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Abstract Sparse coding has received extensive attention in the literature of image classifi-
cation. Traditional sparse coding strategies tend to approximate local features in terms of a
linear combination of basis vectors, without considering feature neighboring relationships.
In this scenario, similar instances in the feature space may result in totally different sparse
codes. To address this shortcoming, we investigate how to develop new sparse represen-
tations which preserve feature similarities. We commence by establishing two modules to
improve the discriminative ability of sparse representation. The first module selects discrim-
inative features for each class, and the second module eliminates non-informative visual
words. We then explore the distribution of similar features over the dominant basis vectors
for each class. We incorporate the feature distribution into the objective function, spanning
a class-specific low dimensional subspace for effective sparse coding. Extensive experi-
ments on various image classification tasks validate that the proposed approach consistently
outperforms several state-of-the-art methods.
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1 Introduction

Image representation is a fundamental problem in computer vision, which has attracted
enormous attention in recent years. One of the most popular image coding method is the
bag-of-words (BoW) model which converts the image into a histogram-based represen-
tation. The BoW model shows its outstanding performance, especially its robustness to
spatial variations [16, 45]. The process of BoW model is normally composed of two main
steps: (i) dictionary generation and quantization of the local features which are extracted
from the images [13]; (ii) feature pooling in image level, such as max pooling and sum
pooling. Recently, sparse coding techniques have been used and achieved state-of-the-
art performance in many applications such as object detection [33], tracking [48], image
classification [9, 49] and face recognition [42].

In the BoW model, each image is presented as a histogram and each bin of the histogram
is the occurrence number of its corresponding visual word. When sparse coding is applied,
each feature is represented as a linear combination of a number of basis vectors. To obtain
sparse code, some methods compute the dictionary and histogram-based representation sep-
arately [40], and some others manage to learn the optimal dictionary and coding parameters
for local features simultaneously [45]. In order to reduce the computational complexity of
sparse coding, Wang et al. [40] used the k-nearest bases to encode each feature, Gao et al. [9]
added the Laplacian term in the optimization of sparse coding to guarantee that the sparse
code changes smoothly on the data manifold. However, all these methods have ignored the
distribution of local features over the basis vectors. Such distribution is important in effec-
tively reflecting the relationship between similar features. It may avoid the case that similar
local features in the Euclidean space turn out to be different in the sparse representation [9].

The motivation of our work is that we want to explore the useful information of local
feature distribution and integrate it into the objective function. Specifically, the aims of our
work are two-fold: (i) exploring class-specific similar features to increase the discriminative
capability of image representations for different classes, and (ii) learning more informative
dictionaries. Most existing methods related to our first aim tend to search the similar fea-
tures from the whole training set. This mixes up features from foreground and background,
and also reduce the discrimination of the sparse code [9, 40]. On the other hand, the normal
strategies related to our second aim are to learn a discriminative dictionary for each class and
then assign each test image to its predicted class by minimizing the information loss between
image representation and classes [15, 41]. Chiang et al. [5] learned a component-level dic-
tionary in each image group which exploited group characteristics to derive the sparse code.
Shen et al. [35] proposed a novel dictionary learning method by taking advantage of hier-
archical category correlation. Zhang et al. [52] proposed an image classification method by
Laplacian affine sparse coding with tilt and orientation consistency. Lazebnik et al. [15]
learned discriminative visual vocabularies by joining the features and posterior distributions
for each class. However, such strategies are not optimal in the label prediction [44].

To overcome the shortcomings described above, we propose a discriminative sparse
neighbor coding method. Firstly, to boost the discrimination of the sparse codes, we develop
two modules in the sparse coding process: (i) eliminating the non-discriminative features
for each specific class; (ii) eliminating the non-informative visual words. Module (i) is
also a feature selection process which keeps the class-relevant features and highlights the
high-level class knowledge of images. Then, in the coding stage, for each feature, its dis-
criminative neighbors will be selected. The frequencies of the local features and their
neighbors over the dictionary will be calculated and integrated into the objective function.
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Such scheme is useful for feature coding because local features are likely to have common
neighboring visual word if they are close in the Euclidean space.

The contributions of this paper are three-fold. Firstly, we employ an iterative method
to eliminate non-discriminative features in each class. This is to address the problem that
class-irrelevant features in each class may reduce the accuracy of the neighbor information.
Secondly, we adopt a statistical model to eliminate the non-informative visual words which
not only are ineffective in representing the content of image but also degrade the coding
discriminative capability. Finally, to characterize the relationship between local features
and classes, we propose a coding method called sparse neighbor coding. We calculate the
dominant basis vectors for each class and use the neighbor features to get the frequency
distribution over the basis vectors in each class, which leads to more discriminative sparse
code.

In the experiments, we demonstrate the benefit of the proposed method for image clas-
sification on several publicly available datasets. The performance of individual components
of our framework is also verified in the experiments.

The remainder of this paper is organized as follows.
Section 2 reviews related works on sparse coding and presents the overview of the

proposed method. Section 3 presents the details for feature selection and visual words elim-
ination. The proposed sparse neighbor coding method is described in Section 4. Section 5
reports the experimental results that validate the effectiveness of the proposed method.
Section 6 summarizes the key contributions of this paper and discusses the further work.

2 Related work and overview of the proposed approach

2.1 Related work

Bag-of-words (BoW) model has proved to be very useful in image coding. In the hard-
assignment coding scheme, each coding coefficient vector has only one non-zero element
that indicates which cluster each feature belongs to. Since such restriction may cause severe
information loss, soft-assignment coding method [32] has been proposed to relax the con-
straint and computes coding coefficients on all visual words based on their distances to the
local feature. Moreover, to cope with the loss of spatial information caused by the BoW
model, Lazebnik et al. [16] introduced a spatial pyramid matching (SPM) model to derive
the image representation from the spatial perspective.

