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Abstract Steganalysis is an important extension to existing security infrastructure, and is gaining
more research focus of forensic investigators and information security researchers. This paper
reports the design principles and evaluation results of a new experimental blind image steganalysing
system. This work approaches the steganalysis task as a pattern classification problem. The detection
accuracy of the steganalyser depends on the selection of low-dimensional informative features. We
investigate this problem as a three step process and propose a novel steganalyser with the following
implications: a) Selection of the Curvelet sub-band image representation that offers better discrim-
ination ability for detecting stego anomalies in images, than other conventional wavelet transforms.
b) Exploiting the empirical moments of the transformation as effective steganalytic features c)
Realizing the system using an efficient classifier, evolutionary-Support Vector Machine (SVM)
model that provides promising classification rate. An extensive empirical evaluation on a database
containing 5600 clean and stego images shows that the proposed scheme is a state-of-the-art
steganalyser that outperforms other previous steganalytic methods.
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1 Introduction

Steganography and steganalysis are new techniques of information security fields. Steganog-
raphy is considered as the art of undetectable communication in which messages are embedded
in innocuous looking objects, such as digital images, digital audio, TCP/IP data packets or even
non-standard locations of Subscriber Identity Module/Universal Subscriber Identity Module
(SIM/USIM) file system cards. The modified cover object is called stego object and the
embedding process usually depends on a secret stego key shared between both communication
parties. The goal of steganography is to communicate as many bits as possible without creating
any detectable artifacts in the cover-object. If any suspicion about the secret communication is
raised, then the goal is defeated. Steganography takes cryptography a step further taking the
advantage of unused bits within the file structure or bits that are mostly undetectable if altered.
A steganographic message rides secretly to its destination, unlike encrypted messages, which
although undecipherable without the decryption key, can be identified as encrypted.

Steganalysis is taken as a countermeasure to steganography and is aimed at detecting the
presence of hidden information from seemingly innocuous stego signals. Steganalysis can not
only expedite the elevation of the steganography security by suitable quality evaluation
criteria, but also can be used by lawbreakers for keeping out of the abuse of steganography.
The study on steganalysis is focused on detection and attacking technique.

As is well known, steganography and watermarking constitute two main applications of
information hiding techniques. Though both applications share many common principles in
data embedding/extraction schemes, they differ in some criteria, such as robustness, embed-
ding capacity, requirement of original messages, etc. In certain scenarios, content owners
might need to determine the existence of hidden watermark in a multimedia object, when the
authentication program fails to extract or match the targeted watermarks (due to inversion
attack, geometric attacks, de-synchronization attacks etc.). In a possibly negative viewpoint,
users may use this steganalytic feature to identify the existence of watermarks in an object. To
summarize, steganalysis has promising applications to detect both the steganographic and
watermarking schemes.

Steganalysis can be broadly classified into two categories. Active steganalysis deals with the
estimation of the facts such as the embedded message length, locations of the hidden message,
secret key used in embedding and finally the extraction of the entire message that is hidden.
Passive steganalysis on the other hand detect only the presence or absence of a hidden message.

On the outset, deciding whether the cover media contains any secret message embedded in
it or not is essential to steganalysis. Although it is uncomplicated to inspect suspicious objects
and extract hidden messages by comparing them to the original versions, the restricted
portability and accessibility of original cover-signals generally make blind steganalysis more
attractive and reasonable in many practical applications. Blindness is meant to analyze stego-
data without knowledge of the original signal and without exploiting the embedding algorithm.
Hence, detecting the existence of hidden information becomes quite difficult and complex
without exactly knowing which embedding algorithm, hiding domain, and steganographic
keys were used. This motivates our current research: extracting low-dimensional, informative
features that are significantly sensitive to data hiding process and devising a feature-based
algorithm to classify multimedia objects as bearing hidden data or not. Our objective is not to
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extract the hidden messages or to identify the existence of particular information (as it is in
watermarking applications), but only to determine whether a multimedia object was modified
by information hiding techniques. Once classified, the suspicious objects can then be inspected
in detail by any particular data embedding/retrieving algorithms. This pre-process would
particularly contribute to save time in active steganalysis.

1.1 Feature based Steganalysis

There are various methods to steganalyze data. Hiding information within electronic media
will alter some of the media properties that may introduce few degradation or unusual
characteristics. These characteristics may act as signatures that broadcast the existence of the
embedded message, thus defeating the purpose of steganography. But such distortions cannot
be detected easily by the human perceptible system. This distortion may be anomalous to the
‘normal’ carrier that when discovered may point to the existence of hidden information.
Statistical steganalysis exploit these irregularities to provide the best discrimination power
between the steganograms and the cover files.

Images steganalysis can be performed utilizing the texture operator to examine the pixel
texture patterns within neighborhoods across the color planes. Steganographic and
watermarking information inserted into a color image file, regardless of embedding algorithm,
causes disturbances in the relationships between neighboring pixels and hence produce
varying histograms which can also be used for steganalysis.

Feature based steganalysis can be considered as a pattern recognition process to decide
which class a test image belongs to. The basic idea is that the various features calculated on
cover images and on stego are statistically different. Thus the key issue for steganalysis is
feature extraction. The features should be sensitive to the data hiding process. In other words,
the features should be rather different for the signal without hidden message and for the stego-
signal. The larger the difference, the better the features are. The features should be as general as
possible, i.e., they are effective to all different types of images and different data hiding
schemes. Often in practice it is very hard to achieve a high recognition rate with a single
feature when the classification process such as steganalysis is complicated in nature. Therefore,
multi-dimensional feature vectors should be used under those circumstances. It is desirable to
have features in individual dimensions of the feature vector independent or at least less related
to one another.

1.2 Machine learning for steganalysis

Machine learning or supervised learning based methods construct a classifier to differentiate
between stego and non-stego objects using training examples. The features extracted from the
image samples are given as training inputs to a learning machine. This includes both stego as
well as non-stego documents. The learning classifier iteratively updates its classification rule
based on its prediction and the ground truth. The final stego classifier is obtained upon
convergence. When we train the classifier for a specific embedding algorithm a reasonably
accurate detection can be achieved. Since the classifier is given multiple examples there is no
need to assume prior statistical models for the images. The classifier learns a model by
averaging over multiple examples.

In this paper we propose to steganalyse using the higher order statistics derived from the
curvelet sub-band representation of the images. The derived features possess strong
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discriminatory power which is very helpful in the distortion measurement process. Unlike
previous work in image steganalysis that used the traditional image quality metrics, such as
signal-to-noise ratio (SNR), correlation quality [1], and other such metrics, the proposed
feature is designed specifically to detect modifications to pure image content. The paper
employs the evolutionary-SVM as the machine learning component of the steganalyser.
Experimental results with the chosen classifier, feature set and popular watermarking and
steganographic strategies indicate that our approach is very accurate and promising in
steganalysing image data.

2 Related work

2.1 Steganographic domains

In recent years, there has been significant research effort in steganalysis with primary
focus on digital images. All the popular data hiding methods can be divided into two
major classes: spatial domain based and transform domain based. Spatial domain
based techniques are easy to implement providing high payload capacity but their
robustness is weaker than its counter part. Least Significant Bit (LSB) addition [5, 45]
or substitution [36, 38] method is the most popular hiding technique. These tech-
niques operate on the principle of tuning the parameters (e.g., the payload or distur-
bance) so that the difference between the cover signal and the stego signal is little
and imperceptible to the human eyes. Yet, computer statistical analysis is still prom-
ising to detect such a distinction that is difficult for humans to perceive. Some tools,
such as StegoDos, S-Tools, and EzStego, provide spatial-domain-based steganographic
techniques [31, 48].

