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Abstract Many educational materials contain a lot of solid geometric figures. The solid
geometric objects in these figures are usually drawn as 2D line drawings thus have lost
their 3D information. This paper presents a method to recover the 3D information of the
solid geometric object from single line drawing image taken from the geometric books,
which would be used to help the users better present and understand the solid geometric
object on their mobile devices. The main advantage of our method is the ability to handle
inaccurately processed sketches as opposed to the previous methods which require perfect
line drawings as inputs. Our method consists of three main steps as follows. First, the sketch
of the input line drawing image is automatically extracted and further represented as an
undirected graph. Second, candidate 3D models from the pre-built 3D model database are
found by graph similarity-based searching and sub-graph isomorphism matching. Third, for
each candidate 3D model, the model parameters, the rotation and the translation aligning the
model with the sketch are found by minimizing an objective function which is composed
of the residuals between the vertices of the sketch and the 2D projections of the candidate
model’s vertices, and an optimal reconstruction solution is further selected as the final result.
Extensive experimental results demonstrate the effectiveness and robustness of our method
for recovering the solid geometric object from single line drawing image.
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1 Introduction

In the current geometry lectures, especially in primary and secondary schools, the edu-
cational materials are usually limited to traditional paper books or drawing on the black

Fig. 1 Illustration of the application of solid geometric object reconstruction technology to mobile reading.
In this paper, the handled solid geometric objects are the primitive objects, as listed in the figure from left
to right, they are the tetrahedron, the cube, the octahedron and the dodecahedron respectively. The primitive
solid geometric objects are represented by undirected graphs and pre-defined in a 3D model database



Multimed Tools Appl (2016) 75:10153–10174 10155

boards, which is far from adequate for the needs of the students and the teachers. With the
help of the rapid progress of the information technology, it’s now possible for the readers
to learn the books on their mobile devices (e.g. smart phones and tablets) by the electronic
documents (e.g. PDF documents). However, because of the loss of three-dimensional (3D)
structures, sometimes it’s too difficult to quickly understand the geometric objects in the
two-dimensional (2D) paper books. Even the electronic documents do not solve the prob-
lem as they are still in 2D. The 2D geometric objects in the documents are usually drawn as
2D line drawings (i.e., line segments, elliptic arcs and their intersections). They are actually
the parallel projections of the corresponding 3D geometric objects whose 3D structures are
lost in the 2D projection. If we can recover the lost 3D information of the geometric objects
in the electronic documents from their 2D information, we can present the illustrations of
them in the 3D style on the mobile devices, and thereby can significantly improve the users’
reading and learning experience, especially for the students and teachers.

In this paper, we propose an algorithm to recover the 3D information of the solid geo-
metric objects from single line drawing images taken from the electronic documents. Over
decades, a number of methods have been proposed to reconstruct the 3D geometric objects
from single line drawings. The mentioned methods assume that the input is the perfect
sketch of the line drawings, that is, all the line segments and their intersections are cor-
rectly obtained. These methods are not capable of correctly reconstruct the solid geometric
objects from the inaccurate line drawings. The main advantage of our method over the
existing methods is that it can reconstruct the inaccurately extracted sketches (i.e. over-
complete or under-complete sketches) of the line drawings, while performing equally good
over the accurate sketches compared to the existing methods. The proposed algorithm is
an extended version of our conference article [24]. Compared to [24], this paper provides
more details of the algorithm. Moreover, the graph similarity-based searching technique is
employed to speed up the process of the candidate 3D models selection. And in addi-
tion, more extensive experiments are conducted to evaluate the performance of the refined
algorithm.

Based on the proposed algorithm, we implement a mobile application as illustrated in
Fig. 1 which enables the user to select the geometric object from the PDF document, then
the application instantly reconstructs the geometric object in the selected image, and renders
the reconstructed 3D geometric object onto the screen. The users can interact with the 3D
object using their fingers including dragging and rotating, which is essential to improve the
user experience in reading such educational materials.

The rest of this paper is organized as follows. The related work is briefly reviewed in
Section 2. An overview and some assumptions of our method are provided in Section 3.
Section 4 mainly discusses the sketch extraction process in our method. Section 5 describes
the 3D model matching process. Section 6 presents the 3D reconstruction algorithm.
Experimental results are provided in Section 7 and conclusions are drawn in Section 8.

