liu WT (2005) Secure authentication scheme for session initiation protocol. Comput
Secur 24:381–386

34. Yeh HL, Chen TH, Shih WK (2014) Robust smart card secured authentication scheme on SIP using Elliptic
Curve Cryptography. Comput Stand Interfaces 36:397–402

35. Yen SM, Joye M (2002) Checking before output may not be enough against fault-based cryptanalysis. IEEE
Trans Comput 49(9):967–970

36. Yoon E, Shin Y, Jeon I, Yoo K (2010) Robust mutual authentication with a key agreement scheme for the
session initiation protocol. IETE Tech Rev 27(3):203–213

37. Yoon EJ, Yoo KY, Kim C, Hong YS, Jo M, Chen HH (2010) A secure and efficient SIP authentication
scheme for converged VoIP networks. Comput Commun 33:1674–1681

38. Zhang L, Tang S, Cai Z (2013) Efficient and flexible password authenticated key agreement for voice over
internet protocol session initiation protocol using smart card. Int J Commun Syst. doi:10.1002/dac.2499

Dr. Saru Kumari is currently an Assistant Professor with the Department of Mathematics, Agra College, Agra,
Dr. B. R. A. University, Agra, India. She received Ph.D. degree in Mathematics in 2012 from C.C.S. University,
Meerut, Uttar Pradesh, India. She has published 35 papers in international journals and conferences including 22
research publications in SCI indexed journals. She is reviewer of many International journals, including the
Journal of Network and Computer Applications (Elsevier), the Journal of Security and Communication Networks
(Wiley), Computers and Electrical Engineering (Elsevier), Electronic Commerce Research Journal (Springer),
Journal of International Journal of Distributed Sensor Networks (Hindawi) and International Journal of Com-
munication Systems (Wiley). Her current research interests include Information Security, Digital Authentication,
Security of Wireless Sensor Networks and Applied Mathematics.

17242 Multimed Tools Appl (2016) 75:17215–17245

http://dx.doi.org/10.1002/dac.2499

Fan Wu received the Bachelor degree in Computer Science from Shandong University, Jinan, China in 2003,
and received Master degree in Computer Software and Theory from Xiamen University, Xiamen, China in 2008.
Now he is a lecturer in Xiamen Institute of Technology, Huaqiao University. His current research interests include
information security, internet protocols, and network management.

Dr. Xiong Li received his master’s degree in mathematics and cryptography from Shaanxi Normal University
(SNNU) in 2009 and Ph.D. degree in computer science and technology from Beijing University of Posts and
Telecommunications (BUPT) in 2012. Dr. Li now is a lecturer of Hunan University of Science and Technology
(HNUST). He has published more than 15 referred journal papers. His research interests include cryptography
and information security, etc.

Multimed Tools Appl (2016) 75:17215–17245 17243

Mohammad sabzinejad Farash received the B.Sc. degree in Electronic Engineering from Shahid Chamran
College of Kerman in 2006, and the M.Sc. degree in Communication Engineering from I. Hussein University in
2009. He also received the Ph.D. degree in Cryptographic Mathematics at the Department of Mathematics and
Computer Sciences of Tarbiat Moallem University in Iran in 2013. His research interests are Security Protocols
and Provable Security Models.

Qi Jiang received the B.S. degree in Computer Science from Shaanxi Normal University in 2005 and Ph.D.
degree in Computer Science from Xidian University in 2011. He is now an associate professor at School of
Computer Science and Technology, Xidian University. His research interests include security protocols and
wireless network security, etc.

17244 Multimed Tools Appl (2016) 75:17215–17245

Dr. Muhammad Khurram Khan is currently working at the Center of Excellence in Information Assurance,
King Saud University, Saudi Arabia. He has edited seven books and proceedings published by Springer-Verlag
and IEEE. He has published more than 200 papers in international journals and conferences and he is an inventor
of 10 U.S./PCT patents. Dr. Khan is the Editor-in-Chief of a well-reputed journal ‘Telecommunication Systems’
(Springer). He is also on the editorial boards of several International SCI journals, including the Journal of
Network and Computer Applications (Elsevier), Journal of Security and Communication Networks (Wiley),
PLOSONE (USA), Computers and Electrical Engineering (Elsevier), Electronic Commerce Research (Springer),
Scientific World Journal, Journal of Computing & Informatics, the Journal of Information Hiding andMultimedia
Signal Processing (JIHMSP), and the International Journal of Biometrics (Inderscience). Dr. Khurram is one of the
organizing chairs of several top-class international conferences and he is also on the program committee of dozens
of conferences. He is a recipient of several national and international awards for his research contributions. In
addition, he has been granted several national and international funding projects in the field of Cybersecurity. His
current research interests include Cybersecurity, biometrics, multimedia security, and digital authentication.

Ashok Kumar Das received the Ph.D. degree in Computer Science and Engineering, the M.Tech. degree in
Computer Science and Data Processing,and the M.Sc. degree in Mathematics, all from IIT Kharagpur, India.He is
currently an Assistant Professor with the Center for Security,Theory and Algorithmic Research of the Interna-
tional Institute of Information Technology (IIIT), Hyderabad, India. He has authored over 75 papers in
international journals and conferences in his research areas. His current research interests include cryptography,
wireless sensor network security, proxy signature, hierarchical access control,data mining and remote user
authentication. He received the Institute Silver Medal from IIT, Kharagpur. For more details, visit http://sites.
google.com/site/iitkgpakdas/, http://www.iiit.ac.in/people/faculty/ashokkdas.

Multimed Tools Appl (2016) 75:17215–17245 17245

http://sites.google.com/site/iitkgpakdas/
http://sites.google.com/site/iitkgpakdas/
http://www.iiit.ac.in/people/faculty/ashokkdas

	Single round-trip SIP authentication scheme with provable security for Voice over Internet Protocol using smart card
	Abstract
	Introduction
	Related work
	Our contributions
	Arrangement of the paper
	Useful preliminaries
	Elliptic Curve Cryptography (ECC)
	Notations with their description

	Review of Irshad et�al.’s scheme
	System setup phase
	Registration phase
	Login-authentication phase
	Password update phase

	Cryptanalysis of Irshad et�al.’s scheme
	Error in login-authentication phase
	Server’s first secret is at risk
	Secret value generated from server’s second secret is at risk
	Attack on user’s random key
	Password guessing attack
	User impersonation attack
	Server spoofing attack
	Mutual authentication attack

	Review of Arshad et�al.’s scheme
	System setup phase
	Registration phase
	Login-authentication phase
	Password update phase

	Cryptanalysis of Arshad et�al.’s scheme
	Server spoofing attack
	Stolen verifier attack
	Lacks mutual authentication

	The proposed scheme
	System setup phase
	Registration phase
	Login-authentication phase
	Password update phase

	Analysis of security properties of the proposed scheme
	Secret key of the server is safe
	Password guessing attack
	User impersonation attack
	Server spoofing attack
	Replay attack
	Forward secrecy
	Mutual authentication
	Insider attack
	Stolen verifier attack
	Secure password update facility
	Denning-Sacco attack

	Formal security analysis of the proposed scheme
	Security model
	Participants
	Adversary model
	Fresh oracle
	Protocol security

	Computational assumption
	Security proof

	Formal verification with Proverif
	Comparisons of performance with some related SIP schemes
	Conclusion
	References

