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Abstract The fixed weights between the center pixel and neighboring pixels are used in the
traditional Markov random field for change detection, which will easily cause the overuse of
spatial neighborhood information. Besides the traditional label field cannot accurately identify
the spatial relations between neighborhood pixels. To solve these problems, this study
proposes a change detection method based on an improved MRF. Linear weights are designed
for dividing unchanged, uncertain and changed pixels of the difference image, and spatial
attraction model is introduced to refine the spatial neighborhood relations, which aims to
enhance the accuracy of spatial information in MRF. The experimental results indicate that the
proposed method can effectively enhance the accuracy of change detection.

Keywords Markov random field . Fuzzy c-means . Linear weights . Spatial attractionmodel .

Spatial information

1 Introduction

Change detection aims founding changes occurred on the Earth surface by analyzing remotely
sensed images acquired in the same geographical area at two or more different times [5, 13].
Moreover, it is widely used to detect disasters, monitor environmental changes and identify
land use/land cover.

Markov random field (MRF) is an image processing method that comprehensively utilizes
spectral and spatial information [4]. With the adoption of maximum a posteriori (MAP)
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criterion, MRF takes full advantage of the spectral characteristic of pixels and the label field
characteristic of their neighborhoods, and finally provides the optimal image analysis results
by solving the minimum of the sum of characteristic energy of the two [18, 20, 24]. However,
in an MRF, because of the inaccuracy in defining the spatial relationship among the pixels in
the neighborhood and setting the weights of spatial information, the spatial information cannot
be fully and reasonably utilized [2, 14, 15]. Hence, an over-smooth change map will be finally
brought without accurate spatial relationships between neighborhoods and weights for the
spatial information [3, 17].

In order to solve these problems, this paper proposed an improved MRF method to change
detection by focusing on the determination of the weights of spatial information and the
definition of the spatial relationship between neighborhood pixels. Firstly, the difference image
is obtained using change vector analysis (CVA) method. Secondly, the fuzzy c-means (FCM)
clustering algorithm is implemented to the difference image, in which membership degree and
centers of changed and unchanged parts are obtained. The linear spatial weights are then
computed through diving the difference image into unchanged, uncertainty and changed
regions based on the gray values of pixels. Additionally, the spatial attraction model is also
introduced to refine spatial relationships between neighborhood pixels to improve the accuracy
of spatial information. Finally, the improved MRF is applied to detect changes. To evaluate the
effectiveness of proposed method, two experiments were carried on satellite images. The paper
is organized as follows. Section 2 shows the related works, and the improved MRF method for
change detection is proposed in the Section 3, Section 4 designed some experiments to verify
the proposed method. Finally, Section 5 draws conclusions.

2 Related works

In the past three decades, so many change detection methods have been devolved, which can be
grouped into three stages. In the first stage, changes are found by comparing the multitemporal
images using simple algebra methods, such as image differencing, image ratio, image regression
and CVA, etc. [13, 21]. However, simple algebra methods need a threshold to identify changes,
and it was usually decided manually. Therefore, many automatic methods for finding the optimal
threshold were proposed in the second stage [16]. Nevertheless, a new problem was found that
only spectral information is exploited resulting in much noise contained in the change map. In
the third stage, more methods were implemented to the difference image generated by image
differencing or CVA combing spectral and spatial information, and MRF is one of the most
effective methods [2]. But it results in an over-smooth change map that the spatial information
cannot be fully and reasonably utilized in theMRF. The edge information was integrated into the
spatial energy function of MRF to preserve small structures and edges [3, 12]. But there are still
have some shortcomings, on the one hand paper does not provide good results for objects with
occlusion/disocclusion the other hand if the object of interest has cast shadows in the scene, the
proposed scheme does not yield good results. The method proposed in paper [16] obtains
accurate and robust classification maps for different kinds of images.

