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Abstract In recent past, many moving object segmentation methods under varying
lighting changes have been proposed in literature and each of them has their own
benefits and limitations. The various methods available in literature for moving object
segmentation may be broadly classified into four categories i.e., moving object
segmentation methods based on (i) motion information (ii) motion and spatial infor-
mation (iii) learning (iv) and change detection. The objective of this paper is two-fold
i.e., firstly, this paper presents a comprehensive comparative study of various classical
as well as state-of-the art methods for moving object segmentation under varying
illumination conditions under each of the above mentioned four categories and
secondly this paper presents an improved approximation filter based method in
complex wavelet domain and its comparison with other methods under four categories
mentioned as above. The proposed approach consist of seven steps applied on given
video frames which include: wavelet decomposition of frames using Daubechies
complex wavelet transform; use of improved approximate median filter on detail co-
efficient (LH, HL, HH); use of background modeling on approximate co-efficient (LL
sub-band); soft thresholding for noise removal; strong edge detection; inverse wavelet
transformation for reconstruction; and finally using closing morphology operator. The
qualitative and quantitative comparative study of the various methods under four
categories as well as the proposed method is presented for six different datasets.
The merits, demerits, and efficacy of each of the methods under consideration have
been examined. The extensive experimental comparative analysis on six different
challenging benchmark data sets demonstrate that proposed method is performing
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better to other state-of-the-art moving object segmentation methods and is well
capable of dealing with various limitations of existing methods.

Keywords Moving object segmentation - Comparative study - Performance analysis - Wavelet
domain

1 Introduction

Moving object detection is a crucial part of automatic video surveillance systems and it is
useful in robotics, object detection and recognition, indoor/outdoor object classification
and many other applications [21, 35]. To design the moving object segmentation algo-
rithm for intelligent video surveillance systems, several major challenges have to be
concerned. Toyama et al. [57] have identified the following challenges in moving object
segmentation such as (i) lighting changes, shadows and reflections (ii) dynamic back-
grounds such as waterfalls or waving trees (iii) Motionless foreground (iv) small move-
ments of non-static objects such as tree branches and bushes blowing in the wind (v)
noise image, due to a poor quality image source (vi) movements of objects in the
background that leave parts of it different from the background model (ghost regions in
the image) (vii) multiple objects moving in the scene both for long and short periods
(viii) shadow regions that are projected by foreground objects and are detected as moving
objects. Out of all these issues, changing illumination conditions remain a major problem
for moving object segmentation in real-life problems. To take into account these prob-
lems, many approaches for automatically adapting background model to dynamic scene
variations are proposed [11, 15] and these approaches can be classified into two catego-
ries [9] such as non-recursive and recursive. A non-recursive approach uses a sliding-
window for background estimation. It stores a buffer of the previous L video frames, and
estimates the background image based on the temporal variation of each pixel within the
buffer. This causes non-recursive approach to have higher memory requirements than
recursive techniques. Recursive approach maintains a single background model that is
updated with each new video frame. These approaches are generally computationally
efficient and have minimal memory requirements.

The major contributions of this paper include: (1) comparative study of various
standard moving object segmentation methods which is classified into four categories
i.e., moving object segmentation methods based on (i) motion information (ii) motion
and spatial information (iii) learning (iv) and change detection (2) proposed an
improved approximation filter based approach for moving object segmentation in
complex wavelet domain (3) and presented the comparative study of the proposed
method with other state-of -the-art algorithms on a set of challenging video sequences
(4) analysis of the sensitivity of the most influencing parameters (http://imagelab.ing.
unimore.it/visor/video details.asp?idvideo=113, http://homepages.inf.ed.ac.uk/rbt/
CAVIARDATAL/, http://crev.uct.edu/data/crowd.php) [64], and a discussion of their
effects. (5) and analysis of the computational complexity and memory consumption of
the proposed algorithm.

Rest of the paper is organized as follows: Section 2 presents the Review of moving
object segmentation methods. Section 3 presents the proposed method. Experimental
results are given in Section 4. Finally, conclusion of the work is given in Section 5.
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2 Review of moving object segmentation methods

Different kinds of methods exist to solve the problem of moving object segmentation. Good
but incomplete reviews on moving object segmentation methods can be found in [45, 48]. As
per available literatures moving object segmentation techniques can be broadly classified into
four categories [16, 43, 53] namely (i) segmentation of moving object based on motion-
information [4, 6, 8, 26, 30, 37, 40, 44, 60], (ii) segmentation of moving object based on
motion and spatial information [5, 24, 41, 42, 49, 50, 56, 58, 59, 61], (iii) segmentation of
moving object based on learning [12, 13, 17, 27, 34, 38, 39, 46, 55], and (iv) segmentation of
moving object based on change detection [2, 3, 7, 10, 20, 22, 23, 25, 28, 31-33, 36, 51]. A
review of some of the classical and state-of-the-art methods under each of the categories is
presented in following subsections.

2.1 Moving object segmentation methods based on motion-information

The first category of moving object segmentation methods are based on motion-information
which depends on motion estimation of moving objects. Some of the prominent methods
available in literature are the works due to Bradski [4], Kim et al. [30], Liu et al. [37], Xiaoyan
et al. [60], Mahmoodi [40] and Meier and Ngan [44]. Bradski [4] proposed a motion
segmentation method using time motion history image (TMHI) for representing motion which
is used to segment and measure the motions induced by the object in a video scene. The
limitation of the method is that it can only extract the moving objects but not the static one. A
more refined application of this algorithm was proposed by Kim et al. [30] which were based
on codebook approach where a codebook is formed to represent significant states in the
background using quantization and clustering [30]. It solves some of the above mentioned
problems existing in [30], such as sudden changes in illumination, but does not consider the
problems of ghost regions or shadow detection. To deal with the issues mentioned in [30], Liu
et al. [37] have proposed a moving object segmentation method which is based on cumulated
difference, object motion and adaptive thresholding. Xiaoyan et al. [60] have proposed a video
object segmentation technique on the basis of adaptive change. This method is not able to
remove noise from the video frames. Mahmoodi [40] has proposed a shape based active
contour method for video segmentation which is based on a piecewise constant approximation
of the Mumford shah functional model. This method is slow as it is based on level set
framework. Due to lack of spatial information of objects, these algorithms suffer from
unwarranted ghost objects, shadows, changing background, clutter, occlusion, and varying
lighting conditions. Meier and Ngan [44] have proposed a moving object segmentation which
is based on Hausdorff distance. In this method, a background model is created which
automatically adapts slowly and rapidly changing parts and matched against subsequent
frames using the Hausdorff distance. The limitation of this method is that the boundaries of
the extracted objects are not always accurate. In addition to above mentioned methods, in
literature some other approaches [6, 8, 26] in the same domain have been proposed but they
also suffer from most of the same problems mentioned as above.