2 Related work

In the past two decades, a lot of researchers made efforts to resolve the single line drawing-
based 3D reconstruction problem. These methods can be roughly categorized into 3 types:
the regularity-based methods, the deduction-based methods and the divide-and-conquer-
based methods.

Regularity-based methods use some geometric rules as constraints to construct a cost
function, and then minimize this function to obtain the 3D object. Conventional rules
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include: (1) the face planarity rule: the coplanar vertices of the line drawing should also be
coplanar 3D points after reconstruction [6, 13–15, 19]; (2) angularity rule: all the angles at
the vertices of a line drawing should be the same [1, 16, 18]. Besides the preceding two rules,
Lipson and Shpitalni [9] propose another 10 rules, such as line parallelism, line verticality,
isometry and corner orthogonality, et al. Since the dimension of the search space according
to this type of methods is very high, some works [11, 20] try to reduce the dimension of the
search space to improve the computational efficiency of these methods.

Deduction-based methods usually make stronger assumptions over the 3D objects cor-
responding to the input line drawings, e.g., the 3D object has cubic corners [7, 8], or a
symmetric plane exists in the 3D object [4], and so on. Based on these assumptions, the
reconstruction result is obtained by a deduction process.

The third type of methods adopt divide-and-conquer strategy to reconstruct the complex
line drawings [2, 12, 21–23, 26, 27]. These methods split the line drawing to a set of simpler
parts. In particular, the traditional regularity-based methods are often used to reconstruct
each part. Among these methods, Xue et al. [22] propose a refined divide-and-conquer-
based method, in which an example-based approach is used to reconstruct each part of the
complex line drawing.

Given the perfect sketch of the line drawings as the input, the above methods achieve
good reconstruction results. However, none of them demonstrate their abilities to handle
inaccurate sketches. In this work, we present a more robust method to solve the single line
drawing-based 3D reconstruction problem, which can handle inaccurate sketches. It worths
noting that our method is example-based, the same as the Xue et al. [22]’s method (E3D).
The main differences between our method and E3D are twofold: 1. The E3D method can
only take the sketch of a line drawing as input, while our method directly takes line draw-
ing image as input; 2. The E3D method needs complete input sketches without missing or
erroneous edges, while our method does not need that. Although the E3D method can han-
dle more complex objects based on a divide-and-conquer approach, it requires the input to
be a complete sketch of the line drawing. Actually, all the experimental data shown in E3D
is man-made sketches created from a CAD software, while our input data is the geometric
images from the PDF documents. Experimental results demonstrate that our method is able
to produce good results for inaccurate sketches automatically extracted from the input line
drawing images.

3 Overview

In this paper, the input image is assumed to be the synthetic geometric line drawing image.
Parallel projection is used for the geometric object in the image. Visible lines of the object
are drawn as solid lines in the image, and hidden lines of the object are drawn as dashed
lines. The object may be coupled with some descriptive letters or short texts around it. Some
extra lines that are not part of the geometric object itself may be drawn on the surface of it
or inside it. It is worth noting that, in this paper, we only consider the line drawings solely
consisting of straight line segments, since most of the illustrations fall into this category.
The line drawings containing arcs will be considered in our future work.

As illustrated in Fig. 2, our method consists of three main steps. First, we extract the
lines from the image and convert them to an undirected connected graph, which is called
the sketch. Note that due to the limitation of the sketch extraction algorithm, the extracted
sketch is highly possible to be inaccurate or even incomplete. Second, the extracted sketch
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Fig. 2 A brief illustration of our method. The method consists of three main steps: a Sketch extraction:
the image is cropped from a PDF document using the phone app. The sketch is extracted by detecting the
line segments and intersections from the input line drawing image, and further represented by an undirected
connected graph. b 3D model selection: A 3D model database is pre-defined to describe the primitive 3D
models. Some candidate 3D models are first filtered by graph similarity searching (marked by blue rectan-
gle) and then selected by sub-graph isomorphism (marked by green rectangles). c 3D reconstruction: the
reconstruction result is obtained by fitting the candidate models (red lines) to the sketch (black lines). The
reconstructed solid geometric object (a pyramid) is shown on the phone (on the left), and from another point
of view (on the right)
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is matched within a pre-built 3D model database, producing some candidate models that are
analog to the sketch. Finally, an objective function is constructed based on the coordinate
residuals between the graph and the candidate models, and then an optimal reconstruction
solution is found based on an optimization selection process.