In order to solve the above problems, lots of researchers did a lot work and gain some
results. The spatial attraction was introduced into the spatial energy function to replace the
equivalent value in the Kronecker delta function of MRF [5, 23], which reduced over-smooth
results. Additionally, a custom-designed Potts model was proposed to improve the accuracy of
weights for the spatial information [6]. But the effects of weight for the spatial information and
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spatial relationships between neighborhood pixels haven’t been considered together. There-
fore, this paper proposes an improved MRF by enhancing the accuracy of spatial information
to improve the accuracy of change-detection results.

3 Proposed method

To solve the aforementioned problem, a change-detection method based on the improved MRF
is proposed. Figure 1 shows the detailed flow chart of proposed method, and the specific
procedures are presented as follows.

3.1 Fuzzy clustering for the difference image

(1) The differential image is obtained by processing the remote-sensing images at two time
phases through change vector analysis.

Suppose the images at t1 and t2 are denoted as X1={x1
b(i,j)|1≤i≤m,1≤j≤n,1≤b≤L}

and X2={x2
b(i,j)|1≤i≤m,1≤j≤n,1≤b≤L}, respectively, in which m, n, and L are the

numbers of rows, columns, and bands of the image; x1
b(i,j) and x2

b(i,j) denote the gray
values of the pixels at row i, column j in the b-th band at two time phases, respectively.
The change vector can be calculated by the following equation [11]:

ΔX ¼ X 1−X 2 ¼
x11 i; jð Þ−x12 i; jð Þ
x21 i; jð Þ−x22 i; jð Þ
⋯
xL1 i; jð Þ−xL2 i; jð Þ

0
BBB@

1
CCCA: ð1Þ

The change intensity of the pixel can be expressed by the following Euclidean
distance:

ΔXk k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

b¼1

xb1 i; jð Þ−xb2 i; jð Þ� �2
vuut : ð2Þ

FCM

Image at t1 Image at t2

Difference image

Membership
degree

Center of
category

Designed linear weights of
spatial information

Change detection image

Improved MRF

Refined spatial relationship
between neighborhoods

Fig. 1 Flow chart of the proposed
method
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ΔX includes the information on category change of surface features in two images at
two time phases, and ‖ΔX‖ denotes the difference of gray level of two images at two time
phases. According to Eq. (2), the differential imageX=‖ΔX‖={x(i,j)|1≤i≤m,1≤j≤n} can
be obtained.

(2) The differential images are clustered using the FCM algorithm and classified into
unchanged and changed categories. The membership degree uij of the pixel xj to the i-
th category, and the centers of these two categories, C1 and C2, are calculated.

Fuzzy clustering was first proposed by Dunn [8] and improved into a classical FCM
clustering algorithm by Bezdek [9]. Suppose X={x1,x2,⋯,xN} is a dataset consisting of
N vectors and fuzzily divided into C categories. uik(1≤k≤c) denotes the degree of
membership of the datum xi in the dataset X to the k-th category. The fuzzy division
results can be described using the matrix U={uik}, which meets the following constraint
conditions:

uik∈ 0; 1½ �;∀i; kXc

k¼1

uik ¼ 1;∀i

0 <
XN
i¼1

uik < N ;∀k

: ð3Þ

The FCM clustering algorithm conforms to the principle that the sum-of-squared
differences between each sample and the mean value of the located category are
minimum. The objective function Jreaches the minimum by iterating and updating the
membership matrix U and the clustering center V. Thus, optimal clustering can be
achieved. The objective function is expressed as

J U ;Vð Þ ¼
XN
i¼1

Xc

k¼1

uikð Þq xi−vkk k2 ð4Þ

where U={uik} is the membership matrix that satisfies Eq. (3), V={v1,v2,⋯,vc} denotes
the set of clustering centers, and q∈[1,+∞) denotes the weighted index, which is used to
control the fuzzy degree of clustering results. When q=1, the fuzzy clustering belongs to
traditional c-means clustering. In general, when q=2, the calculation is simple and the
results are ideal. When fuzzy clustering is performed on differential images, the sample xi
can be replaced by xij to represent the gray value of the pixel at (i,j) and vk denotes the
mean of the k-th category. Thus, Eq. (4) can be expressed as