Therefore the important features of the methods under the category Moving object seg-
mentation methods based on motion-information can be summarized as follows:

*  The motion information based moving object segmentation methods [4, 6, 8, 26, 30, 37,
40, 44, 60] are fast and usually easy to implement.
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*  Motion information based moving object segmentation methods handle well the back-
ground changes but are not robust to sudden illumination changes.

*  Furthermore, they are likely to fail if the contrast between the moving objects and the
background is low.

2.2 Moving object segmentation methods based on motion and spatial information

The second category of moving object segmentation methods are based on both motion and
spatial information. The segmentation of moving objects based on motion and spatial infor-
mation provide more stable object boundary extraction. Some of the prominent works under
this domain are the works due to Mei et al. [42], Mcfarlane and Schofield [41], Remagnino
et al. [49], Wren et al. [59], Zivkovic [61], Reza et al. [50], and Ivanov et al. [24]. In paper [42],
Mei et al. proposed an automatic segmentation method for moving objects based on the
spatial-temporal information of video. In this method, the author utilizes the spatial-temporal
information. Spatial segmentation is applied to divide each image into connected areas to find
precise object boundaries of moving objects. The limitation of this method is that the
boundaries of the extracted objects are not always accurate enough to locate them in different
scenes. Mcfarlane and Schofield [41] have proposed an approximation median filter method
for segmentation of multiple video objects. This technique has also been used in background
modeling for urban traffic monitoring [49]. The major disadvantage of this method is that it
needs many frames to learn the new background region revealed by an object that moves away
after being stationary for a long time [9] but this method is computationally efficient. Wren
et al. [59] have proposed Running Gaussian Average model for moving object segmentation.
This model is based on Gaussian probability density function (pdf) where a running average
and standard deviation are maintained for each color channel. The drawback of this method
lies in its complex nature which makes its processing slow because of the computational
overhead involved in updating the mixture models. To deal with the issues mentioned in [59],
Zivkovic [61] have proposed a moving object segmentation technique which is combination of
temporal and spatial features. This approach automatically adapts the number of Gaussians
being used to model for a given pixel. Reza et al. [50] have proposed a moving object
segmentation technique, combining temporal and spatial features. This approach takes into
account a current frame, ten preceding frames and ten next consecutive frames to segment the
moving object. The method detects moving objects independent of their size and speed but
there is no provision for reduction of blur and noise from frames, which may lead to
inaccurate object segmentation. Ivanov et al. [24] have proposed an improvement over
background subtraction method, which is faster than that proposed by [50] and is
invariant to runtime change illuminations. In addition to above mentioned methods there
are many other works reported in literature [5, 56, 58] under this second category but
most of them suffers from the similar types of limitations associated with above men-
tioned methods.

Therefore the important features of the methods under the category Moving object seg-
mentation methods based on motion- and spatial information can be summarized as follows:

* The motion and spatial information based moving object segmentation methods [5, 24, 41,

42,49, 50, 56, 58, 59, 61] needs many frames to learn the new background region revealed
by an object that moves away after being stationary for a long time [9]
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* motion and spatial information based moving object segmentation methods is adaptive to
only the small and gradual changes in the background and in case of sudden changes it
distorts

* Computational complexity of spatial information based moving object segmentation
methods is also very low.

2.3 Moving object segmentation methods based on learning

The Third category of moving object segmentation methods are based on learning which
depends on some predefined learning patterns. Some of the prominent methods available in
literature are the works due to Oliver et al. [46], Cucchiara et al. [12], Kushwaha et al. [34],
Kato et al. [27], Ellis et al. [17], and Stauffer et al. [55]. Oliver et al. [46] proposed a moving
object segmentation method which is based on spatial correlations. In this method, author
constructs the background using principal component analysis. But it’s suffered the problem of
noise and blur. To deal the issue mention in [46], Cucchiara et al. [12] have proposed a moving
object segmentation technique which is based on medoid filtering that can lead to color
background estimation. The medoid filtering is capable of saving boundaries and existing
edges in the frame without any blurring. But the computational complexity to construct the
background is high. A more refined application of this algorithm proposed by Kushwaha et al.
[34] which is based on construction of basic background model where in the variance and
covariance of pixels are computed to construct the model for scene background which is
adaptive to the dynamically changing background. The method described in [34] has the
capability to relearn the background to adapt background changes. Kato et al. [27] have
proposed a segmentation method for monitoring of traffic video based on Hidden Markov
Model (HMM). In this method, each pixel or region is classified into three categories: shadow,
foreground and background. This method comprises of two phases: learning phase and
segmentation phase. Ellis et al. [17] have proposed online segmentation of moving objects
in video using online learning. In this approach, motion segmentation is done using semi-
supervised appearance learning task wherein supervising labels are autonomously generated
by a motion segmentation algorithm but the computational complexity of this algorithm is very
high. Stauffer et al. [S5] have proposed a tracking method wherein motion segmentation was
done using mixture of Gaussians and on-line approximation to update the model. This model
has some disadvantages such as background having fast variations cannot be accurately
modeled with just a few Gaussians (usually 3 to 5), causing problems for sensitive detection.
In addition to above mentioned methods, in literature various other approaches [13, 38, 39] in
the same domain have been proposed but they also suffer from most of the same problems
mentioned as above.