Recently, sparse coding strategies have shown effectiveness in feature representation.
Given an input data matrix D and the signal x to be encoded, sparse coding aims to find a
linear combination of a few basis vectors from the D to reconstruct signal x. Yang et al. [45]
combined the sparse coding with SPM model and notably improved the discriminability of
traditional sparse representations.

The transformation from a feature vector to its sparse representation causes informa-
tion loss. To cope with the information loss in the sparse coding, several techniques make
use of the relationships among features to get better sparse representations. Wang et al.
[40]suggested that locality plays more significant role than sparsity in sparse coding and
proposed an approximation solution to obtain the sparse code with only k nearest basis
vectors. Lu et al. [22] proposed a method which preserves the incoherence of dictionary
entries based on the non-local self-similarity and manifold learning. Zheng et al. [53] devel-
oped a graph regularized sparse coding method by considering the local manifold structure
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of the data. The manifold structure has also been combined with random walk model to
find nearest neighbors of encoded feature to boost the representation of encoded code [34].
Comparing with the methods that encode feature separately, these methods can preserve the
similarity relations for different features.

A number of researchers focus on group sparse coding, which encodes similar features
into similar sparse codes by learning a common dictionary over multiple different groups
of data [1, 25, 46]. In group sparse coding, �1/�2 replaces �1 norm in the sparse coding
formulation. Julien et al. [25] acquired the sparse codes with respect to a subset of dictionary
by jointly decomposing groups of similar signals. As a consequence, the similarity between
features can be maintained. Mosci et al. [26] proposed an efficient optimization procedure
for computing the solution of group lasso with overlapping groups of variables.

To obtain the discriminative sparse representation, some researchers focus on finding an
optimal dictionary that leads to the lowest reconstruction loss with a set of sparse coeffi-
cients. In this context, dictionaries are learned for each classes. In [31, 37], each patch of
the test image is approximated with respect to a set of dictionaries in different classes. Then
the image class is predicted by calculating the residual errors in different classes. Julien
et al. [23] proposed an online learning method to deal with large datasets with millions of
training samples. This method can effectively handle the problem of high computation com-
plexity when the training set is large. Liu et al. [20] showed the importance of non-negativity
property and discriminating capability in the sparse representation.

Before the coding stage, several methods are used to guarantee the discriminative prop-
erty of the dictionary and image representation. Some approaches focus on selecting the
useful local features for training. For instance, Turcot et al. [39] proposed a match-based
method to augment the feature representation based on a graph model and which only keeps
the useful features. In [14], a pairwise image matching method was presented to select dis-
criminative foreground features. Liu et al. s [18] proposed an image matching based iterative
strategy to select the discriminative feature. This method is based on Earth Mover’s Dis-
tance (EMD) [29], which finds the optimal correspondences between features and can be
used for computing the similarity between images. On the other hand, some researchers [36,
38, 47] paid more attention to remove the noise visual words. Sivic et al. [36] considered
the frequencies of visual words occurring in images, which are borrowed from the text
retrieval technique. Tirilly et al. [38] proposed a method to eliminate useless visual words
based on the geometric properties of the local features and probabilistic latent semantic
analysis (pLSA).

The literature reviewed above focuses on the different aspects in the process of feature
coding, such as feature selection and dictionary learning. The aim of these methods is to
reduce the information loss of sparse coding and boost the effectiveness of image presen-
tation. Different from above sparse coding methods, we weight the dominant basis vectors
by using the frequency distribution of similar local features. Our method explores the class-
specific subspace for encoding local features, preserving the similarity of the local features
after sparse coding.

2.2 Overview of the proposed approach

In this paper, we propose a discriminative sparse neighbor coding method. We use the fre-
quency distribution of the similar features over the basis vectors in the coding stage, and
retain the similarity between local features. In order to keep the discriminative features in
each class and eliminate the non-informative visual words, we develop two modules to boost
the discrimination of the sparse code.
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In detail, the proposed method comprises the following steps:

1) Discriminative feature selection: An image matching based feature selection method is
employed to select the discriminative class-specific features from each image.

2) Non-informative visual words elimination: A statistical method is utilized to automat-
ically discover the non-informative visual words and eliminate them to strengthen the
discriminative power of the visual words.

3) Neighborhood searching:
Find the similar features (i.e. neighbors) in each class for the each given local feature

through offline strategies.
4) Sparse neighbor coding: The distribution of the feature’s neighbors over the basis vec-

tors is calculated. Such distribution is formulated as weighted coefficients which are
integrated with the dominant basis vectors in each class into the objective function to
obtain the sparse neighbor code.

Following the sparse coding stage, max pooling and SPM are used to compute the image-
level representation. Then one-vs-rest classifier is employed for image classification. The
framework of the proposed method is illustrated in Fig. 1.

3 Discriminative feature and visual word selection

Neighbor information is helpful to encode local features. The class-irrelevant (i.e. the fea-
tures in the cluttered background) features in each class reduce the performance of encoded
code. Therefore, we aim to detect and eliminate these class-irrelevant features in each class
to boost the representation of sparse code. Furthermore, some of the generated visual words
may not be useful to represent visual contents. Hence, these visual words need to be elim-
inated, which also can reduce the size of dictionary and computation cost in the following
sparse coding phase. To achieve these goals, we introduce a method based on image match-
ing to highlight the class-specific features. Furthermore, a statistical model is also adopted
to eliminate the non-informative visual words.