In order to clearly present our solution to the single line drawing-base 3D reconstruction
problem, we first fix the related notations and definitions.

Definition 1 A 2D sketch is the graph representation of the line drawing image, denoted
by S = (x,Gs), where x = {x1, x2, . . . , xn} are the 2D coordinates of the vertices, and Gs

is the undirected connected graph indicating which two vertices are connected.

Definition 2 A 3D object is represented as an undirected connected graph in 3D space,
that is, O = (X,Go), where X = {X1, X2, . . . , Xm} are the 3D coordinates of the vertices
of the object, and Go is the undirected connected graph indicating which two vertices are
connected.

Definition 3 A 3D model represents a kind of 3D object controlled by a set of model
parameters, which is denoted by M = (A,X, Gm), where A is the set of parameters, X is
the set of vertices, and Gm is the undirected connected graph indicating which two vertices
are connected.

Definition 4 An instance of the 3D model is an 3D object that is generated by the rotation
and translation of the 3D model in 3D space.

4 Sketch extraction

The sketch extraction algorithm we use is listed in Fig. 3. The input gray-scale image (the
color image is first converted to the gray-scale one) is scaled to a normal size(the longer edge
is sized to 400 pixels and the shorter edge is sized into corresponding proportion), and then
binarized with the OTSU method [17], and then connected components of the foreground
pixels (the black pixels of the original input image) are obtained.

4.1 Connected component clustering

As shown in Fig. 4a, there are usually 3 types of the connected components according
to their sizes: the main body (the one bounded in blue rectangle), the dashed line dots
(the ones in red rectangles), and the characters (the ones in green rectangles). Based on
these observations, We adopt the k-means [5] clustering (we set k = 3 straightforwardly)
algorithm to classify the types of the connected components. The count of the foreground
pixels, the height and width of the bounding box are taken as the feature for clustering. After
clustering, we divide the connected components into 3 types: the one whose bounding box
is significantly larger than the others is selected as the main body; the ones with smallest
bounding boxes and similar foreground pixel counts are classified to the dashed line dots;
the remaining ones are then classified to the characters, which are not involved in our further
processing. This strategy is simple yet effective to provide an estimation of the component
types.
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4.2 Line extraction

We use the edge segment-based [10] to extract the solid lines (Fig. 4b), and propose a
sample-consensus-based algorithm (summarized in Algorithm 1) for dashed line extraction.
The dashed dots are first shrink to their center points as the input of the algorithm. The
dashed line extraction process is illustrated in Fig. 5. Figure 5a shows all the input center
points: the inliers are marked in green color and the outliers are in red. Then two lines are
sequentially extracted by the sample-consensus process in Fig. 5b and c, after which only
outlier points are left in Fig. 5d. This algorithm is efficient and robust in presence of a few
outliers. Figure 4c shows an example of the extracted dashed lines from the line drawing
image.

4.3 Generating the sketch

After the solid and dashed lines are extracted from the input image, we further con-
vert them into an undirected connected graph. First, the intersection points of the lines
are determined, and the lines are cut into line segments according to these intersection
points. Second, an image-based validation process is performed to remove the false seg-
ments that only cover very few foreground pixels. Third, the line segments that are adjacent
and collinear are merged to one segment. Finally, the vertices of the sketch graph are
obtained by merging the end points that are very close to each other, and the edges of the
sketch graph are obtained according to the line segments. As shown in Fig. 4d, the graph ver-
tices are circled and labeled by Arabic numbers, and the graph edges are drawn in different
colors.

4.4 Unnecessary edges removal

Some of the extracted line segments are correct ones, but not useful or even harmful to the
following reconstruction process. In order to successfully reconstruct the geometric object
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Fig. 3 Flowchart of the sketch
extraction algorithm

in the line drawing image, we use some heuristics to remove some of the vertices and edges
from the obtained sketch graph as follows.

Type 1: Dangling edges. In the extracted sketch graph, a vertex point whose degree equals
to 1 is called a dangling point, and the corresponding edge is called the dangling edge.
For example, the edge 2 − 7 in Fig. 6a is a dangling one.

Type 2: Docking edges. We call a line segment as “docking line segment” if one of its end
points is at the middle of another line segment. And the corresponding edge is a docking

(a) (b) (c) (d)

Fig. 4 Illustration of sketch extraction. a connected component clustering. b solid line extraction. c dashed
line extraction. d generating the sketch (undirected connected graph)
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(a) (b) (c) (d)

Fig. 5 The consensus-sampling extraction process (a) the inliers and the outliers. b, c lines extracted by
consensus-sampling of the inliers. d left outliers

edge. For example, in Fig. 6b, the line segments CE, CF, C1E, C1F and EF are docking
ones.