Therefore the important features of the methods under the category Moving object seg-
mentation methods based on learning information can be summarized as follows:

* Learning based moving object segmentation methods [12, 13, 17, 27, 34, 38, 39, 46, 55]
are adaptive to the dynamically changing background

* Computational complexity of Learning based moving object segmentation methods is very
high.

* Learning based moving object segmentation methods suffer the problem of shadow
regions and the presence of ghosts like appearances.
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2.4 Moving object segmentation methods based on change detection

The fourth category of moving object segmentation methods are based on change
detection which depends on frame difference of two or more frames. Some of the
prominent methods available in literature are the works due to Kim et al. [33], Chien
et al. [10], Kim and Hwang [31], Shih et al. [51], Huang et al. [22, 23], Baradarani
[2, 3], Hsia et al. [20], Khare et al. [28]. Kim et al. [33] proposed moving object
segmentation and automatic object tracking approach for video sequences. In this
approach, intra-frame and inter-frame segmentation modules are used for segmentation
and tracking. The intra-frame segmentation incorporates user interaction in defining a
high level semantic object of interest to be segmented and detects precise object
boundary. The inter-frame segmentation involves boundary and region tracking to
capture temporal coherence of moving objects with accurate object boundary infor-
mation. The drawback of this method is that user-interaction is required for separating
moving objects from the background in video sequences. To deal with the issues
mentioned in [33], Chien et al. [10] proposed moving object Segmentation algorithm
using background registration method. The background registration method is used to
construct reliable background information from the video sequence. In this approach,
a morphological gradient operation is used to filter out the shadow. The major
disadvantage of this method is that it adapts only static background and suffers from
the problem of ghost objects. Kim and Hwang [31] derive an edge map using change
detection method and after removing edge points which belong to the previous frame,
the remaining edge map is used to extract the video object plane. This method suffers
from the problem of object distortion. To solve this problem, Shih et al. [51] used
change detection method in three adjacent frames which easily handles the new
appearance of the moving object. Huang et al. [22, 23] proposed an algorithm for
moving object segmentation to solve the double-edge problem in the spatial domain
using a change detection method with different thresholds in four wavelet sub-bands.
Baradarani [2, 3] refined the work of Huang et al. [22, 23] using dual tree complex
filter bank in wavelet domain. These methods [2, 3] suffer from the problem of noise
disturbances and distortion of moving segmented objects due to change in speed of
objects. To concern these issues, Hsia et al. [20] proposed a modified directional
lifting-based 9 /7 discrete wavelet transform (MDLDWT) based approach, which is
based on the coefficient of lifting-based 9/7 discrete wavelet transform (LDWT). Its
advantages of low critical path, fast computational speed and the LL3-band of the
MDLDWT is employed solely to reduce the image transform computing cost and
remove noise but it cannot handle large dynamic background changes. Khare et al.
[28] refine the work of Baradarani [2, 3] and Huang et al. [22, 23] using Daubechies
complex wavelet. The method proposed by Khare et al. [28] reduces the noise
disturbance and speed change, but it suffers from the problem of dynamic background
changes and shadow detection and due to this segmenting coherence occurs [36]. In
addition to above mentioned methods, in literature various other approaches [7, 25,
32] in the same domain have been proposed but they also suffer from most of the
same problems mentioned as above.

Therefore the important features of the methods under the category Moving object seg-
mentation methods based on change detection [2, 3, 7, 10, 20, 22, 23, 25, 28, 31-33, 36, 51]
can be summarized as follows:
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* Change detection based moving object segmentation methods [2, 3, 7, 10, 20, 22, 23, 25,
28, 31-33, 36, 51] are adaptive to detect only “significant” changes while rejecting
“unimportant” ones.

* Change detection based moving object segmentation methods [2, 3, 7, 10, 20, 22, 23, 25,
28, 31-33, 36, 51] handle noise disturbance and speed change very well,

* Change detection based moving object segmentation methods [2, 3, 7, 10, 20, 22, 23, 25,
28, 31-33, 36, 51] suffer from the problem of either slow speed of moving object or abrupt
lighting variation changes.

*  The other limitations include shadow regions, detection of only moving objects, and the
presence of ghosts like appearances.

The Table 1 presents the summary of various moving object segmentation methods
under above mentioned four categories. The brief description of methods, their advan-
tages, limitations, and conclusions of each category are highlighted. For comparative
analysis purposes, only few prominent and latest methods in each category are considered
which are performing better in their peer groups as reported in literature and demonstrated
in results and analysis section.

After presenting the literature review of various moving object segmentation methods,
discussed as above under each of the four categories, it is observed that the approximate
median filter based method under second category i.e., a method based on motion and spatial
information is better in comparison to methods presented in other categories also validated
through experimental results and analysis presented in Section 4. The approximate median
filter contains two steps to segment the object: (i) frame differencing of two consecutive frames
(i) and background modeling step. The brief working of approximation median filter based
method for moving object segmentation is given as follows [41, 49]:-

Step I:  Frame Differencing:
For background subtraction the frame difference FD,(i,j) is obtained by taken the
absolute difference two consecutive frames (n-1) & n. This process can be written as
follows:-

For every pixel location (i, j) € the co — ordinate of frame
FDn(ivj) = |fn(i7j) _fnfl (17])|
If FD,,(i,j) < Vi
FD,(i,j) =0

Step II: Background Modeling:
In background modeling step, if the corresponding pixel in the current frame f,,(i,
J) is greater in value of previous frame f,—;(i,j) then previous frame is incremented
by one otherwise previous frame is decreased by one. This process can be written as
follows:-

I (fui,7) > [ (i)
then fn*l(ihj) :fnfl (Z?])+1
otherwise  f,_1(i,]) = f-1(i,7) —1

Here, £,(i.j) is the value of (i, j)™ pixel of n™ frame and f,_,(i,j) is the value of (i,
)™ pixel of (n-1)" frame, V,,, is a threshold value and FD,(i,j) is the frames
difference.
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The main limitation of approximate median filter based method is that it does not adapt to
the dynamic changes in background due to its weak background modeling steps. Due to this it
suffers from the problems of (i) ghost like appearances in moving segmented object (ii) slow
adaptation toward a large change in background. (iii) and requirement of many frames to learn
the new background region revealed by an object that moves away after being stationary for a
long time.