Fig. 1 An overview of the proposed method
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3.1 Discriminative feature selection

The similarity between features is important for sparse representation. Some strategies tend
to integrate the information of neighbors in the objective function to encode each local
feature [9, 53]. But the features, either from irrelevant objects or from background, may
reduce the performance of these strategies. For example, for coding local features supposed
to locate on the surface of an object, the performance of sparse coding will decline if their
neighbors from the cluttered background area are treated as object features in training. As
illustrated in Fig. 2, the searched neighbors may come from the background area. Although
they are similar to the encoded feature in the feature space, they are not visually relevant.
This confusion thereby reduces the performance of feature coding stage. Therefore, if these
features within the specific class can be detected and eliminated, the encoded sparse codes
will be more discriminative.

We adopt the EDM based strategy introduced in [18] in our feature selection model such
that the discriminative features can be shared by images from the same class but not those
from different classes. The EMD measure strategy not only computes the distance between
two images, but also characterizes the feature matching contribution, which can be used to
update the weight attached to each feature.

Suppose F = {(f1, w1), . . . , (f|F |, w|F |)} is the set of local features extracted from
image I , where |F | is the number of local features, fi is the local feature and wi is its corre-
sponding weight. Initially, each wi is set as 1 and it is then updated based on its contribution
to the image matching process. Given two images Ip and Iq , the EMD distance is defined as

EMD(Ip, Iq) = (
∑

i,j

fij dij )/(
∑

i,j

fij )

s.t fij ≥ 0,
∑

j

fij ≤ wi,
∑

i

fij ≤ wj

∑

i,j

fij = min(
∑

i

wi,
∑

j

wj ) (1)

Fig. 2 Features from irrelevant objects
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where {fij } is the flow matrix and each fij denotes the flow between features fi and
fj . {dij } is the threshold distance matrix and each element dij is defined as dij =
min(d(i, j), t), where d(i, j) is calculated by using Euclidean metric between features fi

and fj . The parameter t controls the speed of the EMD computation and we set t = 10 in
our work.

Then the weight of each local feature is updated on the basis of feature matching during
the EMD calculation. The contribution of fi of image Iq is calculated as

cq(i) =
∑

j

fij × δj /dij (2)

The term δj = |Iq |×wj
∑|Iq |

k=1 wk

is a normalizing factor, where |Iq | is the number of local features

in image Iq . The weight of feature fi is updated using all related contributions in a class.
Specifically, the weight of feature fi is reassigned with

wi = 1

M − 1

M−1∑

q=1

cq(i) (3)

where M is the number of images in the class. In this way, the class-specific local features
with strong matches across all images in the same class are selected.

The pairwise matching and feature weight update steps are performed iteratively to high-
light the discriminative features in each class. Initially, the weight of each feature is set to
an equal value, i.e., 1. We then minimized the EMD (1) compute the flow {fij }. Then each
weight is updated according to (2) and (3). The stopping criterion for this iterative updating
procedure is the separability of the training set,the details of which can be found in [18].

The non-discriminative features with trivial weights are eliminated. We thus obtain more
effective similar features which are used for learning the more robust image representations.

3.2 Non-informative visual words elimination

Our motivation for non-informative visual words elimination is from noisy word elimination
in text documents, in which noisy words sometimes occur frequently and influence the text
categorization. The noisy words, e.g. in, of , on, if , the, are also called stop words in text
processing [11, 27]. In compute vision, there also are non-informative visual words that are
not useful in image classification and retrieval.

In sparse coding, traditionally, the basis vector visual words are usually obtained by
clustering algorithms, thus the semantic information of the visual words can not be prede-
fined. In this paper, we utilize the Chi-square model [11] to find the non-informative visual
words based on the relationship between visual words and image classes. A visual word is
considered as non-informative if it satisfies the following two conditions:

• It has high frequency in many images. Because one visual word cannot present any
specific image or object if it exists in many images.

• It has small statistical correlations with all the classes. The non-informative visual word
cannot characterize the relation between visual word and class, which will reduce the
discriminative ability of the final encoded feature representation.

Suppose the dictionary D′ = {v1, v2, . . . , vK ′ } (K ′ ≥ 1) is generated based on the
selected features obtained in the last step and C is the total number of classes. The relation
between visual word vi and class is shown in Table 1.
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Table 1 The contingency table of visual word vi

c1 c2 . . . cm Total

vi n11 n12 . . . n1m n1+
v̄i n21 n22 . . . n2m n2+
Total n+1 n+2 . . . n+m N

In the contingency table, the meanings of the items are described as follows:

• n1j denotes the number of images containing visual word vi in class cj ;
• n2j denotes the number of images which do not contain visual word vi in class cj ;
• n+j denotes the total number of images in class cj ;
• n1+ denotes the total number of images containing visual word vi in training set;
• n2+ denotes the total number of images not containing visual word vi in training set;
• N denotes the number of total training images.

The independence between visual word vi and all classes is computed using following
weighted Chi-square statistics

χ
(i)
weighted

2 = χ(i)2/If vi
(4)

where

χ(i)2 =
K ′∑

j=1

(Nnij − ni+n+j )
2

Nni+n+j

(5)

In (5), χ(i)2 denotes the association between visual word and class. The smaller it is,
the weaker it is correlated with the classes. The term If vi

in (4) denotes the occurrence
frequency of visual word vi in the images, which is a trade-off factor. This factor bal-
ances the relationship between the visual word in each class and frequency of visual word
in the images. Consequently, all visual words are listed in a descending order accord-
ing to the value of weighted Chi-squared statistics. Those visual words with high values
will be chosen if they are above a given threshold determined by cross-validation [28].
In the experiments we obtain the threshold by leave-one-out cross-validation on the
training set for each trial and choose the one which leads to the best classification
accuracy.