J U ;Vð Þ ¼
X
1≤ i≤m
1≤ j≤n

Xc

k¼1

uk i; jð Þð Þ2 x i; jð Þ−vkk k2 ð5Þ

where uk(i,j) denotes the degree of membership of the pixel (i,j) to the k-th class and ‖⋅‖
denotes the Euclidean distance. The specific procedure of FCM clustering algorithm is
presented as follows:
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1) The number of categories in clustering is set as N, and the clustering center
V={v1,v2,⋯,vc} is initialized.

2) The matrix of fuzzy membership is calculated according to the following equation:

uk i; jð Þ ¼
Xc

p¼1

x i; jð Þ−vkk k
x i; jð Þ−vpk k

� �2" #−1

: ð6Þ

3) The clustering center is updated based on the following equation:

vk ¼

X
1≤ i≤m
1≤ j≤n

uk i; jð Þ2x i; jð Þ

X
1≤ i≤m
1≤ j≤n

uk i; jð Þ2
: ð7Þ

4) The convergence of Eq. (5) is judged as follows. When ‖V t+1−V t‖<ε (t is the number
of iterations and ε>0 indicates the stopping of computation), Eq. (5) is convergent and
the iteration stops; otherwise, steps 2 and 3 are repeated until Eq. (5) is convergent.

Finally, after processing by FCM clustering, the membership degrees of each pixel and the
central values of each category can be obtained.

3.2 Markov random field model

Using MAP criterion, MRF is an image processing method that combines spectral and spatial
information. From the perspective of field energy, the sum of energy of spectral characteristic
field and label field of each pixel should be minimized so that the optimal result can be
obtained [10].

Suppose X={x1,x2,⋯xn}⊂Rd denotes the remote-sensing dataset composed of n vectors in
d-dimensional Euclidean space (n is the number of pixels and d is the number of bands),
L={l1,l2,⋯lc} denotes the category label for each pixel and c is the number of categories.
Generally, the ultimate category of images can be determined using the MAP criterion, and the
formula is

L ¼ arg max P Lð Þp X jLð Þf g; ð8Þ

where P(L) denotes the prior probability of a category label in the dataset, and p(X |L) denotes
the conditional probability density function of the pixel in the dataset. Based on the MRF
model, the maximum posterior probability can be obtained by solving the minimum of energy
function UMRF(xi) as follows:

UMRF xið Þ ¼ Uspectral xið Þ þ Uspatial xið Þ; ð9Þ
where Uspectral(xi) denotes the energy function of spectral characteristic field of pixel xi, and
Uspatial(xi) denotes the spatial energy function of the pixel xi in local neighborhood.

The energy function of spectral characteristic field of pixel xi can be expressed as

Uspectral xið Þ ¼ 1

2
ln 2πσ2k
�� ��þ 1

2
xi−μkð Þ2 σ2

k

� �−1
; ð10Þ
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where μk and σk
2 denote the mean and variance of pixel gray values in thek-th category,

respectively. These two values can be calculated by the initial change-detection images
generated in FCM clustering.

The spatial label field energy of the pixel xi can be calculated by

Uspatial xið Þ ¼ β
X
j∈Ni

I l xið Þ; l x j
� �� �

; ð11Þ

I l xið Þ; l x j
� �� � ¼ −1 l xið Þ ¼ l x j

� �
0 l xið Þ≠l x j

� �
(

; ð12Þ

where β>0 denotes the penalty coefficient defined by the same user, which is used to control the
effect of the neighboring pixel of pixel xi on xi;Ni denotes the spatial neighborhood (i∉Ni) of the
pixel xi; l(xi) and l(xj) (( j∈Ni)) denote the category labels of the pixel xi and its neighboring pixel
xj, respectively. As described inMRF theory, the spatial relation between pixels in the label field
can be expressed by the neighborhood system Ni and defined by the Potts model in Eq. (12).