Motivated by these facts, in this paper, we have improved the background modeling step of
traditional approximate median filter based method [41, 49] using different major changes
such as background registration, background differencing, and background difference mask in
complex wavelet domain. These major changes adapt the dynamic background changes and
solve the above mentioned three problems in traditional approximate median filter. The
effectiveness of the proposed method over traditional approximate median filter is validated
through experimental result and analysis presented in section 4.

The main advantage of performing the above mentioned tasks in the complex wavelet
domain is that the complex wavelet transform has better noise resilience nature as the lower
frequency sub-band of the wavelet transform has the capability of a low-pass filter. The other
advantage is that the high frequency sub-bands of complex wavelet transform represent the
edge information that provide a strong cue to handle shadow. The proposed method is well
capable of dealing with the problems of noise, ghost like appearances, distortion of objects due
to the speed of moving objects, dynamic background scenes, varying illumination conditions,
shadows, and computational complexity as demonstrated and reported in this paper for several
challenging test video sequences.

3 An improved approximation median filter based approach in complex
wavelet domain: the proposed method

In this paper, an efficient approach for moving object segmentation under varying illumination
conditions is proposed. The proposed method is the modified and extended version of
traditional approximation median filter based method for moving object segmentation [41,
49] in complex wavelet domain as discussed in section 2. The proposed method consists of
following seven steps as follows and also illustrated in Fig. 1:

(i) Complex wavelet decomposition of sequence of frames,

(ii) Application of approximate median filter on the wavelet coefficients,
(iii) Application of background modeling,

(iv) Application of soft thresholding for noise removal,

(v) Application of canny edge detector to detect strong edges,

(vi) Application of inverse Daubechies complex wavelet transform,

(vii) and finally the application of closing morphological operators.

All above steps are iteratively applied until the result does not surpass the set threshold
value for object segmentation.

The workings of these steps are given as follows and illustrated in Figs. 1 and 2.

Step 1:  Wavelet Decomposition of frames
In the proposed approach, a 2-D Daubechies complex wavelet transform is
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Frame b

| Wavelet Decomposition of image frames using Daubechies complex wavelet transform |

! : |

| LLl' LHI l HLI | HHI | | LL2 | LH2 | HL2 | HH2 | | LLn | LHn |HLn Hin |

Background Modgtiag i“

Apply Improved Approximate Median Filter Method for LH, HL, and
Background ModelingTechnique HH band with threshold Vi, 4
on LL sub-band

Frame I,

l WDy, ¢=(Ln, HL. HH)

WD, - P .
l L Soft-thresholding for LH, HL and HH” sub-band by Daubechies
Soft-thresholding for LL" sub-band by complex wavelet

Daubechies complex wavelet

l WD’y =L, 1L, )
WD’ 1o

Apply Canny edge detector operation on LH', HL”, and HH” sub-band

Apply Canny edge detector
operation on LL" sub-band

DEq d-(Lu, HL, i)
l DE, 1L
A

| Inverse Daubechies complex wavelet transforms and merges the sub-band

l M (DE,)

Find moving object edges in video sequences

!

Morphological operations with binary closing operation
[ Segmented Frame I, Segmented Frame I, Segmented Frame I, ]

Segmented Object
Fig. 1 Block diagram of the proposed method

applied on current frame and previous frame to get wavelet coefficients in four sub-
bands: LL, LH, HL and HH. The generating Daubechies complex wavelet transform
is described as follows:

The basic equation of multi-resolution theory is the scaling equation [14]

o) =23 ad 2u-i) (1

where a;’s are coefficients, and ¢(u) is the scaling function. The a;’scan be real as
well as complex valued. Daubechies’s wavelet bases {1);,(f)} in one-dimension is
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Initial Background

| " Model
Video Frame Capture Complex Wavelet ¢
Transform "l Background Model
Updation
Canny edge detector Soft False Fore d l
Zround .

¢ Thresholdin Removal le——] Improved Approximate
Median Filter Method

A

Inverse Complex R Morphological
Wavelet Transform "| Operations > b [

Fig. 2 Sub-block diagram of the proposed approach

Step 2:

defined using the above mentioned scaling function ¢(u) and multi resolution
analysis of L,(fR) [14]. The generating wavelet ¢/(¢) is defined as:

- zz V'@, d(2t—n) (2)

Where ¢(f) and v(¢) share same compact support [-L, L+1].
Any function f (t) can be decomposed into complex scaling function and mother
wavelet as:

Jimax

:Zcioquak + Z d] V(2 (3)
%

J=Jjo

where, j, is a given low resolution level, {C}°} is called approximation coefficient
and {d,} is known as detail coefficient.

Applying the approximate median filter based method [41, 49] in complex
wavelet domain have following advantages (a) it is shift invariant and have a better
directional selectivity as compared to real valued wavelet transforms [14] (b) it has
perfect reconstruction property (c) it provides true phase information [14], while
other complex wavelet transform does not provide true phase information (d)
Daubechies complex wavelet transform has no redundancy [14].

Application of improved approximate median filter method on wavelet co-efficient

In step 2, an approximate median filter based method is applied on detail wavelet
coefficients i.e., on sub-bands: LH, HL, and HH. Let Wf, /(i.j)(d={LH,HL,HH})
and Wf,,—y (i,j)(d={LH,HL,HH}) are the wavelet coefficients at location (i, j) of the
current frame and previous frame. Instead of assigning a fixed a priori threshold V;, 4
to each frame difference, this paper uses the fast Euler number computation tech-
nique [52] to automatically determine V,;, ; from the video frame. The fast Euler
numbers algorithm calculates the Euler number for every possible threshold with a
single raster of the frame difference image using following equation:

E() =% (91 (D)=q3 ()2 44())] (4)
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where ¢, g3, and g is the quads (quad is a 2*2 masks of bit cells) contained in the
given image.