4 Sparse neighbor coding

In this section, we describe the sparse neighbor coding method which converts low-level
feature into sparse code. Each class has a potential low-dimensional linear subspace that
can be used to approximately construct sparse codes. Our contribution comes from the con-
sideration of feature frequency distribution information which has been ignored in existing
sparse coding methods [40, 44]. We propose to incorporate the neighbor information in the
optimization to obtain the discriminative sparse code. Moreover, instead of computing a set
of basis vectors for each class and predicting the label based on the residual error, we weigh
each basis vector by calculating its importance to each class.
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4.1 Dominant basis vector learning

In image representation, data samples belonging to the same class tend to lie in the same
low-dimensional subspace. This means that a new sample can be reconstructed with lower
computation load by using only a few basis vectors (atoms) in its corresponding class.

In the light of this observation, we commence by finding the dominant basis vectors,
which have high relevance to each corresponding class. These basis vectors can be used to
construct a more discriminate sparse code for each local feature. To this end, we start from
finding the basis vectors with less reconstruction errors for each class.

Suppose D ∈ Rd×K is the dictionary which non-informative visual words have been
eliminated. Each column in D represents a basis vector. To encode each feature xi which
represents a image, we use the sparse coding with �1 norm. Sparse coding ameliorates
the quantization loss of hard vector quantization (VQ). In VQ method, only the closest
basic vector is active. However, sparse coding relaxes this constraint by using a sparsity
regularization term, which can be formulated as follows

argmin
zi

‖xi − Dzi‖22 + λ‖zi‖1 (6)

where zi is the sparse code for the feature xi and λ is the constraint that makes the trade-
off between reconstruction error and sparsity of coefficients. This convex problem can be
solved efficiently by Sparse Modeling Library (SPAMS) [24].

Because of the sparsity of coefficient zi , only a few basis vectors are active to represent
feature xi . Let Z = [z1, z2, . . . , zn] be the sparse code for the images in class c, we define
the significance of each basis vector vj by computing the sum of response among these
samples:

s
(c)
j =

∑n
i=1 |zij |∑K

k=1
∑n

i=1 |zik|
(7)

Each s
(c)
j indicates its significance to the class c. n is the number of image in class c and

K is the class number. zij is the j th dimensional coefficient for ith sparse code for class c.
The activated visual words in sparse representation are mainly in the same sub-space with
low-level feature vectors in the same class. Hence, we force the nonzero coefficients to lie
in subset of dictionary D, and ignore the other basis vectors with less significance. To this
end, we set the weight of each basis vector for class c as

s
(c)
j =

{
s
(c)
j , s

(c)
j ≤ T (c)

0, s
(c)
j > T (c)

(8)

where T (c) = β × ∑
j s

(c)
j /K is a threshold. β is empirically set to 0.3, which ensures

that the most significant coefficients are kept. These basis vectors with non-zero weights
form the class-specific dictionary for each class, which are denoted as D(c). Then s(c) is
normalized into the range [0, 1]. The more dominant a basis vector is, the larger its corre-
spondence significance value s(c) is. We introduce how to utilize the dominant visual words
to effectively encode each local feature in Section 4.3.
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4.2 Neighbor searching

One problem in sparse coding based methods is that local features similar in the feature
space may be quantized into different visual words. In order to preserve their similarity, we
capture the correlations between similar features and exploit the distribution of these similar
features over the visual words to help encode each feature.

In this section, we introduce a graph-based method to find the similar features while
simultaneously keeping the accuracy and efficiency. Then we describe how to use the
similar features to obtain the sparse code in the next section.

To find similar features, we utilize the minimum dominating set (MDS) [12], which is
a graph model. Consider an undirected graph G(V,E) where V denotes the set of vertices
and E ⊆ V × V denotes the set of edges. In the graph, the vertices represent local features
and the edges describe how similar two adjacent features are. The dissimilarity between two
local features x and y is measured in terms of the Euclidean distance dE(x, y) = ‖x − y‖2.
During the graph construction, edges whose weights are greater than a chosen threshold are
discarded.

For a graph G(V,E), one vertex α ∈ V is thought of being covered by a set of vertices
if either of the two conditions are satisfied: (i) α is in the set, or (ii) α is adjacent (i.e. a
neighbour) to a vertex in the set. For G(V,E), one vertex subset S ⊆ V is a dominating set
if S covers all the vertices in V . For a vertex α ∈ V in G, α and its adjacent vertices form
a subgraph. Each subgraph contains a vertex in S and has high similarity between adjacent
vertices since we have discarded some dissimilar edges in the process of graph construction.
This graph will be used to find the similar features (neighbors). To make the searching stage
more efficient, the size of S should be as small as possible. Therefore, we use the minimum
dominating set, which has minimum size of S.

Given a feature xi , it is compared with the vertices in set S. The top vertex which shows
high similarity with xi is selected as the neighbor of xi . Then the features corresponding to
the selected vertices are selected.

Minimum dominating set model is effective since the vertices within a specific subgraph
have great similarity. To compute the minimum dominating set, we exploit a simple greedy
algorithm to obtain an approximate solution [10] For each class, constructing the graph
model requires O(n2m) operations, where n is the number of local features and m is the
dimension of each feature. In addition, the time complexity of the approximate algorithm
for obtaining minimum dominating set is O(e), where e is the number of edges in G and

Fig. 3 Left: Traditional Sparse Coding method; Right: Our method. The sparse coding selects different
basis vectors to encode the similar features. Our method encodes each feature together with its neighbor
distribution on the basis vectors, which enables feature similarities to be preserved in sparse representation
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e < n2m. This searching operation requires O(mlogp) , where p is the size of S. To balance
the time complexity and the performance of our method, we select 1000 features to construct
the minimum dominating set, which are obtained through clustering.

In the rest of this paper, we refer to the set containing neighbors as neighbor set.