Type 3: Diagonal edges. The “diagonal line segment” is the one that connects the diag-
onal points of a parallelogram in the sketch. And the corresponding edge is a diagonal
edge. As shown in Fig. 6c, the line segments A1B, BC1, and A1C1 are diagonal ones.

Given a sketch graph Gs , we detect the unnecessary edges from it and remove them from
Gs , obtaining a refined version of Gs , which is denoted as Gr . The full sketch Gs and the
refined sketch Gr are both used in the 3D model selection process which is described in the
next section.

5 3D model selection

After obtaining the sketch graph of the line drawing, we select some candidate 3D models
with the similar graph structure from the pre-built 3D model database. The flow of the

(a) (b) (c)

Fig. 6 3 types of unnecessary edges. a type 1. b type 2. c type 3
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Fig. 7 Flowchart of the
candidate 3D models selection
process

selection process is listed in Fig. 7. The details will be introduced in the following sub-
sections.

5.1 3D model database

In this work, a 3D model is represented as an undirected connected graph in the 3D space.
Each vertex of the model has a 3D coordinate Xi , and the graph is represented by Gm.

(a) (b) (c) (d)

(e) (f) (c) (h)

Fig. 8 Examples of the 3D models. a tetrahedron. b cube. c cuboid. d oblique cuboid. e pyramid. f irregular
pyramid. g triangle-prism. h tetrahedron-frustum
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Moreover, a 3D model is controlled by a number of model parameters (denoted as set A),
which represent the geometric attributes of the 3D model, such as width, height, depth.
Some of the examples are shown in Fig. 8. Figure 8c is a cuboid model. It has 3 parameters:
Acuboid = {a, b, c}, where a, b, c are the width, height and length of the cuboid model
respectively. For a 3D model M , we use a matrix which is composed by the elements of A
to represent the 3D coordinates of the vertices, which is called the parametric matrix of the
model and is denoted by VM . For example, the parametric matrix of the cuboid is

Vcuboid =
⎛
⎝

0 a a 0 0 a a 0
0 0 0 0 b b b b

0 0 c c 0 0 c c

⎞
⎠ , (1)

in which each column Vi is the 3D Euclidean coordinates of a vertex. Obviously, the para-
metric matrix always has 3 rows and the number of columns equals to the number of
vertices.

We have totally defined 19 models to build the 3D model database, which can cover
almost all the cases that appear in our experimental data set.

5.2 Candidate models searching

We select the candidate models from the 3D model database based on two techniques: the
graph similarity searching combined with the additional sub-graph isomorphism step. The
graph similarity searching is used to filter the models that are unlikely to be the candidate
model. And The sub-graph isomorphism is used to find each candidate model that matches
the sketch we extracted from the image.

5.2.1 Graph similarity-based searching

The first step is the graph similarity searching. The idea is to find some models that are
similar to the sketch before we do the sub-graph isomorphism matching over the models
in the database. The minimum graph edit distance (MGED) is used to estimate the graph
similarity in our approach. An efficient graph similarity searching algorithm [25] is used to
filter the models similar to the sketch from the model database. Specifically, we input the
sketch as the query graph q to the algorithm in [25], and the model database as the graph
database D, and a threshold τ where the MGED is allowed maximumly (we set τ to 10 in
this paper).

After the graph similarity searching, the algorithm returns a list of graphs whose MGED
is not greater than τ . We sort the list of graphs according to the MGEDs of them. From the
list, we select the top T (we study this parameter in the experiments section) graphs with
the smallest MGEDs, and input the selected graphs SIM to Algorithm 2, which searches the
candidate models and the corresponding sub-graph configurations (i.e., the correspondences
of the vertices and the edges of the isomorphism projection) of Gs . We first find the possible
matching sub-graphs in SIM (lines 9–11 in Algorithm 2). However, if unfortunately we
didn’t find anything good in SIM, we fall back to a full scan over the whole model database
(lines 12–16 in Algorithm 2).
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5.2.2 Sub-graph isomorphism matching

The sub-graph isomorphism is a graph matching technique to find a sub-graph in a given
bigger graph G isomorphic to a given smaller graph H , (if there exists a graph G′ that is a
sub-graph of G, and H is isomorphic to G′, we say that H is sub-graph isomorphic to G).
We adopt the VF-2 [3] algorithm to accomplish our sub-graph isomorphism task. The reason
why we choose this method is that it’s one of the most efficient sub-graph isomorphism
matching algorithms so far. For more details about sub-graph isomorphism, please refer to
[3].