Change detection is a discrete combinational optimization problem, and the analysis results
can be acquired only by the global or local optimization based on the iterative search method
[20]. In this paper, iterated conditional mode (ICM) was used to search for the optimal result of
Eq. (9) to solve the minimum value of energy function and analyze the remote-sensing images.
ICM refers to the process where the local energy is calculated using local conditional
probability, and then the analysis results of images with minimum local energy are obtained
by updating the labels of images point by point.

3.3 Designed linear spatial weights of MRF

In theMRF, when the label field energy is calculated using the Potts model, the adopted weights β
are the same for all the pixels in differential images without any consideration of the distribution of
pixel gray values in differential images. In a differential image, the pixels have different gray
values and therefore different probability to change. For a pixel, the larger the gray value is, the
greater the probability of change is; on the contrary, the smaller the gray value is, the greater is the
probability to remain unchanged. For the pixels with intermediate gray level, determiningwhether
the change exists based solely on gray value is difficult. In the traditional Potts model, all the
pixels in differential images are set with the same penalty coefficient β. For the pixels with
extremely large or extremely small gray values, this setting easily causes an overuse of spatial
neighborhood information, which leads to the oversmoothing on the changed regions.

Based on the centers of the two categories calculated using the FCM algorithm, two
threshold values, T1 and T2, are set. The differential image is then divided into three parts
(changed, uncertain, and unchanged), and the corresponding penalty coefficients are calculat-
ed. Thus, the contrast-sensitive Potts model is established.

In the traditional MRF, the energy of the spatial label field of the pixel xi can be calculated
by [6, 22, 25]

Uspatial xið Þ ¼
X
j∈Ni

I l xið Þ; l x j
� �� �

; ð13Þ

I l xið Þ; l x j
� �� � ¼ β

−1 l xið Þ ¼ l x j
� �

0 l xið Þ≠l x j
� �

(
; ð14Þ
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where β>0 denotes the penalty coefficient defined by the user and is employed to control the
effect on the pixel xi from its neighboring pixel; Ni denotes the spatial neighborhood (i∉Ni) of
the pixel xi; l(xi) and l(xj)( j∈Ni) denote the category labels of pixel xi and the neighboring pixel
xj, respectively.

According to the centers of the two categories, C1 and C2, the threshold values T1 and T2
were set. As shown in Fig. 2, the pixels in the differential image can be divided into three parts,
namely, changed, uncertain, and unchanged. The threshold values T1 and T2 can be calculated
by

T 1 ¼ Mmid −α1 Mmid −C1ð Þ
T 2 ¼ Mmid þ α2 C2 −Mmidð Þ

�
; ð15Þ

whereMmid denotes the central pixel and has the same membership degree as the changed and
unchanged categories when FCM is used; and both α1 and α2 are constants that are used to
adjust the range of the three parts.

On this basis, three strategies are proposed to calculate the adaptive penalty coefficient βm
in the Potts model for the three parts.

βm X i; jð Þð Þ ¼
β
X i; jð Þ−Xmin

T1−Xmin
X i; jð Þ < T 1

β T1≤ X i; jð Þ≤T 2

β
Xmax −X i; jð Þ
Xmax −T 2

X i; jð Þ > T2

8>>><
>>>:

; ð16Þ

where Xmin and Xmax denote the maximum and minimum gray values in the differential image,
respectively. By replacing the traditional penalty coefficient β with the adaptive penalty
coefficient βm, we can construct a contrast-sensitive Potts model.