4.3 Formulation

In Section 4.1, we obtain the low dimensional subspace for each class c, which is repre-
sented as a subset of the dictionary D(c) and it contains K(c) visual words. Furthermore,
each visual word has a weight w

(c)
j to denote its significance. Computing the sparse code

of the local feature in class c based on the dictionary D(c) will lead to a class-specific
sparse code. However, the similarity of the local features may be lost since the sparse coding
approach may select diverse basis vectors for similar features, which reduces the perfor-
mance of the sparse code. To preserve the similarity during sparse coding phase, we use the
neighbor set (see Section 4.2) in each class to help encode the feature.

Given a feature xi , suppose its corresponding neighbor set for class c is NS
(c)
i . We com-

pute the frequency distribution of neighbor set NS
(c)
i over the dictionary D(c) based on

Euclidean distance. Each neighbor is mapped to its closest visual words in D(c). Then the
frequency distribution on the D(c) is calculated as

ε
(c)
ip =

∑

j

f (vp, xj ) (9)

Fig. 4 Example images for the Scene 15 dataset
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with

f (vp, xj ) =
{
1, if xj is closest to vp

0, otherwise
(10)

where vp is the visual word in theD(c) and xj is the feature in the neighbor setNS
(c)
i . Based

on this formulation, the relation between local features can be described. If the neighbors
of feature xi locate mostly in a few specific visual word, the given feature xi will have high
response to these visual words (see Fig. 3).

Then coding with class sub-space and distribution information on basis vectors trans-
forms the normal sparse coding formulation into

argminzi
‖xi − D(c)zi‖2 + γ ‖zi‖1 + β‖q(c)

i zi‖2
s.t. 1�zi = 1

(11)

The �1 norm regularization results in the sparsity of the representation. The coefficient
q

(c)
i = 1/(ε(c)

i × s(c)) integrates the dominant basis vectors with the distribution infor-

mation, where both ε
(c)
i and s(c) are normalized vectors. Equation 11 controls the coding

coefficient vector zi to achieve the minimization of quantization loss and meets the fol-
lowing properties: (i) the value of the coefficient zij is larger if there are a large portion
of neighbors locating on the j -th basis vector, thus preserving the similar response on the
basis vectors for similar features; (ii) similar features are encoded based on similar basis
vectors, therefore the neighboring local feature distribution enables similar responses over
basis vectors for similar features. In this way, if two features are close in the feature space,
they are likely to relate to the similar visual words and thus resulting in the similar sparse
codes.

Recent studies [9, 40] suggest that construction locality produces better performance
on the feature coding. Thus we can also use the k most similar basis vectors to encode
each feature. The locality guarantees the sparsity, and the �1 term in (11) can thus being
ignored. Only k basis vectors are used to construct the feature, which also improves
the computation efficiency. To compute the optimal solution to (11), we initialize the

Table 2 Performance comparison on scene 15 dataset (%)

Method Classification Accuracy

KSPM [16] 81.40 ± 0.50

ScSPM [45] 80.28 ± 0.93

HIK+OCSVM [43] 84.00 ± 0.46

LScSPM [9] 89.75 ± 0.50

LLC [40] 81.53 ± 0.65

LR-Sc+SPM [50] 90.03 ± 0.70

Ours 89.83 ± 0.74
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variables in terms of zi = D−1xi , and then iteratively update zi based on coordinate
descent.

The process of the proposed sparse neighbor coding method is summarized in
Algorithm 1:
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Fig. 5 Confusion matrix on Scene 15 Classification (%). Each entry in the diagonal is the average classifi-
cation rate for an individual class. The entry in the ith row and j th column is the percentage of images from
class i which were misidentified as class j
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Fig. 6 Example images in the UIUC-Sports dataset

4.4 Inference

Given a new test image, we need to calculate its sparse representation for each class c (c =
1, . . . , C). Suppose one image region has m local features, maximum pooling is employed
to aggregate these features in the same region. Each local feature will be presented as a
vector with dictionary size K and the u

(c)
j entry is the maximum response to the j -th basis

vector

u
(c)
j = max{|x1j |, |x2j |, . . . , |xmj |} (12)

To preserve the spatial information, Spatial Pyramid Matching [16] is also employed
in our method. Both spatial layout and more basic pattern responses are retained by
dividing the whole image into multiple fine regions. Then we apply one-vs-rest SVM clas-
sifier to compute the probability P(C|u) that the test image belonging to each class. The
classification label is assigned whereby finding the highest probability value

c∗ = argmax
c∈C

P (C = c|u(c)) (13)

Table 3 Performance comparison on UIUC 8-sport dataset (%)

Method Classification accuracy

KSPM [16] 80.34 ± 1.21

ScSPM [45] 82.74 ± 1.46

HIK+OCSVM [43] 83.54 ± 1.13

LScSPM [9] 85.31 ± 0.51

LLC [40] 81.77 ± 1.51

LR-Sc+SPM [50] 86.69 ± 1.66

Ours 87.13 ± 1.29
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5 Experiments

In this section, we report experimental results on four widely used datasets: Scene 15 [8],
UIUC 8-Sport [17], Caltech-101 [7], PASCAL VOC 2007 [6]. There are several alternative
state-of-the-arts methods for comparison in the literature. ScSPM [45] is a sparse coding
method that incorporates spatial pyramid matching. KSPM [16] performs spatial pyramid
matching and SVM classification using histogram intersection kernel. HIK+OCSVM [43]
uses histogram intersection kernel and one class SVM to quantize local feature. LScSPM [9]
is a Laplacian sparse coding approach based on spatial pyramid matching. LR-Sc+SPM [50]
performs non-negative sparse coding along with max pooling and spatial pyramid match-
ing. NBNN [19] is a nearest-neighbor approach in local image feature space. LLC is the
locality-constrained linear coding method. LR-LGSC [51] is a method that investigates
group generation for group sparse coding with Laplacian constraints. Zhang et al. [49] pro-
posed an image representation based on structured low-rank. We compare our method with
the above state-of-the-arts methods.