As listed in Algorithm 3, we perform the sub-graph isomorphism twice. In the first time,
we take the sketch graph Gs as the bigger graph and the model graph Gm as the smaller
graph; and in the second time, we conversely take Gm, Gr (the refined version of Gs) as the
bigger graph and the smaller graph respectively.

The first time of sub-graph isomorphism is performed to handle the completely or over-
completely extracted sketches. For example, Fig. 4d illustrates the extracted sketch from
a line drawing image of tetrahedron-frustum, in which the lines A1B and A1C are not
contained in the model of the tetrahedron-frustum. We find the models whose number of
vertices are equal to or smaller than that of the sketch, and are isomorphic to a sub-graph of
the sketch. And among these models, only the ones with the largest number of vertices are
selected as the candidate models. For the example shown in Fig. 4d, we first find 4 models –
pyramid, tetrahedron, triangle-prism and tetrahedron-frustum, and finally select two models
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– the triangle-prism and the tetrahedron-frustum as the candidate models, which are shown
in Fig. 8g and h.

During the process of the sketch extraction, some line segments may be not extracted
or partially extracted, and thus the obtained sketch graph is usually incomplete. In order
to deal with these cases, we perform the second time of sub-graph isomorphism—fix the
3D model Gm as the bigger graph, and find sub-graphs that are isomorphic to the refined
sketch graph Gr in it. For example, Fig. 6a shows an incomplete sketch extracted from a
line drawing image of the cuboid. To be more specific, the two dashed lines (4 − 7 and
6 − 7) are completely missing. By applying the second time of sub-graph isomorphism, the
correct candidate models (the cube and the cuboid et al.) can still be selected.

The sub-graph isomorphism matching process is rather expensive in terms of efficiency
due to its high complexity [3], especially when we want to do a full scan over all the models
in the database. In order to speed up the candidate models searching process, we use the
graph similarity searching prior to the sub-graph isomorphism to prune some models that
are unlikely to be the candidate model. The models selected by the two times of sub-graph
isomorphism are all added to the list of candidate models, which will be used in the 3D
reconstruction process.

6 3D reconstruction

For each candidate 3D model, the reconstruction result is obtained by minimizing an objec-
tive function of the residuals between the vertices of the sketch and the 2D projections of the
candidate model’s vertices. And then, some bad reconstruction results are rejected. Finally,
the optimal result that best fits the sketch is selected. The details of our reconstruction
algorithm are introduced in the following sub-sections.

6.1 Recovery of each candidate model

After a sub-graph isomorphism, we obtain some correspondence C = (XC, xC) between the
subsets of the vertices of the candidate model and the sketch graph, where XC and xC are
subsets of X and x respectively, and C is a one-to-one correspondence relationship between
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XC and xC . The coordinates of the subset XC are XC = {Xi1 , Xi2 , . . . , XiC }, where ik is the
sub-indices of X, and the coordinates of the subset xC are xC = {xj1 , xj2 , . . . , xjC }, where
jk is the sub-indices of x.

For each candidate model, the 3D reconstruction process of our method aims to find an
instance of it whose 2D projection can best fit the sketch. To be more specific, our target is to
optimize an objective function that minimizes the coordinate residuals between the matched
vertices of the sketch and the candidate model. The objective function is the projection
error, which is given by

f =
nC∑
k=1

∥∥K(RVik + t) − xjk

∥∥2
, (2)

where nC is the number of corresponding pairs of the vertices; K =
(

1 0 0
0 1 0

)
is the parallel

projection matrix, R is the rotation matrix, t is the translation vector, ik and jk are the
indices of the corresponding vertices of the sketch and the model, Vik is the ik-th column of
the parametric matrix V , and xjk

is the 2D coordinate of the jk-th vertex of the sketch. The
optimal solution is found by solving the following problem

Ã, R̃, t̃ = arg min
nC∑
k=1

∥∥K(RVik + t) − xjk

∥∥2

subject to :RT R = I,

(3)

where Ã is the optimal geometric parameters of the model, R̃ is the optimal rotation matrix,
and t̃ is the optimal translation vector.