Under this condition, when the gray value of the pixel is less than the threshold value T1,
the penalty coefficient βm decreases linearly as the gray value varies from T1 to Xmin.
Accordingly, the effects of spatial neighborhood information on the pixels with relatively
small gray values can be reduced because these pixels are highly likely to remain unchanged.
When the gray value of the pixel is larger than T2, the penalty coefficient βm decreases linearly
as the gray value increases from T2 to Xmax. In this way, the effects of spatial neighborhood
information on the pixels with relatively large gray values can be reduced because these pixels
are highly likely to change. Additionally, for the pixels in the uncertain part, we set a constant

Uncertain regionUnchanged region Changed region

MmidC1 C2T1 T2 X

h(X)Fig. 2 Changed, uncertain, and
unchanged parts in differential
image
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penalty coefficient β. Thus, the initial change-detection image can be refined by taking full
advantage of spatial information.

3.4 Refined spatial relationship between neighborhoods of MRF

Figure 3 presents the label field of spatial neighborhood when the conventional MRF is used
for change detection, where i,j denotes the pixel in row i, column j; 0 indicates no change in
the pixel; and 1 indicates change in the pixel. The spatial neighborhood relation between
various pixels can be characterized by comparing the numbers of pixels of different categories
in the neighborhood. Many mixed pixels are included because of the complexity of surface
features and the limitations in the spatial resolution of remote-sensing images. Therefore, the
spatial neighborhood relation between pixels cannot be accurately expressed by arbitrarily
labeling the neighboring pixels as 0 and 1.

The spatial gravity model is used to introduce the membership information to an MRF so
that the spatial relationship between neighboring pixels can be identified accurately.

The surface features and the interaction between surface feature and sensor are highly
complex, and the spatial resolution of the sensor is limited. Therefore, numerous mixed pixels
are included in images. In the traditional Potts model, the spatial neighborhood relation
between pixels is usually defined as 0 or 1, which is too absolute and not accurate. This
method easily causes the overuse of spatial information and oversmoothing of the change-
detection results. The Potts model can be modified by introducing the spatial gravity model to
the degree of membership. The spatial neighborhood relation between pixels can be redefined,
and Eq. (12) can be rewritten as

I l xið Þ; l x j
� �� � ¼ −wi j l xið Þ ¼ l x j

� �
0 l xið Þ≠l x j

� �
(

; ð17Þ

where wij denotes the spatial gravity between the pixel xi and the neighboring pixel xj, and can
be calculated by the following equation [5, 23]:

wi j ¼ z pið Þ � z pið Þ � 1

R2
i; j

; ð18Þ

1 1 0

1 i, j 0

0 0 0

Fig. 3 Label field of spatial
neighborhood in MRF
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where i is the index value of the central pixel xi; j∈Ni{ j=1,2,⋯,8} denotes the pixels in the
neighborhood of central pixel xi in a 3*3 pixel window, as shown in Fig. 4a; z denotes the
category label of the central pixel xi; pi and pj denote the membership degrees of the pixel xi
and the neighboring pixel xj with regard to the class z, and can be calculated using the FCM
clustering algorithm; Rij denotes the spatial distance between the central pixel xi and the
neighboring pixel xj, as shown in Fig. 4b.

4 Results and analysis

To verify the feasibility of the proposed method, we selected two groups of remote-sensing
images for change detection. Comparisons were made between the proposed method, the
multiresolution level set (MLS), MLS with Kittler algorithm (MLSK) [1], FCM, the combi-
nation of expectation maximization (EM) and MRF [13], and the combination of FCM and
MRF. Three indices are used to evaluate the results: 1) missed detection (MD): the number of
changed pixels incorrectly classified as unchanged. The missed detection rate Pm is calculated
by the ratio Pm=MD/N0×100%, here N0 is the total number of changed pixels counted in the
ground reference map; 2) false alarm (FA): the number of unchanged pixels wrongly detected
as changed. The false detection rate Pf is described by the ratio Pf=FA/N1×100%, where N1 is
the total number of unchanged pixels counted in the ground reference map; 3) total error (TE):
the total number of detection error including both miss and false detection, which is the sum of
the MD and the FA. Hence, the total error rate Pt is described using Pt=(FA+MD)/(N0+N1)×
100% [7, 19].