Hiding can also be performed in the transform domain, e.g., Discrete Cosine
Transform (DCT) [10, 12, 23, 28, 40, 43, 46], or Discrete Wavelet Domain (DWT)
domain [33, 51]. Regardless of which domain, “significant” transform coefficients are
often selected to mix with secret/perturbing signal in a way such that information
hiding or watermarking is transparent to human eyes. For instance, Lie et al. [40]
proposed a two-level data embedding scheme, in principle of additive spread spectrum
and spectrum partition, for applications in copy control, access control, robust anno-
tation, and content-based authentication. Cheng et al. [10] proposed an additive
approach to hiding secret information in the DCT and DWT domains.

Passive and active warden styles Xu et al. [61] have viewed active steganalysis as blind
sources separation (BSS) problem and solved it with Independent Component Analysis (ICA)
algorithm under the assumption that embedded secret message is an independent, identically
distributed (i.i.d) random sequence and independent to cover image. Passive, in contrast to
active steganalysis detects only the presence or absence of a hidden message. Jessica Fridrich
[17] described an improved version of passive steganalysis in which the features for the blind
classifier are calculated in the wavelet domain as higher-order absolute moments of the noise
residual. The features are calculated from the noise residual because it increases the features’
sensitivity to embedding, which leads to improved detection results. Geetha et al. [21]
presented a LSB passive steganalysis approach for image steganalysis using close color pair
signature and image quality metric as threshold.
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Specific steganalysis is dedicated to only a given embedding algorithm. It may be very
accurate for detecting images embedded with the given steganographic algorithm but it fails to
detect those embedded with another algorithm. Techniques developed in [4, 20] are specific
where they target to attack wavelet-, Outguess-, and LSB-based stego systems respectively.
Universal steganalysis enables to detect stego images whatever the steganographic system be
used. Because it can detect a larger class of stego images, it is generally less accurate for one
given steganographic algorithm. Methods presented in [13, 41] are universal.

Several multi-class steganalyzers have been proposed in the recent years by various
authors. Savoldi et al. [54] presented an effective multi-class steganalysis system, based
on high-order wavelet statistics, capable of attributing stego images to four popular
steganographic algorithms. Authors of [16, 49] constructed a practical forensic
steganalysis tool for JPEG images that can properly analyze both single- and double-
compressed stego images and classify them to selected current steganographic methods.
Binary steganalysis has only two classes - the input is either tested positive (stego) or
negative (pure).

Targeted attacks use the knowledge of the embedding algorithm [52], while blind ap-
proaches are not tailored to any specific embedding paradigm. Blind approaches can be
thought of as practical embodiments of Cachin’s [7] definition of steganographic security. It is
assumed that ‘natural images’ can be characterized using a small set of numerical features. The
distribution of features for natural cover images is then mapped out by computing the features
for a large database of images. Using methods of artificial intelligence or pattern recognition, a
classifier is then built to distinguish in the feature space between natural images and stego
images. Avcibas et al. [1] were the first who proposed the idea to use a trained classifier to
detect and to classify robust data hiding algorithms. They have proposed an image steganalytic
system using image quality metrics as features. Avcibas et al. [2] also proposed a different set
of features based on binary similarity measures between the lowest bit-planes.

2.2 Steganalysis through signal processing

Some steganalytic methods [4, 16, 18, 42] were proposed in the DCT domain. Manikopoulos
et al. [42] estimate the probability density function (PDF) of DCT coefficients for the test
image, and calculate its difference with respect to a reference PDF, which is then used as a
feature input to a trained two-layer neural network for classification (identifying the existence
of a hidden message in the test image). In their work, the reference PDF derived by averaging
PDFs from all plain images in the database is required for this similarity measure. Generally,
representation of a set of plain images in terms of a reference PDF is questionable for the Joint
Photographic Experts Groups (JPEG) image format. The detection first starts by
decompressing the JPEG stego image, geometrically distorting it and recompressing. The
paper investigates the use of macroscopic statistics that also predictably changes with the
embedded message length. The details of the detection methodology are explained on the F5
algorithm and Outguess.

Also Fridrich et al. [16] described that a modified image block will most likely become
saturated (i.e., at least one pixel with the gray value 0 or 255) in a JPEG-format stego-image
after information hiding. If no saturated blocks can be found, there will be no secret messages
therein. Otherwise, a spatial-domain steganalytic method [4] mentioned earlier can be used to
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analyze these saturated blocks. In [4], the author modeled the common steganographic
schemes as a linear transform between the cover and stego images, which can be estimated
after at least two copies of a stego image. This is similar to a blind source separation problem
that can be solved by using the independent component analysis (ICA) [41] technique. In [13],
a steganalytic scheme was devised to deal with information hiding schemes mixing a secret
and a cover signal in an addition rule. The phenomenon, that the centre of mass of the
histogram characteristic function in a stego image moves left or remains the same to that of
the cover image, was observed and exploited to distinguish stego images from plain ones.
Jessica Fridrich [19] presented general methodology for developing attacks on steganographic
systems

2.3 Steganalysis using distortion measures

Our research is based on the extension of the fact that hiding information in digital media
requires alterations of the signal properties that introduce some form of degradation, no matter
how small. The schematic description of the additive noise model of steganography is shown
in Fig. 1. These degradations can act as signatures that could be used to reveal the existence of
a hidden message. The idea that the addition of a watermark or message leaves unique
artifacts, and which can be detected using the various distortion metrics i.e., Image Quality
Measures (IQM) is introduced in [1].

It is noticed that most of the steganalytic schemes were designed either in specific operating
domain, or even for particular steganographic algorithm. Building a universal steganalytic
system is, up to now, a challenging exercise. In [39], Lie et al. has modelled a universal
steganalyzer that operates to distinguish stego images from clean images using two features
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Fig. 1 Schematic descriptions of (a) Additive noise audio-steganography model, (b) denoising a cover-image
object, and (c) denoising a stego-image object
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only: namely, gradient energy and statistical variance of the Laplacian parameter. The system
lacks the ability to strongly attack a wavelet based stego system. But that can be solved by
using a feature that is more sensitive to such embedding strategy