The objective function is a quadratic function with an orthogonal constraint. We use the
algorithm in [22] to solve the problem in (3).

6.2 Optimal reconstruction result selection

For each candidate model, we obtain an reconstruction result by solving the objective func-
tion in (3). We further select the best result among these reconstruction results. The selection
process is introduced as follows.

First, the result with large projection error should be rejected, that is, if the projection
error f > δ, the result should be directly rejected, where δ is an empirically set threshold
(in this work, we set δ to 90.0).

Second, for the candidate models selected by the second time of sub-graph isomorphism,
there exists some missing vertices and missing lines. For example, in Fig. 9a (the vertical
line inside the tetrahedron has been removed as it’s a dangling line), the dashed line of the
tetrahedron is missing due to failure of the sketch extraction step. Two candidate models are
selected by the second time of sub-graph isomorphism: the tetrahedron and the pyramid,
as shown in Fig. 9b and c respectively. The tetrahedron model’s missing line accurately
overlaps with the dashed line in the image, while the pyramid model’s missing lines do not
hit any line in the image. Although the projection errors of the two models are exactly the
same, we can select a better model by the “pixel validation”: for each candidate model’s
reconstruction result, the “pixel vote”—the count of the foreground pixels that the missing
lines of the reconstructed instance of the model pass through is collected. We look for the
pixels on both sides of the missing lines at a small range, for tolerance of some coordinate
inaccuracies. If a candidate model’s pixel vote is significantly smaller than the others, it
should be rejected.
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(a) (b) (c)
Fig. 9 Example of pixel level validation. a a line drawing image contains a tetrahedron. b tetrahedron model
with a missing line (red dashed line). c pyramid model with missing lines

Third, if two candidate models’ projection error are nearly the same, we reject the one
with a larger parameter set A, since it’s a more complex model than the other one. We want
to select the model as simple as possible, in order to solve the over-fit issue.

Finally, if there are still multiple candidate models, we choose the one with the smallest
projection error as the final selected model.

The optimal reconstruction algorithm is shown in Algorithm 4.

7 Experiment

We implement our algorithm in C++, and also develop a graphical application both on PC
and mobile phone to demonstrate our method. As illustrated in our demo, with this graph-
ical application, user first loads a PDF file and selects an rectangular area of 3D geometry
illustration from some pages; and after the system processing, the reconstruction result is
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Fig. 10 Examples of reconstruction results. The first column is the input line drawing image and the name of
the 3D model. The second column is the reconstructed object from original angle of view. The third column
is the object viewed from different angles

shown in a pop up window. User can zoom and drag to rotate the reconstructed object, as
if it’s immersed in a 3D space. No parameter setting is required for input; and the whole
process usually only takes 1–10 s.

We collected over 40 PDF documents from the internet (including books, papers, teach-
ing materials, slide shows and other types of documents), and captured 303 line drawing
images from them. Our algorithm is tested over these line drawing images. Some quick
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Fig. 11 (1)–(3): Examples of the over-complete sketch using the first time of sub-graph isomorphism. Cor-
respondences of the vertices are shown in the model with the numbered labels. (4)-(5): Examples of the
under-complete sketch using the second time of sub-graph isomorphism. The resulting correspondence has
missed a vertex and its sibling edges. The missing vertex is drawn with dashed circle in the model. In the 3D
reconstruction step, the missing vertices are simply excluded from the pose computation of the model. The
final result is generated from the pose (rotation and translation) of the model

examples of the reconstruction results are shown in Fig. 10, and some detailed examples of
the reconstruction results are shown in Fig. 11.

Evaluation In the most related work of E3D [22], the authors use the RMSA (root mean
squares of differences of angles) and the RMSE (root mean squares of differences of
Euclidean distances) metrics to evaluate the reconstruction accuracy. However, we found
these metrics not suitable for our case. The reasons can be described as below. First, the
line drawings used in E3D are manually crafted in a CAD software, so the ground truth
is precisely known; while our input data is just the line drawing image. Second, for the
applications such as mobile reading and learning, users tend to care about whether the
reconstruction result is the right 3D object illustrated in the original line drawing image,
rather than caring about how close the reconstructed angles and points are to the original
line drawing. For these reasons, we use a simple metric – the matching accuracy to evaluate
the proposed method and E3D. Let F denote the test image set, and Fcorrect denotes the set
of correctly matched images, then the matching accuracy is defined as fa = |Fcorrect|

|F| .
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Fig. 12 Performance vs. T

We vary the value of T (the number of the top selected graph similarity searching results)
to evaluate the response time and the matching accuracy of our algorithm. When T = 0,
the graph similarity searching is disabled, we directly do full scan over the whole model
database. As shown in Fig. 12, the response time gets declined significantly if we enable
the graph similarity searching, but we lose some accuracy if T is too small. However, when
T ≥ 8 the algorithm over performs the full scan regarding both the response time and the
accuracy.