The output of the algorithm is an array of Euler numbers: one of each threshold
value. The Zero Crossings find out the optimal threshold. Detailed algorithms for the
fast Euler number computation method can be found in [52].

The wavelet domain frame difference WD, 4(i,j) for respective sub-bands are
computed as:

[for every pixel location (i, j) € the co—ordinate of frame

P — 1 lf‘ ’an,d(i’j)_an—Ld(Lj)‘ > Vth,d (5)
WD.a(i, ) = {0 otherwise

Step 3:  Application of background modeling using LL sub-band

This step of the proposed method deals with the problems of slow
adaptiveness toward a large change in background and requirement of many
frames to learn the new background region revealed by an object that moves
away after being stationary for a long time as noted in traditional approxi-
mate median filter based method [41, 49]. To deal with these issues, here we
propose to modify the background modeling approach which uses back-
ground registration mask, background difference mask and the frame differ-
ence mask to construct the background in LL sub band. The background
modeling step is divided in to four major steps as shown in Fig. 3.

The first step calculates the frame difference mask WD, ;,(i,j) of the LL
image which is obtained by thresholding the difference between coefficients
in two LL sub-bands as follows:

o SV W )W )] < Viewn
Dn , = n ’ n—1, ’ ) 6
WDy 11(i)) {0 otherwise (6)

where Vi, sp is a threshold of WD, ;,(i,j) determined automatically from the
video frame by the fast Euler number computation method as explained in
[52]. If WD, ;1(i,j)=0, then the difference between two frames is almost the
same.

The second step of background modeling maintains an up-to-date back-
ground buffer as well as background registration mask indicating whether the
background information of a pixel is available or not. According to the frame
difference mask of the past several frames, pixels that are not moving for a
long time are considered as reliable background. The reliable background,
BR,, ;,(i,j) is defined as

o BRyy (i, j)+ 1 if WD, (i) =0
BRu.11.(1,]) = {0 otherwise (7)

The BR,, ;;(i,j) value is accumulated until WD,, ;,(7,j) holds zero value. At
any time that WD, ;,(i,j) is changed from 0 to 1, BR, ;;(i,j) becomes zero.
In third step of background modeling, if the value in BR,, ;;(i,j) exceeds a
predefined value, denoted by L, then the background difference masks BD,,
11(i,j) 1s calculated. It is obtained by taking the difference between the
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Current Frame |

Previous Frame |

L 4
A A A
Background Registration !4 | Frame Difference
[ | I
v v
| Back ground Difference | Frame Difference Mask
Background Difference Mask

v

Background Modeling |

Background Registration Mask

Fig. 3 Block diagram of the background modeling in LL sub-band

Step 4:

current frame and the background information stored. This background dif-
ference mask is the primary information for object shape generation i.c.,

N JLif |Bfn—1,LL(ivj)_an,LL(iJ)| > Vin Bp
BDy 111, j) = {0 otherwise ®)

where Bf,— ;;(i,j) is the pixel value in the current frame that is copied to
the corresponding pixel in the BR, ;.(i,j), and V, pp is a threshold value
determined automatically from the video frame by the fast Euler number
computation method as explained in [52]. In the case of BR, ;,(i,j)<L, it is
assumed that the background is not constructed, so frame differences mask
WD, 1,(i,j) is used which is calculated in the first step.

In the fourth step of background modeling, a background model is
constructed using the background difference mask, background registration
mask and the frame difference mask. The background model generated has
some noise regions because of irregular object motion and noise. Also, the
boundary region may not be very smooth. The workings of these steps are
given as follows and illustrated in Fig. 3.

Application of soft thresholding method for noise removal

After applying approximate median filter based method and background model-
ing, the obtained result may have noise. This step deals with the noise reduction from
the data obtained in step 2 and step 3. In presence of noise, the equation is expressed
as:

WD, y—(riL ) (6 F) = WD*nid:(LL,LH,HL,HH)(ivj) +n )

where WD*, ;- rr.om mr, umy(i,j) is frame difference without noise,
WD, 4=rLi,mr.rmi,j) 1s the original frame difference with noise, and 7 is the
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Step 5:

Step 6:

Step 7:

additive noise. The wavelet domain soft thresholding T is applied on wavelet
coefficients for noise reduction. The value of soft thresholding parameter T for de-

noising is computed as [29]
L (v
T = 21—,1 (Z) w (10)

where j is wavelet decomposition level and ¢ £ and w are standard deviation,
absolute mean and absolute median of wavelet coefficients of a sub-band.
Application of canny edge detector to detect strong edges in wavelet domain

Canny edge detection method is one of the most useful and popular edge
detection methods, because of its low error rate well localized edge points and single
edge detection response [54]. In next step, the canny edge detection operator is
applied on WD*,, ;_ 11 rrmr.mmi,j) to detect the edges of significant difference
pixels in all sub-bands as follows:

DE, g—1it Hmm) (E]) = Ca’my(WD*n,d:(LL,LH,HL,HH) (l}j)) (11)

where DE, g1 i) is an edge map of WD*, y_ 1. pa .t sy (is)-
Application of inverse Daubechies complex wavelet transform

After finding edge map DE, ;_ 1 111.11.1m)(i.j) in wavelet domain, inverse wave-
let transform is applied to get moving object edges in spatial domain i.e., E,
Application of closing morphological operation to sub-band

As a result of step 6, the obtained segmented object may include a number of
disconnected edges due to non-ideal segmentation of moving object edges. Extrac-
tions of object using these disconnected edges may lead to inaccurate object seg-
mentation. Therefore, some morphological operation is needed for post-processing
of object edge map to generate connected edges. Here, a binary closing morpholog-
ical operation is used [54] which gives M(E,,) i.e., the set of connected edge. In this
step, the segmented output is obtained.

4 Experimental results and comparative studies

4.1 Dataset description

In this section, a brief overview of few datasets used for experimentation purpose in this paper
are presented.