5.1 Parameters setting

Local feature descriptor is essential to image representation. In our work, we adopt the
widely used 128 dimensional SIFT feature [21]. Dense SIFT features are extracted with
step size set to 8 and size of patches set to 16 × 16. The whole images are processed in
gray scale. The extracted features are then normalized with �2-norm. For Scene-15, UIUC
8-Sport and Caltech-101 datasets, we construct the SPM model in three levels, i.e., 1 × 1,
2 × 2 and 4 × 4, as described in [16]. For the PASCAL VOC 2007 dataset, we obtain the
spatial regions by dividing the image in 1 × 1, 3 × 1 and 2 × 2 grids, which follows [4].
In the SPM construction, each layer is assigned the same weight. To train the codebook, we
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Table 4 Performance Comparison on the Caltech-101 dataset (%)

Method Classification accuracy Classification accuracy

with 15 training samples with 30 training samples

KSPM [43] 56.40 64.40 ± 0.80

NBNN [2] 65.00 ± 1.14 70.40

ScSPM [45] 67.00 ± 0.45 73.20 ± 0.54

LLC [40] 65.43 73.44

LR-Sc+SPM [50] 69.58 ± 0.97 75.68 ± 0.89

Zhang et al. [49] 66.1 73.6

LR-LGSC [51] 68.15 ± 0.42 76.52 ± 0.47

Ours 70.04 ± 0.42 76.96 ± 0.87

utilize the standard k-means clustering method. The codebook size is fixed to 1024. In the
classification step, we use one-vs-rest linear SVM [3] provided by Yang et al. [45] due to
its advantages in speed and good performance in max pooling based image classification.
Following the common benchmarks procedures, we repeat the experiments with randomly
selected training and testing samples, and record the average accuracy and the standard
deviation.

In addition, there are several parameters to be set in our method. The sparsity of sparse
codes λ is fixed at 0.3. The regularization parameter C in linear SVM is set to 10.

5.2 Scene 15 Dataset

We evaluate our method for scene classification on the Scene 151 dataset which contains
4485 images from 15 categories, with category size varying from 200 to 400. The image
contents are diversified, containing not only indoor scenes, such as bedrooms and kitchens,
but also outdoor scenes, such as buildings and villages. The average image size is 300 ×
250 (pixels). In the experiment, we resized the maximum side (length/width) of each image
to 300 pixels with aspect ratio remaining unchanged. Fig. 4 shows some sample images in
this dataset. To compare with alternative methods in the literature, 100 images are randomly
selected from each class as the training data and the rest are used as the testing data. The
experimental results are listed in Table 2 with the comparison against several alternative
approaches. The confusion matrix for the results for the Scene 15 dataset is shown in Fig. 5.

Table 2 shows that the average accuracy of our method is 89.83 %, which outperforms
five alternative methods and is close to LR-Sc+SPM method. However, it should be noticed
that LLC and LScSPM use neighborhood data to help the construction of the sparse codes.
The results validate the observation that by exploiting the relationship between sparse
code and class specific information, the obtained sparse code is more powerful for image
representation.

From Fig. 5, we observe that the proposed method works well on several scene cat-
egories, including suburb, coast, forest, highway, tallbuilding and office. However, the
accuracies are relatively low for industrial, kitchen, livingroom, and store classes. The rea-
son for the low accuracy is that the patches in these classes are visually similar with other
classes. So it’s hard to extract class specific information for further analysis.

1http://www-cvr.ai.uiuc.edu/ponce grp/data/scene categories/scene categories.zip

http://www-cvr.ai.uiuc.edu/ponce_grp/data/scene_categories/scene_categories.zip


Multimed Tools Appl (2016) 75:4013–4037 4029

Table 5 Comparison of image classification performance in terms of test accuracy on the PASCAL VOC
2007 dataset

Method aero bicycle bird boat bottle bus car cat chair cow dining

LLC 74.8 65.2 50.7 70.9 28.7 68.8 78.5 61.7 54.3 48.6 51.8

Best′07 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6 54.9

FK 79.0 67.4 51.9 70.9 30.8 72.2 79.9 61.4 56.0 49.6 58.4

SV 74.3 63.8 47.0 69.4 29.1 66.5 77.3 60.2 50.2 46.5 51.9

Ours 75.4 68.6 54.2 71.6 30.2 69.4 80.3 60.8 55.7 50.1 56.4

Method dog horse motbike person plant sheep sofa train tv mAP

LLC 44.1 76.6 66.9 83.5 30.8 44.6 53.4 78.2 53.5 59.3

Best’07 45.8 77.5 64.0 85.9 36.3 44.7 50.9 79.2 53.2 59.4

FK 44.8 78.8 70.8 85.0 31.7 51.0 56.4 80.2 57.5 61.7

SV 44.1 77.9 67.1 83.1 27.6 48.5 51.1 75.5 52.3 58.2

Ours 44.5 78.3 69.6 86.2 33.4 47.3 54.6 78.8 57.7 61.2

LLC – locally-constrained linear coding [40]; FK – Fisher kernel [30]; SV – super vector coding [54]

5.3 UIUC Sport Dataset

UIUC 8-Sport2 data set was introduced in [17] for image-based event classification. These
8 categories are badminton, bocce, croquet, polo, rock climbing, rowing, sailing and snow
boarding. There are 1579 images in total, and the size of each category ranges from 137
to 250. In this data set, the maximum size is set to 400 because its images have higher
resolutions. Fig. 6 shows some sample images of this dataset. In the experiment, we ran-
domly select 70 images from each class as the training data and the rest as the testing
data.