2.4 Steganalysis using high-order statistics

There are many works reporting that high-order statistics are very effective in differentiating
stego-images from cover-images. In [15], Farid proposed a general steganalysis algorithm
based on image higher-order statistics. In this method, a statistical model based on the first
(mean) and higher-order (variance, skewness, and kurtosis) magnitude statistics, extracted
from wavelet decomposition, is used for image steganography detection. In [25], a steganalysis
method based on the moments of the histogram characteristic function was proposed. It has
been proved that, after a message is embedded into an image, the mass center (the first
moment) of histogram characteristic function will decrease. In [27], Holotyak et al. used
higher-order moments of the PDF of the estimated stego-object in the finest wavelet level to
construct the feature vectors. Due to the limited number of features used in the steganalysis
technique proposed in [25], Shi et al. proposed the use of statistical moments of the charac-
teristic functions of the wavelet sub-bands [56]. Because the nth statistical moment of a wavelet
characteristic function is related to the nth derivative of the corresponding wavelet histogram,
the constructed 39-dimensional feature vector has proved to be sensitive to embedded data.
Usually, the steganalysis algorithms based on the high-order statistics can achieve satisfactory
performance on image files, regardless of the underlying embedding algorithm. In [60], the
authors modeled the secret message embedded by LSB matching as an independent noise to
the image. They employed the co-occurrence matrix to model the differences with the small
absolute value in order to extract features. A classifier model is built using support vector
machine which is trained with the features so as to identify a test image either an original or a
stego image. The experimental results were very promising. The authors of [59] also followed
a similar model to destroy LSB matching stego systems. They revealed that the histogram of
the differences between pixel gray values is smoothed by the stego bits regardless of a large
distance between the pixels. Features are extracted from characteristic function of difference
histogram and are calibrated with an image generated by average operation. Finally a support
vector machine (SVM) classifier is trained with these features. The experimental results proved
that this system detected LSB matching promisingly well. However, both of these systems are
targeted steganalysers. They operate remarkably well for LSB matching based algorithms only.

However, since the data-embedding method is typically unknown prior to detection, we
focus on the design of a unified blind steganalysis algorithm to detect the presence of
steganography independent of the steganography algorithms used. Moreover, we focus on
passive detection as opposed to active warden steganalysis [1] which aim to detect and modify
the hidden content. In this work, we employed the higher order statistical moments as features
that were collected from an effective image sub-band representation i.e., Curvelet transform
domain.

3 Design of the proposed steganalyser

For a group of given data samples (e.g., coefficients in any sub-band of the image multi-
resolution representation), the first important step of machine-learning-based image
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steganalysis is to choose representative features. Then, a decision function is built based on the
feature vectors extracted from the two classes of training images: photographic cover images
and stego-images with hidden information. The performance of the steganalyser depends on
the discrimination capabilities of the features. Also, if the feature vector has low dimension, the
computational complexity of learning and implementing the decision function will decrease. In
summary, we need to find informative, low-dimensional features extraction.

The critical component for the success of the steganalyser’s performance is the feature
extraction phase. In this paper we investigate the feature extraction problem for image
steganalysis from the following perspectives.

1) Image sub-band decomposition. We select an appropriate image sub-band representa-
tion for a given image. For instance, Lyu’s image representation includes wavelet sub-
band coefficients and their cross-sub-band prediction errors [41]. However, we have
discovered that decomposing the image based on curvelet transformation is more bene-
ficial than others in the steganalysis view. (see Section 3.1)

2) Choice of features. We consider empirical probability density function (PDF) and
characteristic function (CF) moments as steganalytic features. These moments are good
at capturing different statistical changes caused by data embedding process; (see Sec-
tion 3.2). These features act as telltale evidences in classifying the image as stego-bearing
or not.

3) Feature evaluation and selection. All features are not equally valuable to the learning
system. Also, using too many features is undesirable in terms of classification perfor-
mance due to the curse of dimensionality [14]. Also, if the feature vector has low
dimension, the computational complexity of learning and implementing the decision
function will decrease. In summary, we need to find informative, low-dimensional
features. In Section 3.3, we apply evolutionary algorithm for feature dimensionality
reduction and employ SVM algorithm for classification, thereby improving classification
performance.

Finally, the proposed image steganalyser is implemented and the results are reported in
Section 4.

3.1 Image Sub-band decomposition: choice of curvelet transforms

The decomposition of images using basis functions that are localized in spatial position,
orientation and scale have proven extremely useful in image compression, image coding,
noise removal and texture synthesis. One reason is that such decompositions exhibit statistical
regularities that can be exploited. The last two decades have seen tremendous activity in the
development of new mathematical and computational tools based on multi-scale ideas. New
transforms may be very significant for practical concerns. For instance, the potential for
sparsity of wavelet expansions led the way to very successful applications in areas such as
signal/image compression or denoising and feature extraction/recognition. A special member
of this emerging family of multi-scale geometric transforms is the curvelet transform [8, 57]
which was developed in the last few years in an attempt to overcome inherent limitations of
traditional multi-scale representations such as wavelets.

To process 2-D image signals, the 2-D wavelet transform, composed of the tensor product
of two 1-D wavelet basis functions, takes advantage of the separable transform kernels to
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realize the wavelet transform in horizontal firstly and then in vertical. Such kernels of the 2-D
wavelet transform are isotropic, leading to that the local transform modulus maxima only
reflect the positions of those maxima are across edge, instead of along edge. However,
singularities in most of images are characterized by lines and curves, which seriously reduces
the approximation efficiency of wavelet. In this circumstance, the traditional wavelet transform
is limited in the field of image processing. To overcome this difficulty, Donoho et al. propose
curvelet transform theory whose anisotropic feature is very helpful to effectively express the
edges. Curvelet transform can sparsely characterize the high-dimensional signals which have
line, curve or hyper-plane singularities and the approximation efficiency is one magnitude
order higher than wavelet transform [57].

Conceptually, the curvelet transform is a multi-scale pyramid with many directions
and positions at each length scale, and needle-shaped elements at fine scales. This
pyramid is nonstandard, however. Indeed, curvelets have useful geometric features that
set them apart from wavelets and the likes. For instance, curvelets obey a parabolic
scaling relation which says that at scale 2−j, each element has an envelope which is
aligned along a “ridge” of length 2−j/2 and width 2−j.

The curvelet transform is a higher dimensional generalization of the wavelet transform
designed to represent images at different scales and different angles. Curvelets enjoy two
unique mathematical properties, namely:

& Curved singularities can be well approximated with very few coefficients and in a non-
adaptive manner - hence the name “curvelets”.

& Curvelets remain coherent waveforms under the action of the wave equation in a smooth
medium.

The application of curvelet statistics for image steganalysis is relatively unexplored. The
experimental results made clear that the curvelet transform is very relevant for steganalysis
applications. The following potentiality of curvelet transforms provide substantial amount of
evidence supporting our claim:

Sparse representations by curvelets The curvelet representation is far more effective
for representing objects with edges than wavelets or more traditional representations.
In fact, [8] proves that curvelets provide optimally sparse representations of C2
objects with C2 edges. Figure 2 illustrates the decomposition of the original image
into sub-bands followed by the spatial partitioning of each sub-band and later the
ridgelet transform is applied to each block. Thus they are candidates for informative,
low-dimensional features. Hence for image steganalysis, curvelet coefficients may be
beneficial than other transform coefficients like wavelets. In general, improved spar-
sity leads to reduced time complexity in calculating the features. Hence, steganalysis
based on the curvelet coefficients may benefit from provably superior asymptotic
properties.

Sparse component analysis In computer vision, there has been an interesting series
of experiments whose aim is to describe the ‘sparse components’ of images. Of
special interest is the work of Olshausen [47] who set up computer experiments for
empirically discovering the basis that best represents a database of 16 by 16 image
patches.

Multimed Tools Appl (2016) 75:13627–13661 13635



Although this experiment is limited in scale, they discovered that the best basis is a
collection of needle shaped filters occurring at various scales, locations and orienta-
tions. They resembled the curvelets. Similarly, when steganalysis is handled like a
pattern matching task, the curvelet coefficients provide sub-band representations that
respond significantly to the distortions induced due to data embedding.