Table 1 compares the results of our method and E3D on our testing dataset. As we can
see that the matching accuracy of our method (T = 8) is significantly higher than that of
E3D.

The reason why E3D performs so poorly is that, it can only handle perfect and complete
sketches. But in this paper, we need to handle the sketches extracted from the images, which
mainly are incomplete or over-complete. To be more specific, only for 42 of the 303 exper-
imental images we can get the perfect and complete sketches. Moreover, for all of the 42
images that we can get right sketches, E3D correctly reconstructs the corresponding solid
geometric objects. And as stated in this paper, our method can also handle incomplete or
over-complete sketches besides the perfect sketches. Therefore, for the dataset used in this
paper, our method performs much better than E3D.

We can also extend our method to the natural images as shown in Fig. 13. Given an input
image, we first detect the straight lines in it as in Fig. 13b, and then extract the sketch using
the straight lines as in Fig. 13c. Note that in this example, the extracted sketch is incomplete,
and the hidden side of the object is invisible. Then the 3D geometric object in the image
is reconstructed. We paste the textures in the image onto the faces of the box, as shown
in Fig. 13d and e. The whole process is done automatically, as opposed to the real image
modeling example shown in E3D. They need the user to manually sketch along the edges
of the object, and both the visible and invisible edges must be drawn in the sketch.

Table 1 Comparison between
our method and E3D Method Correct Incorrect Accuracy

E3D 42 261 13.9 %

Ours 226 77 74.6 %
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(a) (b) (c)

(d) (e)

Fig. 13 Example of modeling from natural image. a an input image. b straight lines detection. c sketch
extraction. d, e reconstructed 3D object in two different views

Failure analysis Most failure cases happen when there are both undetected and over-
detected edges. For example, the oblique-pyramid in Fig. 14a is mistakenly reconstructed as
a tetrahedron in Fig. 14c. From the sketch in Fig. 14b, we can see that the edge CD fails to
be detected, and there are some extra edges. Most extra edges like the axis and the edge AF
has been removed by the heuristics we use, but the edge AC is not removed since the edge
CD is not detected (thus the “diagonal heuristic” does not apply). Finally, we end up getting
only wrong candidate models from the first round of sub-graph isomorphism matching, and
therefore it’s impossible to get the correct reconstruction result.

Other failure cases include over-fitted model being taken, edges being too complicated
to be reconstructed, et al. But these are only occasional cases. If we fine tune the algorithm
to fit these occasional cases, the whole matching accuracy would decline.

(a) (b) (c)

Fig. 14 An example of failure case. a input image. b extracted sketch. c reconstruction result
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8 Conclusion and future works

We propose a robust method to recover the 3D information of the solid geometric object
from single line drawing image. This is achieved by first extracting the solid and dashed
straight line segments from the image and further representing them as an undirected graph,
namely, the sketch. Then, candidate models from a pre-built 3D model database are selected
by graph similarity-based searching and two times of sub-graph isomorphism matching.
Furthermore, for each candidate model, a reconstruction result is obtained by minimizing a
cost function of the residuals between the vertices of the sketch and the 2D projections of the
corresponding vertices of the candidate model. Finally, some bad reconstruction results are
pruned and the optimal result that best fits the sketch is outputted. We conduct the experi-
ments on a set of 303 line drawing images collected from the internet. And the experimental
results demonstrate that: (1) it can successfully recover the solid geometric object from sin-
gle line drawing image; (2) it performs much better in terms of matching accuracy than the
state-of-the-art method E3D. We also demonstrate the application of our method to natural
image modeling and a failure analysis is provided.

In the future, we plan to do the following works: (1) extracting line styles and labels
to preserve the style of the input; (2) recovering the curved objects, such as cylinders and
spheres; (3) improving the reconstruction performance by taking context information into
account.
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