4.1.1 Pets dataset (http://www.cvg.rdg.ac.uk/PETS2013/a.html)

First video dataset used for experimentation in this paper is the people video sequence
which is part of Pets dataset available from (http://www.cvg.rdg.ac.uk/PETS2013/a.
html.). This video data contains 2967 frames of frame size 480%272. The main
characteristics of this video data are that they are record in outdoor environment
wherein multiple objects (Human beings and cars) are present and cases of partial and
full occlusions among human beings are also present.
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4.1.2 Visor datasets (http.//'www.openvisor.org/video_details.asp?idvideo=114, http://
imagelab.ing.unimore.it/visor_test/video_details.asp?idvideo=194, http.//imagelab.ing.
unimore.it/visor/video details.asp?idvideo=113)

The another video data considered for experimentation is the Visor dataset which is the largest
publically available and most standard dataset widely used for benchmarking results for
segmentation. In this paper, three video data sets from this category are used for experimen-
tation which are Intelligent Room video sequence (http://www.openvisor.org/video details.
asp?idvideo=114) containing 299 frames each of size 320x240, Camera2 070605 video
sequence (http://imagelab.ing.unimore.it/visor_test/video_details.asp?idvideo=194)
containing 2881 frames each of size 384x288 and Highwayl raw dataset (http://imagelab.
ing.unimore.it/visor/video_details.asp?idvideo=113) containing 439 frames each of size
320%240. Camera2 070605 video sequence dataset is performed at particular angle and is
of low-quality and low contrast. Intelligent Room video sequence is recorded in full noisy
environment i.e., video quality is low with poor contrast and shadow of object is also present.
In highwayl raw video sequence is recorded in full noisy environment and full and partial
occlusion occurs between fast moving cars.

4.1.3 Caviar dataset (http://homepages.inf.ed.ac.uk/rbf/ CAVIARDATA 1/)

The next video data considered for experimentation is the one step video sequence dataset
which is the part of Caviar video dataset available from http:/homepages.inf.ed.ac.uk/rbf/
CAVIARDATAL1/. This video data contains number of video clips, having 1995 frames
each of size 480%272, which were recorded acting out the different scenarios of interest.
This video is recorded in stationary background situation and multiple human beings are
present in the video.

4.1.4 CVCR dataset (Crowdie environment dataset) (http://crev.uct.edu/data/crowd.php)

The final data set used for experimentation contains videos of crowds’ density
environment. 4917-5 70 is one of the video sequences of CVCR dataset (http://crcv.
ucf.edu/data/crowd.php) which contain 1789 frames each of size 480%320. This video
was shooted on much more height and in very crowdie environment which contains
full occlusions, shadow and noise.

4.2 Performance measures

It is very difficult to compare the segmentation results visually because human visual
system can identify and understand scenes with different connected objects effortlessly.
Therefore, quantitative performance metrics together with visual results are more appro-
priate. The performance measures are categorized into various categories for determining
the performance of the chosen method or comparing the proposed method with other
methods for moving object segmentation. The various categories of performance mea-
sures calculate the accuracy of moving object segmentation; measures for noise removal
in moving object segmentation; and computational time and memory required in moving
object segmentation. The performance measures listed under various categories are
defined as follows:
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Fig. 4 Segmentation results for People video sequence (http://www.cvg.rdg.ac.uk/PETS2013/a.html.)
corresponding to a Frame 125, b frame 150, ¢ frame 175, d frame 200 (i) original frame, and the segmented
frame obtained by various methods such as: (ii) the proposed method, (iii) McFarlane and Schofield [42], (iv)
Kim et al.[30], (v) Zivkovic [59] (vi) Cucchiara et al.[46], (vii) Hsia et al.[23], (viii) Khare et al.[3] (ix) Bradski
[4], x) Liu et al. [37], (xi) Wren et al.[49], (xii) Kushwaha et al. [12], (xiii) Oliver et al.[5], (xiv) Meier and Ngan
[44], (xv) Kim et al. [33], and (xvi) Chien et al. [10]

(xiv) (xv) (xvi)

@ Springer


http://www.cvg.rdg.ac.uk/PETS2013/a.html

Multimed Tools Appl (2016) 75:16209-16264

[
N
N
N
=

(viii

—
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(a) Frame 125

(xii) (xiii)

(b) Frame 150
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(xii) (xiii)
(c) Frame 175

(xiii)

(d) Frame 200

Fig. 5 Segmentation results for Intelligent Room video sequence (http:/www.openvisor.org/video_details.asp?
idvideo=114) corresponding to a Frame 125, b frame 150, ¢ frame 175, d frame 200 (i) original frame, and the
segmented frame obtained by various methods such as: (ii) the proposed method, (iii) McFarlane and Schofield
[42], (iv) Kim et al.[30], (v) Zivkovic [59] (vi) Cucchiara et al.[46], (vii) Hsia et al.[23], (viii) Khare et al.[3] (ix)
Bradski [4], (x) Liu et al. [37], (xi) Wren et al.[49], (xii) Kushwaha et al. [12], (xiii) Oliver et al.[5], (xiv) Meier
and Ngan [44], (xv) Kim et al. [33], and (xvi) Chien et al. [10]
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Fig. 6 Segmentation results for One Step video sequence (http:/homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/)
corresponding to a Frame 125, b frame 150, ¢ frame 175, d frame 200 (i) original frame, and the segmented
frame obtained by various methods such as: (ii) the proposed method, (iii) McFarlane and Schofield [42], (iv)
Kim et al.[30], (v) Zivkovic [59] (vi) Cucchiara et al.[46], (vii) Hsia et al.[23], (viii) Khare et al.[3] (ix) Bradski
[4], (x) Liu et al. [37], (xi) Wren et al.[49], (xii) Kushwaha et al. [12], (xiii) Oliver et al.[5], (xiv) Meier and Ngan
[44], (xv) Kim et al. [33], and (xvi) Chien et al. [10]