Table 3 gives the performance comparison of the proposed method and several other
methods on the UIUC Sport dataset. The proposed sparse neighbor coding method has
achieved 87.13 %, with 0.44 % superiority to LR-Sc+SPM. The confusion matrix for the
results on this dataset is shown in Fig. 7.

5.4 Caltech 101 Data Set

The Caltech-1013 dataset contains 102 classes with high intra-class appearance shape vari-
ability. The number of images per category varies from 31 to 800 images and most of these
images are in medium resolution. In the experiment, the images are resized to be less than
300 × 300 with aspect ratio kept. All 102 classes are used in this experiment. Figure 8
shows some sample images in this dataset. Following the standard experimental setting, we
used 15 and 30 images per class for training while leaving the remaining for test.

Table 4 provides the performance comparison of the proposed method with several
alternative methods [2, 40, 43, 45, 49, 50] on the Caltech-101 dataset. Our method has out-
performed the listed algorithms, achieving 70.04 ± 0.42 when the training size is 15 per
class and 76.96 ± 0.87 when the training size is 30 per class. These results have validated
the effectiveness of our method.

2http://vision.stanford.edu/lijiali/event dataset/
3http://www.vision.caltech.edu/Image Datasets/Caltech101/

http://vision.stanford.edu/lijiali/event_dataset/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/


4030 Multimed Tools Appl (2016) 75:4013–4037

Table 6 Time compleixty on four datasets in feature coding phase (min)

Dataset LLC [40] LScSPM [9] ScSPM [45] LR-Sc+SPM [50] Ours

UIUC 8 4 17 15 28 16

Scene 15 7 39 37 46 35

Caltech 101 31 158 156 195 172

VOC 07 37 185 187 262 156

5.5 PASCAL VOC 2007 Data Set

This data set consists of 10,000 images from 20 classes, with objects in a variety of scales,
locations and viewpoints. Figure 9 shows some sample images in this dataset. In the exper-
iments, 5011 images are used for training and 4952 images for testing by random splitting.
The performance measure is the mean average precision (mAP), which is a standard metric
used by the PASCAL challenge. It computes the area under the Precision/Recall curve. The
higher scores reflect better the performance.

In Table 5, we list the mAP scores for all 20 categories from different methods. It can
be seen that our method has achieved the performance superior to alternative methods on
5 classes: bicyle (68.6 %), car (80.3 %), cow (50.1 %), person (86.2 %) and tv (57.7 %).
The Fisher kernel has obtained the best mAP among the methods with dictionary size 256.
This is because it encodes additional information on the distribution of the descriptors. Our
method has only 0.5 percent inferiorly than the Fisher kernel method and shows significant
improvement than other methods. This result demonstrates the effectiveness of the proposed
method .

5.6 Time analysis of feature coding

From the Table 6, we can see the numeric time complexity of feature coding on four datasets
during testing phase. The number of testing images in the four datasets are 480, 1500, 3030
and 4953, separately. LLC method has the least time in coding the testing images. As the
normal setting, we set the number of neighbors k to 5. The time cost of LLC method mostly

Fig. 8 Example images in the Caltech-101 dataset
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Fig. 9 Example images in the PASCAL VOC 2007 data set

depends on the kNN searching. In ScSPM, we choose 200 neighbors for each feature to
get the sparse code. It costs more time than LLC, but obtains better classification in some
datasets. The overall coding time of ScSPM and LScSPM are quite the same. Besides, the
time cost of our method is greater than that of LLC method and nearly the same with those
of LScSPM and ScSPM.

5.7 Influence of codebook size

In our experiment, we test the classification accuracy on three datasets according to dif-
ferent codebook sizes, which may considerably influence classification results [13]. The
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Table 7 Classification performance by combining different component

Method Scene 15 UIUC 8 Caltech 101 VOC 2007

SNC 84.56 ± 0.83 84.76 ± 0.56 74.86 ± 0.71 59.8

SNC+FS 86.83 ± 0.78 86.28 ± 0.79 75.19 ± 0.63 60.4

SNC+VWS 85.75 ± 0.53 85.37 ± 1.06 75.02 ± 0.71 60.8

SNC+FS+VWS 89.83 ± 0.74 87.13 ± 1.29 76.96 ± 0.87 61.2

VOC 2007 dataset is evaluated by mAP and others are evaluated by classification accuracy. SNC – sparse
neighbor coding; FS – feature selection; VWS – visual word selection

performance is illustrated in Fig. 10, from which we can see the overall tendency is that
the performance increases with the growth of codebook size. Moreover, the curves grow
faster when the codebook size is smaller. This is because small codebooks cannot present
the various patches of the images in the dataset.

5.8 Influence of individual components

In this subsection, the importance of each component is tested and the results are shown in
Table 7. Here we can see that the proposed sparse neighbor coding performs better than LLC
method by 3.03 %, 2.99 %, 1.42 % and 0.5 % improvements separately. Besides, by using
the discriminative feature selection and visual word selection strategies, the performance
are boosted comparing with that of the basic sparse neighbor coding method. Therefore, it
is evident that these two modules are effective and lead to better sparse code. And the best
results are obtained by combining these three modules.

6 Conclusion and future work

The neighbor information in the feature space is of great importance for image represen-
tation. To explore the neighbor information, we have presented a sparse neighbor coding
method. We have developed two modules, which are used to keep the discriminative feature
in each class and eliminate the non-informative visual words, to boost the discrimination of
the resulted sparse code. Based on the observation that feature vectors from a certain class
should be better represented by basis vectors in the sub-space of that class, we have selected
the dominant basis vectors for each class. We have also demonstrated that by combining the
frequency distribution of the similar features over the basis vectors, the relationship between
local features can be retained during sparse coding. The experiments on four databases have
validated the effectiveness of our method.