Numerical experiments Huo [29] studies sparse decompositions of images in a dictionary
of waveforms including wavelet bases and curvelets. They apply the Basis Pursuit (BP) in this
setting and obtained sparse syntheses. BP gives an ‘equal’ chance to every member of the
dictionary and yet, Donoho and Huo observe that BP preferably selects curvelets over
wavelets, except for possibly the very coarse scales and the finest scale. Their experiment
seems to indicate that curvelets are better for representing image data than pre-existing
mathematical representations. Our experiments also defend the same idea that curvelets yield
better features.

Fig. 2 Curvelet transform flow graph
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The basic process of the digital realization for curvelet transform is given as
follows [57]. The transformation yields six sub-bands, a multi-scale representation
across scale, orientation and phase.

We propose to decompose the given image in to six sub-bands Bi,i=1,2,3,4,5,6 as in [29]
using curvelet transformation as in Listing 1. Let us denote by ℜ1 the set of these 6 curvelet
sub-bands plus the image itself. The noise residual component for a cover image and its stego-
image possess different statistics, which are useful in steganalysis. Since curvelet coefficients
possess strong intra and inter subband dependencies, we propose to construct a set ℜ2 of six
noise residual sub-bands to exploit these dependencies as follows. Take a sub-band coefficient
Bi(m,n) as an example, where (m,n) denoted the spatial co-ordinates at band i. The magnitude
of the denoised component of this band can be computed by applying Wiener filter over these
coefficients.

Listing 1. Algorithm for Digital Curvelet Transform

3.2 Feature extraction

Given this image decomposition and sub-band construction, the statistical model is
composed of the higher order statistics – empirical PDF moments and empirical CF
moments as steganalytic features. These statistics characterize the basic image’s coefficient
distributions. The second set of statistics is based on the noise component of the stego-
image in the curvelet domain. The noise component was obtained using the denoising
filter as in [57]. We reiterate that the denoising step increases the SNR between the stego
image and the cover image, thus making the features calculated from the noise residual
more sensitive to embedding and less sensitive to image content. The denoising filter is
designed to remove Gaussian noise from images under the assumption that the stego
image is an additive mixture of a non-stationary Gaussian signal (the cover image) and a
stationary Gaussian signal with a known variance (the noise). As the filtering is
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performed in the curvelet domain, all our features (statistical moments) are calculated as
higher order moments of the noise residual in the curvelet domain. The functional
framework of the proposed steganalyser is given in Fig. 3 for an overall understanding.

3.2.1 PDF moments

For a sequence x=(x1,x2,x3,…,xN) of independent and identically distributed (i.i.d.) samples
drawn from an unknown PDF p(x), a natural choice of descriptive statistics is a set of empirical
PDF moments. The nth empirical PDF moment is given by

μ̂n ¼
1

N

XN
i¼1

xni ; n≥1 ð6Þ

which is an unbiased estimate of the nth PDF moment

μn ¼ EX n ¼
Z∞

−∞

p xð Þxndx ð7Þ

Mean, variance, skewness, and kurtosis of the PDF p(x) form the first four moments,
respectively. Empirical PDF moments were used by Lyu [41] and Goljan et al. [22].
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Fig. 3 Functional model of the proposed Image Steganalyzer
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The nth empirical absolute PDF moment given by

μ̂
A

n ¼
1

N

XN
i¼1

jxijn; n≥1 ð8Þ

which is an estimate of the nth absolute PDF moment

μA
n ¼ EjX jn ¼

Z∞

−∞

p xð Þjxjndx ð9Þ

From (9) and (11), p(x) is weighted by xn and |x|n, respectively, and any change in the tails
of p(x) is polynomially amplified in PDF moments. As is well known, μ̂n and μn in (8) and (9)
relate to the nth derivative of the CFΦ(t) of the PDF p(x) at t=0 by

μ̂n ≈ μn ¼ j−n
dn

dtn
Φ tð Þjt¼0 ð10Þ

Moreover

μ̂n ≈ μn≥ jμnj ¼
dn

dtn
Φ tð Þ

� �
t¼0

ð11Þ

For a heavy-tailed PDF, μn is large and it follows from (12) that Φ(t) has large derivatives at
the origin (i.e., it is peaky).

3.2.2 CF moments

Analogously, for the CFΦ(t), its nth moment is defined by

φn ¼
Z ∞

−∞
Φ tð Þtndt ð12Þ

and its nth absolute moment is

φA
n ¼

Z ∞

−∞

���Φ tð Þjjtjndt ð13Þ

In the above integral, |Φ(t)| is weighted by |t|n. Any change in the tails of |Φ(t)|, which
correspond to the high-frequency components of p(x), is thus polynomially amplified. Similar
to (12) and (13), the CF moments φn and φA

n relate to the nth derivative
of p(x) at x=0 by

φn ¼ jn2π
dn

dxn
p xð Þ x¼0j ð14Þ

and

φA
n≥ φnj j ¼ 2π

dn

dxn
p xð Þ

����
����
x¼0

ð15Þ
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If a CFΦ(t) has heavy tails and φA
n is large, then the corresponding PDF p(x) is peaky.

Equations (10), (11), (14), and (15) reveal a duality between PDF moments and CF moments
that follows from the duality between the PDF p(x) and its CFΦ(t).

To obtain the corresponding empirical CF moments from a sample sequence x, we first

estimate the PDF p(x) using an M-bin histogram {h(m)}m=0
M−1. Let ℤ ¼ 2 log2Md e . The ℤ-point

discrete CF{Φ(z)}z=0
Z−1 is then defined as

Φ zð Þ ¼
XM−1

m¼0

h mð Þexp j2πmz
Z

� �
; 0≤z≤Z−1 ð16Þ

which is analogous to Φ(t) defined in (1) and can be easily computed using the fast Fourier
transform (FFT) algorithms. Similar to (2), the histogram

h mð Þ ¼ 1

z

XZ−1
z¼0

Φ zð Þexp − j2πmz
Z

� �
; 0≤m≤M−1 ð17Þ

can be recovered from the discrete CFΦ(z).
The above mentioned features are extracted as per the algorithm given in Listing 2.
We set the parameter σ0

2=0.5, which corresponds to the variance of the stego signal for an
image fully embedded with ±1 embedding [27].

The algorithm yields 30 (6 bands and 5 statistics from each band) statistics from noise
residue and 30 statistics from the image. Combining these statistics we get a total of 60
statistics that form a feature vector which is used to discriminate between images that contain
hidden messages and those that do not.

Listing 2. Algorithm for Feature Calculation
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3.3 Evolutionary SVM classifier (E SVMC) as the machine learning paradigm

Genetic Algorithms (GAs) [26] have been successfully applied to solve search and
optimization problems. The basic idea of a GA is to search a hypothesis space to find
the best hypothesis. A pool of initial hypotheses called a population is randomly
generated and each hypothesis is evaluated with a fitness function. Hypotheses with
greater fitness have higher probability of being chosen to create the next generation.
Some fraction of the best hypotheses may be retrained into the next generation, the
rest undergo genetic operations such as crossover and mutation to generate new
hypotheses. The size of a population is the same for all generations in our imple-
mentation. This process is iterated until either a predefined fitness criterion is met or
the preset maximum number of generations is reached. Various machine learning
techniques, starting from linear regression techniques [1] to neural networks [55] have
been applied for steganalysis. The problem of steganalysis falls under linearly non-
separable category. The application of SVM has proved to be beneficial in many
works [15, 24, 27]. Input vector is converted into a high dimensional feature space,
which enables to separate non-linear separable spaces into proper classes. Next, when
it formulates the boundary between classes, it determines the effectiveness of each
feature, in order to find optimal boundary. It makes optimal boundary between
classes.