(ix)
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Fig. 7 Segmentation results for Camera2 070605 video sequence (http://imagelab.ing.unimore.it/visor test/
video_details.asp?idvideo=194) corresponding a Frame 125, b frame 150, ¢ frame 175, d frame 200 (i) original
frame, and the segmented frame obtained by various methods such as: (ii) the proposed method, (iii) McFarlane
and Schofield [42], (iv) Kim et al.[30], (v) Zivkovic [59] (vi) Cucchiara et al.[46], (vii) Hsia et al.[23], (viii)
Khare et al.[3] (ix) Bradski [4], (x) Liu et al. [37], (xi) Wren et al.[49], (xii) Kushwaha et al. [12], (xiii) Oliver
et al.[5], (xiv) Meier and Ngan [44], (xv) Kim et al. [33], and (xvi) Chien et al. [10]
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Fig. 8 Segmentation results for highwayl raw video sequence (http:/imagelab.ing.unimore.it/visor/video
details.asp?idvideo=113) corresponding to a Frame 125, b frame 150, ¢ frame 175, d frame 200 (i) original
frame, and the segmented frame obtained by various methods such as: (ii) the proposed method, (iii) McFarlane
and Schofield [42], (iv) Kim et al.[30], (v) Zivkovic [59] (vi) Cucchiara et al.[46], (vii) Hsia et al.[23], (viii)
Khare et al.[3] (ix) Bradski [4], (x) Liu et al. [37], (xi) Wren et al.[49], (xii) Kushwaha et al. [12], (xiii) Oliver
et al.[5], (xiv) Meier and Ngan [44], (xv) Kim et al. [33], and (xvi) Chien et al. [10]
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(a) Frame 125
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(b) Frame 150
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Fig. 9 Segmentation results for 4917-5_70 video sequence (http://crcv.uct.edu/data/crowd.php) corresponding
to a Frame 125, b frame 150, ¢ frame 175, d frame 200 (i) original frame, and the segmented frame obtained by
various methods such as: (ii) the proposed method, (iii) McFarlane and Schofield [42], (iv) Kim et al.[30], (v)
Zivkovic [59] (vi) Cucchiara et al.[46], (vii) Hsia et al.[23], (viii) Khare et al.[3] (ix) Bradski [4], (x) Liu et al.
[37], (xi) Wren et al.[49], (xii) Kushwaha et al. [12], (xiii) Oliver et al.[5], (xiv) Meier and Ngan [44], (xv) Kim
et al. [33], and (xvi) Chien et al. [10]
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4.2.1 Accuracy of moving object segmentation

The accuracy of moving object segmentation is calculated using following metrics defined as
below:

Relative foreground area measure (RFAM) [19] RFAM gives accurate measurements of
the object properties such as area and shape, more specifically the area of the detected and
expected foreground. It is calculated between ground-truth frame and segmented frame [19].
The value of RFAM is in the range [0, 1] and if it is 1 then it indicates that the chosen method
perfectly segment the moving object. The RFAM is calculated as follows:

|Area(Igry)—Area(Isgc )|
Area(Isgey)

RFAM = 1- (12)

where Area(lgry) and Area(Isggy,) are area in objects in ground —truth frame and resulting
segmented frame, respectively.
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Fig. 10 a—f RFAM variations with respect to frame no. for different Test cases (http://www.cvg.rdg.ac.uk/
PETS2013/a.html., http://www.openvisor.org/video_details.asp?idvideo=114, http://imagelab.ing.unimore.it/
visor_test/video_details.asp?idvideo=194, http://imagelab.ing.unimore.it/visor/video_details.asp?idvideo=113,
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/, http://crev.ucf.edu/data/crowd.php)
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Fig. 10 (comtinued)

Misclassification penalty (MP) [19] The MP estimated in the segmentation results which
are farther from the actual object boundary (ground-truth image) are penalized more than the
misclassified pixels which are closer to the actual object boundary [19]. The MP value lies in
the range [0, 1]. Zero value of MP means perfect segment the moving object and performance
of segmentation methods degrades as the value of MP becomes higher. The MP is defined as
follows:

> X (0:d)- Chemary i, )
Z (i,j) ChemGTV (l,])

MP =

(13)

where Chemgry denotes the Chamfer distance transform of the boundary of ground-truth
object. Indicator X can be computed as

.. L, if Ierv(i,)) #Lseom(i, )) }
X(i,j) = ; 7 7 14
(@) { 0 if Igrv(i,j) = Iseom(i,)) (14)
where I5(i,j) and Isggafi,j) are ground-truth frame and segmented frame respectively with
dimension (i%j) .

Pixel classification based measure (PCM) [19] The PCM reflects the percentage of
background pixels misclassified as foreground pixels and conversely foregrounds pixels
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misclassified as background pixels [19]. The values of PCM lies in the range [0, 1] with its
value 1 indicating perfect moving object segmentation. The PCM is defined as follows:

Cardi (BGTV N FSEGM) + Cardi (FGTV mBSEGM)

PCM = 1-
Cardi (BGTV) -+ Cardi (FGTV)

(15)

Where Bgry and Fgry denote the background and foreground of the ground-truth frame,
whereas Bgggiys and Fspgys denote the background and foreground pixels of the achieved
segmented frame ‘N’ is the logical AND operation. Cardi(.) is the cardinality operator.

Relative position based measure (RPM) [19] RPM is defined as the centroid shift
between ground-truth and segmented object mask. It is normalized by parameter of the

ground-truth object [19]. The value of RPM is 1 for perfect moving object segmentation.
The RPM is calculated as:

||Centgry—Centsgou||

Zﬁ NAreagry

where Centgry and Centsggys are centroid of objects in ground-truth frame and achieved

RPM = 1- (16)
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Fig. 11 a—f MP variations with respect to frame no. for different Test cases (http://www.cvg.rdg.ac.uk/
PETS2013/a.html., http://www.openvisor.org/video_details.asp?idvideo=114, http://imagelab.ing.unimore.it/
visor_test/video_details.asp?idvideo=194, http://imagelab.ing.unimore.it/visor/video_details.asp?idvideo=113,
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/, http://crev.ucf.edu/data/crowd.php)
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Fig. 11 (continued)

segmented frame respectively. Areagry is the area of object in ground-truth frame. ||.|| is the
Euclidean distance. The centroid of ground truth object can be expressed as

o i . J
Z z,jeXGTV and CE?ntGTV (]) _ Z laJEXGTV

Z ijeX arv 1 Z ijeX gry !