4.1 Experiment of Landsat 7 ETM+ data set

In Experiment 1, we used two remote-sensing images of a certain region in Liaoning province
collected by Landsat 7 ETM+ satellite sensor in August 2001 and August 2002.

The images with the size of 300×280 pixels were selected as the study area, as shown in
Fig. 5a and b, corresponding to the true-color remote-sensing images at two time phases. The
image at t1 was registered to the image at t2, and the relative radiometric normalization was

Ni,1 Ni,2 Ni,3

Ni,4 i Ni,5

Ni,6 Ni,7 Ni,8

1

1 i 1

1

1 2 1 2

1 21 2

(a) Neighborhood ix of central

pixel iN

(b) Distance between central pixel ix and its 

neighborhood iN

Fig. 4 Spatial neighborhood of central pixel xi
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conducted on them by histogram matching. Subsequently, change vector analysis was used to
process the images within all bands except thermal infrared band, and the differential images
were acquired. The ground reference data were artificially generated by comparing the images
at two time phases, as shown in Fig. 5c.

Figure 6 shows the change-detection images obtained by MLS, MLSK, FCM, EM, MRF.
In the detections with multiscale-level set method (MLS) and threshold-based MLS (MLSK),
μ=0.2, which referenced the initial paper [1]. As shown in Fig. 6a and b, the obtained change-
detection images using MLS and MLSK are highly similar to the ground reference data;
however, speckle noise can be observed in some comparatively large regions of change, e.g.,
Region A in the figure.

When MRF and the proposed method are used, the values of β are set to be 1.8 and 1,
respectively, where the parameter was first set as an empirical value 1.6 and then found the

(a) Image at time phase t 1 (b) Image at time phase t2 (c) Ground reference data

Fig. 5 Landsat 7 ETM+ data adopted in Experiment 1

(a) MLS (b) MLSK (c) EM

(d) FCM (e) MRF (f) Proposed method

AB CA

B
AA

C

Fig. 6 Change-detection results of data in Experiment 1
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optimal value manually. As shown in Region B in Fig. 6c and Region A in Fig. 6d, a great deal
of speckle noise exists in the change-detection images when expectation maximization (EM)
and FCM algorithms are used because the spatial neighborhood information is not considered,
where the weighting exponent of FCM was set to 2. Although the change-detection regions in
Fig. 6e and f are more complete than those in the other four images, more details are retained
when the proposed method are used, which also eliminates the oversmoothing phenomena of
borders in traditional MRF, as shown by Region C in the figures. In conclusion, the change-
detection image generated by the proposed method is most similar to the ground reference
data.

Table 1 presents the comparisons of the falsely detected pixels, undetected pixels, and total
errors for MLS, MLSK, EM, FCM, MRF, and the proposed method. One can conclude that,
compared with the other five methods, the total error rate of the proposed method was reduced
by 1.2, 1.2, 4.2, 1.4, and 2.5 %, respectively. At least 1000 errors were reduced, and the
change-detection results using the proposed method have the highest accuracy. However, since
the proposed the proposed method combines FCM and MRF, the calculation time is longer
than that for the single FCM and MRF.

4.2 Experiment of Landsat 5 TM data set

In Experiment 2, we used the images of a certain region in Alaska, USA collected by the
Landsat 5 TM sensor in July 1985 and July 2005.

The images with a size of 400×400 pixels were selected in the present study, as shown in
Fig. 7a and b, corresponding to the true-color remote-sensing images at two time phases. The
image at t1 was registered to the image at t2, and the relative radiometric normalization was
conducted on the images by histogram matching. The ground reference data were artificially
generated by comparing the images at two time phases, as shown in Fig. 7c.

Figure 8 shows the obtained change-detection results using MLS, MLSK, EM, FCM, MRF,
and the proposed method. When MLS and MLSK were used, the parameter μ was set as 0.2.
When MRF and the proposed method were used, the parameter β was set as 1.5 and 0.8,
respectively.