The fundamental idea of the proposed stego-classifier system is to employ GA to
explore efficiently the feature space of all possible subsets of the 60-dimension feature
set so as to identify the feature subsets which possess low order and high discrim-
inatory power. The dimensionality reduction process produces a greater impact both
on enhancing the detection accuracy as well as minimizing the computational com-
plexity of the classifier. In order to achieve this objective, the fitness evaluation
should involve feature size and classification performance as direct measures rather
than measures such as the ranking methods as used in conventional systems. The flow
of the hybrid model is shown in Fig. 4.

For a group of given data samples (e.g., coefficients in any sub-band of the image multi-
resolution representation), the first important step of machine-learning-based image
steganalysis is to choose representative features. Then, a decision function is built based on
the feature vectors extracted from the two classes of training images: photographic cover
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Computation 
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Data

Validation  
Data

Evolve Next 
Generation

Randomly 
Generated 
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Feature 
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SVM 
Constructor 

SVM Model 
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Fig. 4 Evolutionary-SVM Classifier
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images and stego-images with hidden information. The performance of the decision rule
depends on the discrimination capabilities of the features. Also, if the feature vector has low
dimension, the computational complexity of learning and implementing the decision function
will decrease. In summary, we need to find informative, low-dimensional features.

To start with, the training data set with the 60 features extracted from image files
(clean as well as stego) corresponding to examples of concepts, is provided as inputs for
which the support vectors have to be induced. GA is used to explore the complete
solution space of all feature subsets of the given feature set where features sets which
achieve better classification performance using smaller dimensionality feature sets are
preferred. Each of the selected feature subsets is evaluated (its fitness measured) by
testing the support vector model produced. The above process is iterated along evolu-
tionary lines and the best feature subset observed is then recommended to be used in the
actual design of the image stego classification system.

The proposed hybrid learning model will perform better by identifying better feature
subsets than that of any other feature selection methods owing to two primary reasons – (i)
The power of GA is exploited efficiently to investigate the non-linear interactions of the
selected sub set of features; (ii) By using SVM in the evaluation loop, we have an effective
mechanism for measuring the directly classification’s accuracy.

3.3.1 Chromosome’s encoding

For a GA to efficiently search such large spaces, the representation/encoding and the fitness
function – both are chosen carefully. In the present case of image steganalysis, there exists a
very natural representation of the space of all possible subsets of a feature set, namely, a binary
string of fixed-length (60) representation in which the value of the ith gene either {0,1}
indicates whether or not the ith feature (i=1,…,25) from the complete feature set is included
in that specified feature subset. Hence, each individual chromosome in the GA population is
encoded as a fixed-length string i.e., 60-bit binary string denoting a particular subset of the
given feature set. This encoding procedure offers us an advantage of directly using a standard
and well understood GAwithout any major modifications.

3.3.2 Fitness function

Each chromosome member of the current GA population denotes a competing feature
subset which has to be evaluated for fitness feedback in the evolutionary process.
This can be realized by invoking SVM classifier with the specified feature subset of
that iteration and a corresponding training data set reduced to include only those
selected features. The SVM evolved is then tested for classification accuracy on a set
of unseen evaluation data.

We target to both enhance the detection accuracy of the steganalyser as well as minimise the
number of features which could be indirectly achieved by maximizing the specificity and
sensitivity scores of the classifier. Hence this knowledge is fairly imparted into the model in the
form of fitness function in the GA module. Accordingly the fitness function is designed as

Fitness ¼ w1 � Specificityþ w2 � Sensitivityþ w3 � 1

Count of ones
ð22Þ
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Where

Specificity ¼ TP
TP þ FN

Sensitivity ¼ TN
TN þ FP

Fitness of a given chromosome is thus evaluated based upon the sensitivity and specificity
scores from the validation dataset and number of features present in a chromosome. Here True
Positive (TP) and True Negative (TN) are the number of images correctly classified in stego
and clean image classes respectively. Similarly FP and FN are the number of records
incorrectly classified in stego and clean image classes respectively. Count of ones is the total
number of ones present in the given chromosome. If two feature subsets attain equal perfor-
mance, while they have different number of features, obviously the subset with fewer features
will have to be chosen. Among specificity, sensitivity and number of features, number of
features is least concerned, so more weightage is given to specificity (w1 = 0.4) and sensitivity
(w2 = 0.4) while the number of selected features is weighed only w3 = 0.2.

3.3.3 Genetic operators

The other genetic operators like selection, cross-over and mutation used are that of the general
simple GA’s viz., tournament selection, uniform cross over and the simple mutation.

Several criteria from the pattern recognition and machine learning literature may be used to
evaluate the usefulness of a feature in discriminating between classes [14]. In this paper, we
use a non-linear SVM as adapted in [15, 27] as the classifier that provides the best classifi-
cation accuracy. However, as a pre-processing step, the feature reduction phase is performed.
For feature selection, genetic algorithm (GA) is utilized. The operational flow of the GA-
ensemble SVM classifier is depicted as in Fig. 4.

Listing 3 shows an abstracted description of the algorithm execution. As a whole, the
execution of the combined GA and SVM algorithm is an iterative procedure (GA-SVM
procedure). Each iteration results in a group of support vectors. After n iterations, a collection
of SVMs will be obtained from which the best could be used to classify. The SVMmodel with
the highest specificity and sensitivity is identified to be the best model (Figs. 6 and 7).

The initial population is randomly generated. Every individual of the population has 60 genes,
each of which represents a statistics of the input data and can be assigned to 1 or 0. 1 means the
represented feature is selected during constructing SVM classifier; 0 means it is not selected. As a
result, each individual in the population represents a choice of available features. For each
individual in the current population, a SVM classifier is built using the program [9]. This resulting
SVMmodel is then tested over clean and stego data sets. The specificity, sensitivity and number of
features selected (i.e., number of ones) are measured. The fitness of this individual is the linear sum
of these components. They are given weight values depending upon the requirement of the system.