In the future work, we will explore more relational information between the features to
be encoded. Furthermore, we will investigate the manifold structural information, which has
proved to be an effective approach to characterizing the structure of descriptors.

Acknowledgments This work was supported by NSFC projects (No. 61370123 and 61503422), Shan-
dong Outstanding Young Scientist Fund (No.BS2013DX006), Qingdao Fundamental Research Project



Multimed Tools Appl (2016) 75:4013–4037 4033

(No. 13-1-4-256-jch), and the Australian Research Councils DECRA Projects funding scheme (project ID
DE120102948).

References

1. Bengio S, Pereira F, Singer Y, Strelow D (2009) Group sparse coding. In: Advances in neural
information processing systems, pps 82–89

2. Boiman O, Shechtman E, Irani M (2008) In defense of nearest-neighbor based image classification
3. Chang C-C, Lin C-J (2011) LIBSVM: A library for support vector machines. ACM Trans Int Syst

Technol 2 27(27):1–27. software available at http://www.csie.ntu.edu.tw/cjlin/libsvm
4. Chatfield K, Lempitsky V, Vedaldi A, Zisserman A (2011) The devil is in the details: an evaluation of

recent feature encoding methods, 1–12
5. Chiang C-K, Duan C-H, Lai S-H, Chang S-F (2011) Learning component-level sparse representation

using histogram information for image classification. In: International conference on computer vision.
IEEE, 1519–1526

6. Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes
(voc) challenge. Int J Comput Vis 88(2):303–338

7. Fei-Fei L, Fergus R, Perona P (2004) Learning generative visual models from few training examples: An
incremental bayesian approach tested on 101 object categories, 59–70

8. Fei-Fei L, Perona P (2005) A bayesian hierarchical model for learning natural scene categories. In:
Computer Vision and Pattern Recognition, IEEE, 524–531

9. Gao S, Tsang IW, Chia L-T, Zhao P (2010) Local features are not lonely–laplacian sparse coding for
image classification. In: Computer vision and pattern recognition. IEEE, 3555–3561

10. Guha S, Khuller S (1998) Approximation algorithms for connected dominating sets. Algorithmica 374–
387

11. Hao L, Hao L (2008) Automatic identification of stop words in chinese text classification. In:
International Conference on Computer Science and Software Engineering, vol. 1, 718–722

12. Haynes T, Hedetniemi S, Slater P (1998) Fundamentals of Domination in Graphs, Chapman &Hall/CRC
Pure and Applied Mathematics, Taylor & Francis. http://books.google.com/books?id=Bp9fot HyL8C

13. Huang Y, Wu Z, Wang L, Tan T (2014) Feature coding in image classification: a comprehensive study.
IEEE Trans Pattern Anal Mach Intell 36(3):493

14. Kim G, Faloutsos C, Hebert M (2008) Unsupervised modeling of object categories using link analysis
techniques. In: Computer Vision and Pattern Recognition, 1–8

15. Lazebnik S, Raginsky M (2009) Supervised learning of quantizer codebooks by information loss
minimization. IEEE Trans Pattern Anal Mach Intell 31(7):1294–1309

16. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for
recognizing natural scene categories. In: Computer vision and pattern recognition. IEEE, 2169–
2178

17. Li L-J, Fei-Fei L (2007) What, where and who? Classifying events by scene and object recognition. In:
International Conference on Computer Vision, IEEE, 1–8

18. Liu S, Bai X (2012) Discriminative features for image classification and retrieval. Pattern Recogn Lett
33(6):744–751

19. Liu L, Wang L, Liu X (2011) In defense of soft-assignment coding. In: International Conference on
Computer Vision, IEEE, 2486–2493

20. Liu Y, Wu F, Zhang Z, Zhuang Y, Yan S (2010) Sparse representation using nonnegative curds and
whey. In: Computer Vision and Pattern Recognition, IEEE, 3578–3585

21. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–
110

22. Lu X, Yuan H, Yan P, Yuan Y, Li X (2012) Geometry constrained sparse coding for single image super-
resolution. In: Computer vision and pattern recognition, 1648–1655

23. Mairal J, Bach F, Ponce J, Sapiro G (2009) Online dictionary learning for sparse coding. In: International
Conference on Machine Learning, ACM, 689–696

24. Mairal J, Bach F, Ponce J, Sapiro G (2010) Online learning for matrix factorization and sparse coding. J
Mach Learn Res 11:19–60

http://www.csie.ntu.edu.tw/ cjlin/libsvm
http://books.google.com/books?id=Bp9fot_HyL8C


4034 Multimed Tools Appl (2016) 75:4013–4037

25. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2009) Non-local sparse models for image restoration.
In: International conference on computer vision. IEEE, 2272–2279

26. Mosci S, Villa S, Verri A, Rosasco L (2010) A primal-dual algorithm for group sparse regularization
with overlapping groups. In: Neural Information Processing Systems, 2604–2612

27. Nakagawa HAKH (2005) Maeda, Chinese term extraction from web pages based on compound word
productivity. In: IJCNLP, 269–279

28. Nigam K, McCallum AK, Thrun S, Mitchell T (2000) Text classification from labeled and unlabeled
documents using em. Mach Learn 39(2-3):103–134

29. Pele O, Werman M (2009) Fast and robust earth mover’s distances. In: International Conference on
Computer Vision, 460–467

30. Perronnin F, Sánchez J, Mensink T (2010) Improving the fisher kernel for large-scale image classifica-
tion. In: European conference on Computer Vision, Springer, 143–156
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