As shown in Fig. 8a and b, numerous change details are lost in the results by MLS and
MLSK (see Region A). As shown in Fig. 8c, a significant amount of speckle noise is
included (see Region B), mainly because the EM algorithm detects the changes only by
setting the threshold and not by utilizing spatial information. Since a large number of

Table 1 Accuracy of change detection in Experiment 1

Method Falsely detected errors Undetected errors Total errors

Number of pixels Pf (%) Number of pixels Pm (%) Number of pixels Pt (%)

MLS 722 1.1 3086 18.7 3808 4.5

MLSK 721 1.1 3054 18.6 3775 4.5

EM 5420 5.3 863 8.1 6283 7.5

FCM 669 1.0 3294 20.0 3963 4.7

MRF 4202 6.2 725 4.4 4927 5.8

Proposed method 746 1.1 1987 12.1 2733 3.3
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mixed pixels existed and the categories of pixels were labeled as those with a greater
degree of membership when FCM was used, many change details were undetected, e.g.,
the results in Region A in Fig. 8d. The proposed method not only generates a more
complete homogeneous region but also detects many change details. Comparatively, the
single MRF method makes the change-detection results oversmoothed, as shown in
Region C in Fig. 8e and f. Conclusively, compared with the change-detection image
generated by the other methods, the image generated by the proposed method is closest
to the ground reference data.

Table 2 lists the accuracy of change-detection results by MLS, MLSK, EM, FCM, MRF,
and the proposed method, respectively. Since the membership information calculated by FCM

(a) Image at time phase t1 (b) Image at time phase t2 (c) Ground reference data

Fig. 7 Landsat 5 TM data adopted in Experiment 2

(a) MLS (b) MLSK (c) EM

(d) FCM (e) MRF (f) Proposed method

C

A

BC

A

B

AA

Fig. 8 Change-detection results of data in Experiment 2
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was introduced to an MRF through the spatial gravity model, the spatial neighborhood
relation between pixels can be defined more accurately. The proposed method compared
with other methods, its total error rate was reduced by 1.1, 1.0, 4.6, 1.0 and 4.6 %,
respectively, reduced at least more than 1500 errors of pixels, can generate the highest
accuracy of change detection results. These results verify that the proposed method is
feasible.

5 Conclusion

By improving the weights for spatial information and spatial relationships between
neighborhood pixels of MRF, an improved MRF is proposed to change detection. The
results of the two experiments indicate that, compared with MLS, MLSK, and FCM, the
changed region detected by the proposed method is more complete. Compared with EM
and MRF, the proposed method can be used to remove the speckle noise effectively.
Besides, it can avoid the oversmoothing of the changed region obtained by MRF to a
certain degree. Overall, compared with MLS, MLSK, EM, FCM, and MRF, the proposed
method can generate a change-detection image closer to the ground reference data,
achieving higher accuracy of change detection. The experimental results suggest that the
designed linear weights for the spatial information and redefined the spatial neighborhood
relation between pixels in the label field of MRF are feasible, which can provide more
accurate results than those using the Potts model in traditional MRF. Therefore, the
proposed method is a more accuracy approach to change detection for remotely sensed
images. However, the proposed method generates more accurate results by combing FCM
and MRF, it needs more computing time. Hence, when we want to obtain more accurate
results, it is better to adopt the proposed one, whereas, when the change maps need
producing in shorter time, other methods used in this paper should be exploited. In the
future, an adaptive widow of MRF is worth studying to improve its robustness for different
kinds of noise.
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Table 2 Accuracy of change detection in Experiment 2

Method Falsely detected errors Undetected errors Total errors

Number of pixels Pf (%) Number of pixels Pm (%) Number of pixels Pt (%)

MLS 128 0.1 3639 37.4 3767 2.4

MLSK 138 0.1 3597 36.9 3735 2.3

EM 9323 6.2 107 1.1 9430 5.9

FCM 118 0.1 3595 36.9 3713 2.3

MRF 9042 6.0 449 4.6 9491 5.9

Proposed method 503 0.3 1542 15.8 2045 1.3
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