Sensitivity and specificity are well-established statistical measures of the performance of a
binary classification test. Sensitivity measures the proportion of stego images that are correctly
identified and Specificity measures the proportion of clean images that are correctly identified.
Summarily sensitivity quantifies the avoiding of false negatives, as specificity does for false
positives. An ideal predictor would be characterised to be 100 % sensitive and 100 % specific.
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Hence the weight values in the fitness function are adjusted appropriately so as to achieve perfect
prediction in terms of the specificity and sensitivity values. The main aim of this analysis is to find
the relationship between specificity and sensitivity and to find optimal weight values for w1 andw2
so as to achieve 100 % accurate prediction. The fitness function also includes a third component
namely number of stego sensitive features selected. Among all these components, specificity and
sensitivity are treated as the highest priority characteristics while the number of features is least
concerned. The summation of all the weight values should equate to 1 so as to facilitate efficient
GA search. Considering all these factors, more weightage is given to specificity (w1 = 0.4) and
sensitivity (w2 = 0.4) while the number of selected features is weighed only w3 = 0.2. Further the
weight values assigned as w1 = 0.4, w2 = 0.4 and w3 = 0.2 yielded good classification values of all
individuals of the current population have been computed, the GA begins to generate next
generation as follows: performance with fewer features. Depending on the requirement priorities,
the weight values can be adjusted appropriately. The higher the accuracy, the better is the fitness of
the individual. Once the fitness values of all individuals of the current population have been
computed, the GA begins to generate next generation as follows:

(1) Choose individuals according to Rank Selection method [3].
(2) Use two point cross-over to exchange genes between parents to create offspring.
(3) Perform a bit level mutation to each offspring.
(4) Keep two elite parents and replace all other individuals of current population with

offspring.

The procedure above is iteratively executed until the maximum number of gener-
ations is reached. Finally, the best individual of the last generation is chosen to build
the final SVM classifier, which is tested on the test data set. A detailed description of
the adapted algorithm is shown in Listing 3 and 4.

Listing 3. Algorithm for evolutionary feature selection
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Listing 4. Algorithm for evolutionary SVM
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4 Experimental results

In our experiments, the discrimination performance of higher order statistics gathered from
curvelet coefficients as features is analyzed first. Then the classification performance of our
steganalyzer under the prepared test image set is reported. The impacts of embedding rate and
the effectiveness of the selected are explored.

4.1 Preparation of test images and schemes

The design of experiments is important in evaluating our steganalytic algorithm. The
key considerations include the following.

1) First, from the point of “generalization”, the proposed content independent image features
and associated classifier should be capable of identifying the existence of hidden data
which are possibly generated by using various kinds of embedding methods, regardless of
steganography or watermarking, and regardless of spatial or transform-domain operations.

2) Second, in outlook of “performance”, the classifier should, on the one hand, detect hidden
data as likely as possible (regardless of how transparent the embedded secret information
is), and on the other hand, keep false alarms to as few as possible for plain images.

3) Third, in view of “robustness”, the classifier should be capable of differentiating the effect
of ordinary image processing operations (such as filtering, enhancement, etc.) from that of
data embedding.

On the grounds of the above considerations, six published methods based on two
types of principles, LSB embedding and spread spectrum, were chosen for evaluation.
Seventh scheme based on wavelet domain is chosen to validate the ability of the
system to attack any new stego scheme. These systems are chosen for steganalysis
since they include all possible data hiding mechanisms. The system is not trained with
the stego patterns of scheme 7 and 8.

scheme #1: Digimarc [50]
scheme #2: PGS [35]
scheme #3: Cox et al.’s [35]
scheme #4: S-Tools [6]
scheme #5: Steganos [58]
scheme #6: JSteg [34]

They can be further categorized into:

1) steganography (#4, #5, #6) or watermarking (#1,#2,#3) purpose;
2) spatial (#2, #4, #5), or transform (#1, #3, #6) domain operation.

For further testing and to verify the effectiveness of the features selected, we
select an extra scheme based on the wavelet domain:
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3) scheme #7: Kim et al.’s method [], scheme #8: Solanki et al.’s YASS method [32]

It is expected that the difference between a cover image and its stego version can
be easily detected when more secret messages are embedded. Hence the capacity of
the payload of a steganography scheme should be taken into account in evaluating the
detection capacity of a steganalytic classifier. To depict this, the payload capactiy
characterizing a scheme which is defined as the ratio between the number of embed-
ded bits and the number of pixels in an image, is used.

To test the performance of the proposed method, our cover image dataset consists of 200
images with a dimension of 256×256 8-bit gray-level photographic images, including standard
test images such as Lena, Baboon, and also images from [30]. Our cover images contain a
wide range of outdoor/indoor and daylight/night scenes, including nature (e.g., landscapes,
trees, flowers, and animals), portraits, manmade objects (e.g., ornaments, kitchen tools,
architectures, cars, signs, and neon lights), etc. This database is augmented with the stego
versions of these images using the above mentioned seven schemes, at various embedding
rates. Some of the sample images used for experimentation are shown in Fig. 5. Also a separate
image set was generated by applying the image processing techniques like JPEG compression
(at several quality factors), low-pass filtering, image sharpening etc. Our generation procedure
is aimed at making even contributions to database images from different embedding schemes,
from original or stego, and from processed or non-processed versions, so that the evaluation
results can be more reliable and fair. Three different ERs are attempted for each scheme in
generating the database like (#1) 5 % (#2) 10 % (#3) 20 % of the maximum payload capacity
prescribed by the techniques. The entire database contains 200*4*8=6400 (No. of images) *
(No. of varying payload sizes+1 for Clean image set) * (No. of schemes evaluated) images on
the whole.

4.2 Performance metrics

For measuring the performance of the proposed system, we use the following metrics.
We present them in view of binary class problem which give two discrete outputs
positive class and negative class. In binary classification, for a given classifier and
instance, we have four possible outcomes.

True Positive (TP) – Positive instances correctly classified as positive outputs
True Negative (TN) – Negative instances correctly classified as negative outputs
False Positive (FP) – Negative instances wrongly classified as positive outputs
False Negative (FN) – Positive instances wrongly classified as negative outputs

True Positive Rate TPRð Þ ¼ Postives correctly classified
Total number of positives

¼ TP
TP þ FN

ð23Þ
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Fig. 5 Sample cover images used in performance evaluation
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FalsePositiveRate FPRð Þ ¼ Negativescorrectlyclassified
Total number of negatives

¼ FP
FP þ TN

ð24Þ

Classification Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

ð25Þ

Precision ¼ Number of True Positives
Number of True Positives þ False Positives

ð26Þ

Recall ¼ Senstivity ¼ Postives correctly classified
Total number of positives

¼ TP
TP þ FN

ð27Þ

F−Measure ¼ 2� Precision� Recall

Precisionþ Recallð Þ ð28Þ

4.3 Feature extraction and preprocessing

The features are calculated based on the algorithm in the Listing 1. We get an overall
60 statistical features that represent a file. Before proceeding to evaluate the perfor-
mance of the classifier, discrimination capability of the proposed features is to be
analyzed. The experiment involves breaking of different steganographic or
watermarking strategies, which may adapt extremely different techniques for embed-
ding ranging from LSB substitution to embedding inside the wavelet co-efficient.

Hence the feature set formed has to be normalized before feeding into the classifier
for training to achieve a uniform semantics to the feature values. A set of normalized

feature vectors as per the data smoothing function [44], f
^

i ¼ f i− f i
min

f i
max− f i

min, are calculated

for each seed image to explore relative feature variations after and before it is

modified. f
^

i, fi
min and fi

max represents the ith feature vector value, the corresponding
feature’s minimum and maximum value respectively.

4.4 Evolutionary-SVM classifier

In the sequel, the model is incorporated in Java JGAP (http://jgap.sourceforge.net/)
and the algorithm described in Listing 2 is implemented as per the method proposed.
The ensemble classifier was trained and evaluated by using 4800 images out of the
whole database, excluding those generated by using scheme #7 (employed as the test
images to see how the proposed features behave when there is a mismatch between
the operation domains). Here, two-thirds (3200) of images were randomly chosen as
the training set and the others (1600 images) act as the validation set.

The GA parameters used were w1 = 0.4, w2 = 0.4 and w3 = 0.2. The GA was run
till 200 generations. There were 60 genes in the population; each gene representing a
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feature as selected (1) or not (0). Two-point crossover with a rate of 0.8 and mutation
with a rate of 0.02 were adapted. Radial Basis Function SVM model has been
adopted with a 10-fold cross validation. Since the features are heterogeneous in scale,
we performed the following operations in SVM parameter setting phase: We
subtracted from each element in the input data the mean of the elements in that
row, giving the row a mean of zero. We divided each element in the input data by the
standard deviation of the elements in that row, giving the row a variance of one. Also
the kernel matrix is normalized so as to get an enhanced performance. The conver-
gence threshold was set as 1E-06. Training halts when the objective function changes
by less than this amount.

We have compared our results with some of the recent successful schemes Fig. 6.
The classification and error rates obtained by using different values are listed in
Table 1. Results show that the average classification rate does not change much (from
80 to 89 %). We are interested in analysing the detectability of proposed features and
classifier against embedding schemes of different applications or principles. The system
offers an appreciable range like 84.12 to 94.18 % sensitivity and 77.07 to 93.01 % for

Fig. 6 Performance comparison curves depicting (a) Classification rate (b) Error rate of various steganalysis
systems and the proposed system
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specificity. Table 3 lists classification and error rates to see differentiation in perfor-
mances between: 1) six targeted embedding schemes; 2) steganographic or
watermarking applications; 3) spatial or DCT operation domain; and 4) types of
processed non-stego images. We also analyzed the false negative rates for the original,
smoothed, sharpened, and JPEG-compressed non-stego images. It is found that our
system has a better performance in recognizing the plainness of JPEG-compressed
images. The higher false negative rates for JPEG-compressed images is beneficial to
real applications, since most images will be compressed in the JPEG form.

As for the detectability between different embedding schemes, we compare scheme #4 to
#5 and scheme #1 to #3. Basically, embedding schemes #4 and #6 are similar in some aspects
(both are in the spatial-domain, but for different applications), but the pixel change will be less
for scheme #4 when embedding “0.” Accordingly, we got a higher true positive rate for
scheme #4 than for scheme #5.

4.5 Influence of payload capacity on the Steganalyser’s performance

In this experiment, the images at various payload capacities were selected to see the influence
on detectability. The ERs for the six embedding schemes were tried at 5, 10 and 20 % of the
maximum hiding capacities in their proposed versions Fig. 7. The experimental results are
listed in Table 4, which depicts that the average true positive rate still remains above 81.33 %
for 20 %, 73.66 % for 10 % and 69.11 % for 5 % of maximum payload capacity. The results
for steganographic schemes are more promising than for the watermarking schemes, as the
steganographic schemes carry more hidden data than those of watermarking schemes, which
makes the measured features more distinguishable for detection. The results reveal that clearly,
our proposed content independent features and evolutionary-SVM classifier still yield reason-
able results for stego images of less payload capacity.

4.6 Application on a completely new steganography scheme

In order to show that the system is dynamic i.e., adaptable to detect any new
steganographic technique, the system was tested on scheme #7 which is based on
the wavelet-domain techniques and scheme #8 – a steganography scheme that is
resistive to blind steganalysis by embedding data in randomized locations in such a
way that disables the self-calibration process. These schemes were chosen for testing
to show the generalization ability of the proposed set of features. As expected, these
systems were detected at a promising rate. We have tested with 12 different

Fig. 7 Influence of payload capacity on performance of the steganalyzer (a) Classification rate (b) Error rate
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configurations of Yet Another Steganography Scheme (YASS) including both the
original and the extended versions. Table 2 shows the parameter settings of the 12
YASS variants. It was found that the true positive rate against scheme #7 is 88.23 %,
and against scheme #8 is 82.66 % (average classification rates) as given in Table 3, 4
and 5. This proves that the identified features are sensitive to detect any new stego
systems. The system is able to achieve a reasonably good true positive rate of 88.23
and 82.66 % because the data hiding process done in the DWT domain leaves

Table 2 Parameter setting of the 12 variants of yass

Setting Hiding Quality
Factors

Decision
Boundaries

Big Block
Size

No. of
iterations

bpac
(bit per AC DCT coefficient)

YASS 1 65,70,75 3,7 9 0 0.110

YASS 2 75 – 9 0 0.051

YASS 3 75 – 9 1 0.187

YASS 4 65,70,75 2,5 9 0 0.118

YASS 5 50,55,60,65,70 3,7,12,17 9 0 0.159

YASS 6 75 – 10 0 0.031

YASS 7 65,70,75 3,7 10 0 0.078

YASS 8 75 – 10 1 0.138

YASS 9 65,70,75 3,7 9 2 0.237

YASS 10 75 – 10 2 0.159

YASS 11 75 – 11 1 0.114

YASS 12 65,70,75 3,7 11 0 0.077

Table 3 average pd/nd rates for
performance differentiation be-
tween different target schemes, dif-
ferent applications, different
operation domains, and different
types of nonstego images

Differentiation categories Classification Rate

Schemes #1 88.20 %

#2 84.33 %

#3 87.13 %

#4 96.10 %

#5 90.21 %

#6 85.27 %

Applications Watermarking 86.55 %

Steganography 90.53 %

Operation domain Spatial 90.21 %

DCT 86.87 %

DWT 88.23 %

YASS 82.66 %

Differentiation categories Negative Detection
rate

Type of processed non-stego
images

Original 78.60 %

JPEG-compressed 85.30 %

Smoothed 79.50 %

Sharpened 52.50 %
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statistical artifacts in the higher order statistics of curvelet domain. Also, though the
scheme #8 puts down the strength of self-calibration process that estimates the cover
image from the stego image, the curvelet statistics capture the higher dimensional
dependencies in the cover symbols. Table 6 compares the performance of the various
classifiers used as steganalysers over the proposed features. Due to the presence of
evolutionary algorithm component and the classifier design being a wrapper model,
the training time is observed to be relatively higher than the other existing systems.
However, the testing is with fewer relevant features, the testing time of the proposed
model is lesser than the other classifiers. In a real-time scenario, faster detections of
stego image flows in a network helps the security team to take measures faster before
the harm is caused. Cover memory information which leaks out the important clue in
steganalysis procedure is thus being incorporated into the feature vector. Further the
proposed machine learning algorithm is powerful enough and hence when trained with
thousands of images becomes capable of detecting even the slightest statistical

Table 5 steganalysis of yass using proposed system

Schemes bpac Classification Rate in % Error Rate in %

YASS 1 0.110 83.00 17.00

YASS 2 0.051 78.00 22.00

YASS 3 0.187 85.00 15.00

YASS 4 0.118 73.60 26.40

YASS 5 0.159 86.30 13.70

YASS 6 0.031 82.60 17.40

YASS 7 0.078 85.40 14.60

YASS 8 0.138 80.50 19.50

YASS 9 0.237 82.20 17.80

YASS 10 0.159 85.20 14.80

YASS 11 0.114 86.10 13.90

YASS 12 0.077 86.50 13.50

Table 4 classification and error rates for test sets at various embedding rates

Schemes Classification rate in % Error rate in %

5 % of
maximum
payload

10 % of
maximum
payload

20 % of
maximum
payload

5 % of
maximum
payload

10 % of
maximum
payload

20 % of
maximum
payload

#1 78.60 84.66 89.67 21.40 15.34 10.33

#2 79.00 85.90 89.33 21.00 14.10 10.67

#3 69.11 76.10 81.33 30.89 23.90 18.67

#4 73.83 81.55 88.50 26.17 18.45 11.50

#5 71.10 77.10 85.33 28.90 22.90 14.67

#6 69.70 73.66 84.00 30.30 26.34 16.00

#7 77.55 82.00 91.33 22.45 18.00 8.67
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Table 6 performance comparison of various classifiers as steganalyser

Schemes Criteria Decision Tree J48
Classifier

Naïve Bayes
Classifier

SVM
Classifier

Proposed Evolutionary
SVM Classifier

DigiMarc Accuracy % 84.00 82.65 84.66 87.66

TP Rate 85.58 84.07 86.10 88.2

TN Rate 82.16 81.23 83.21 87.12

Precision 83.00 81.75 83.68 87.25

Recall 86.00 84.07 86.10 88.2

F-Measure 84.00 82.89 84.87 87.72

Training Time (in sec) 192.34 188.31 244.41 258.3

Testing Time (in sec) 1.25 1.21 1.33 1.16

PGS Accuracy % 85.00 84.50 86.39 89.49

TP Rate 80.53 79.51 81.41 84.33

TN Rate 90.22 89.49 91.36 94.66

Precision 89.00 88.00 90.41 94.04

Recall 81.00 80.00 81.41 84.33

F-Measure 85.00 84.00 85.67 88.92

Training Time (in sec) 184.45 176.11 202.30 244.6

Testing Time (in sec) 0.61 0.54 0.58 0.61

Cox Accuracy % 84.00 74.00 75.60 80.10

TP Rate 85.58 79.09 81.11 87.13

TN Rate 82.16 68.20 70.08 73.08

Precision 83.00 71.00 73.05 76.39

Recall 86.00 79.00 81.11 87.13

F-Measure 84.00 75.00 76.87 81.41

Training Time (in sec) 186.23 171.22 190.01 200.03

Testing Time (in sec) 0.42 0.39 0.44 0.38

S-Tools Accuracy % 85.00 80.00 82.24 87.67

TP Rate 80.53 88.97 90.31 96.10

TN Rate 90.22 71.83 70.08 79.25

Precision 89.00 76.00 77.75 82.24

Recall 81.00 89.00 90.31 96.10

F-Measure 85.00 82.00 83.56 88.63

Training Time (in sec) 93.43 89.55 100.12 111.67

Testing Time (in sec) 0.23 0.19 0.21 0.23

Steganos Accuracy % 75.00 78.00 80.67 84.85

TP Rate 80.99 85.21 87.66 90.21

TN Rate 69.61 69.84 73.67 79.5

Precision 73.00 74.00 77.75 81.48

Recall 81.00 85.00 87.66 90.21

F-Measure 77.00 79.00 83.56 85.62

Training Time (in sec) 464.44 428.23 462.56 511.63

Testing Time (in sec) 1.46 1.02 1.21 1.44

Jsteg Accuracy % 81.00 74.00 76.46 81.65

TP Rate 89.71 77.67 80.47 85.27

TN Rate 72.73 70.04 72.44 78.04
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variation. The system looks for these changes and thus is competent of capturing
these differences and classifying the images as stego-bearing or not. This shows that
the proposed features are competent enough to detect any new type of stego embed-
ding schemes – irrespective of the logic they use to embed. This is capable of

Table 6 (continued)

Schemes Criteria Decision Tree J48
Classifier

Naïve Bayes
Classifier

SVM
Classifier

Proposed Evolutionary
SVM Classifier

Precision 77.00 72.00 74.49 79.52

Recall 90.00 78.00 80.47 85.27

F-Measure 83.00 75.00 82.29 82.29

Training Time (in sec) 308.45 298.66 303.04 365.4

Testing Time (in sec) 0.57 0.48 0.56 0.49

YASS Accuracy % 79.00 74.00 77.38 82.67

TP Rate 86.56 78.54 82.14 88.14

TN Rate 70.98 68.81 72.61 77.21

Precision 75.00 72.00 74.99 79.45

Recall 87.00 79.00 82.14 88.14

F-Measure 80.00 75.00 78.40 83.57

Training Time (in sec) 703.12 698.56 711.24 724.23

Testing Time (in sec) 2.04 1.97 2.00 2.02

Table 7 summarization of previous works and our proposed system

Steganalytic Systems CBS [53] High
dimensional
DCT [37]

Block based
Scheme [11]

Proposed System

Number of features 64 15,700 274 60

Domains of Feature Extraction Contourlet DCT Spatial – Block
based

Spatial
DCT
DWT

Training/Classifier Yes/Non-linear
SVM

Yes/Bayesian
Ensemble

Yes/Bayesian
Ensemble

Yes/Evolutionary-SVM

Targeted embedding scheme Arbitrary Arbitrary Model Based
Steganography,

Perturbed
Quantization

Arbitrary

Number of test schemes 3 2 2 8

Payload of stego images 4000–15,000
bits

>0.03bpac 0.05 bpac >0.01 bpp

Size of training database 600 2500 2264 6400

Number of test images 400 2500 565 3000

Average classification rate 75.91 % 80.33 % 78.48 % 85.23 %

Average error rate 24.08 % 19.67 % 21.51 % 14.76 %

Side information constraint for
classifier

No No Block size and
Block no.

No
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capturing the cover statistics and also the disturbed statistics or the distortion perpet-
ually introduced by the steganography scheme (Table 7).

5 Discussion and conclusion

Steganography is a dynamic tool with a long history and the capability to adapt to
new levels of technology. As the steganographic tools become more advanced, the
steganalyst and the tools they use must also advance. Like any tool, steganography
(and steganalysis) is neither inherently good nor evil; it is the manner in which it is
used which will determine whether it is a benefit or a detriment to the society. This
paper presents a rationale for a blind image steganalytic model based on higher order
statistics computed from curvelet coefficients. The feasibility of the proposed system
is proved by systematic experiments. In our experiments, a database composed of
processed plain images and stego images generated by using seven embedding
schemes was utilized to evaluate the performance of our proposed features and
classifier. Table 5 summarizes and compares characteristics of our proposed method
with those of several other previous works in literature. In the table, not-reported
(NRP) represents null information provided by the original work. The major findings
of this work can be summarized as:

Higher order statistics computed from curvelet domain possess significant discriminatory
power and proved to be useful, especially for steganographic data embedding, where the
incurred distortions are much less pronounced than in watermarking.

A nonlinear classifier SVM that is easy to adapt to non-separable classes is
adopted in our system. The classifier is constructed so as to minimize the false error
rates. The GA component of the model incorporates this knowledge into the system.
This has proved to be effective.

The average classification rate (85 %, including the true positive and true negative
rates) for our proposed system is superior to many systems (Table 5) in blind
steganalysis research. The future directions in this work can be concentrating more
on the other statistics from curvelet domain like higher order moments and applying
this system to videos and compressed images. The performance of the system can also
be improved by using appropriate fusion techniques.
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