Centgry (l) = (17)

4.2.2 Noise removal capacity in moving object segmentation
Here three performance measurement metrics namely Peak Signal-to-Noise Ratio [47], Nor-
malized Absolute Error (NAE) [1], and Normalized Cross Correlation [18] are used for noise.

These metric are defined as follows

Peak signal-to-noise ratio (PSNR) [47] The mean square error (MSE) and the peak signal-
to-noise ratio (PSNR) are the two error metrics used to compare image compression quality
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[47]. Higher value of PSNR means good segmentation (i.e., noise is minimum) while low
value of PSNR indicates poor segmentation (i.e., noise is maximum).

RZ
PSNR = 10log;, (W) (18)

Normalized absolute error (NAE) [1] NAE is calculated between ground truth frame and
segmented frame [1]. Lower values of NAE indicate perfect moving object segmentation while
high value of NAE indicates poor object segmentation.

a B
ZX:IZFI |Fary(x,»)=Fsgom(x, )|
a B
Zx:l Zy:l FGTV(x’y)

Where Fgry and Fgpgy, are ground-truth frame and segmented frame respectively with
dimension (axf3).

NAE = (19)
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Fig. 12 a—f RPM variations with respect to frame no. for different Test cases (http://www.cvg.rdg.ac.uk/
PETS2013/a.html., http://www.openvisor.org/video_details.asp?idvideo=114, http://imagelab.ing.unimore.it/
visor_test/video_details.asp?idvideo=194, http://imagelab.ing.unimore.it/visor/video_details.asp?idvideo=113,
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/, http://crev.ucf.edu/data/crowd.php)
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Fig. 12 (continued)

Normalized cross correlation (NCC) [18] NCC can be used as a measure for calculating
the degree of similarity between two images [18]. NCC value lies in the range [0, 1]. Higher
value of NCC indicates better segmentation while lower value of the same indicates poor
segmentation.

Mz

>

F(J,K)F(J,K)
NCC == A’j:lN (20)
> Z [F(J,K))
J=1 K=1

where F(J,K) is ground truth frame and F(J,K) is achieved segmented frame.

4.2.3 Computational time and memory

Here two performance measurement metrics namely computational time and memory con-
sumption are used for Computational time and memory.
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4.3 Results & comparative studies

In this section, comparative studies of some prominent methods as reported in literature and as
discussed in Section 2, under the four categories, is presented both qualitatively and quanti-
tatively on six video datasets discussed as above (http:/www.cvg.rdg.ac.uk/PETS2013/a.html.
, http://www.openvisor.org/video_details.asp?idvideo=114, http://imagelab.ing.unimore.it/
visor_test/video_details.asp?idvideo=194, http://imagelab.ing.unimore.it/visor/video_details.
asp?idvideo=113, http://homepages.inf.ed.ac.uk/rbf/CAVIARDATAL1/, http://crcv.uctf.edu/
data/crowd.php) in Section 4.1. Further, the comparative study of the proposed method is
also presented with various methods under each category. The object intended for
segmentation in the test video clips are appearing after approximately 100 frames in the test
cases under consideration. The performance measures were calculated for whole video clips at
the frame interval of 25 after 100th frame. In this paper, the result for only four frames viz. 125,
150, 175, and 200 are shown. However, the performance trend remained the same for all video
frames. In Tables 2 through 8, results of various moving object segmentation methods under
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Fig. 13 a—f NCC variations with respect to frame no. for different Test cases (http://www.cvg.rdg.ac.uk/
PETS2013/a.html., http://www.openvisor.org/video_details.asp?idvideo=114, http://imagelab.ing.unimore.it/
visor_test/video_details.asp?idvideo=194, http://imagelab.ing.unimore.it/visor/video_details.asp?idvideo=113,
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/, http://crev.ucf.edu/data/crowd.php)
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Fig. 13 (continued)

each of the four categories as discussed in Section 2 in terms of seven different performance
metrics divided under two categories viz. segmentation accuracy and noise removal, as
discussed in section 4.2, are listed. In Table 9, average computation time (frames/second)
and memory consumption for different methods for a video of frame size 320x240 for first 100
frames http://homepages.inf.ed.ac.uk/tbf/ CAVIARDATA 1/ are shown. The comparative study
has been done on a computer with Intel 2.53GHz core i3 processor with 4 GB RAM using
OpenCV 2.9 and MATLAB 2013a software.

4.3.1 Qualitative analysis

In this section, we report the experimental analysis and results of methods under categories I to
IV and that of the proposed method. In category-1, we report the experimental analysis and
results of four latest methods proposed by Kim et al. [30], Bradaski [4], Liu et al. [37], and
Meier and Ngan [44] based on their advantages and limitations as given in Table 1. In
category-II, three latest methods for experimentation and comparative analysis are considered
which are due to Mcfarlane et al. [41], Wren et al. [59] and Zivkovic et al. [61]. In category-III,
we consider three latest methods for experimentation and comparative analysis which are due
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to Kushwaha et al. [34], Cucchiara [12], and Oliver [46]. Similar way, in category-IV, we
consider four latest methods for experimentation and comparative analysis which are due to
Kim et al. [33],Chien et al. [10], Khare et al. [28] and Hsia et al. [20].

Some observations about the results obtained by methods in categories I to IV and proposed
method are as follows for six different video data sets (http://www.cvg.rdg.ac.uk/PETS2013/a.
html., http://www.openvisor.org/video details.asp?idvideo=114, http://imagelab.ing.unimore.
it/visor_test/video_details.asp?idvideo=194, http://imagelab.ing.unimore.it/visor/video
details.asp?idvideo=113, http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/, http://crcv.uct.
edu/data/crowd.php). From Figs. 4, 5, 6, 7, 8 and 9, it can be observed that:

(a) the segmentation results obtained by the method proposed by Kim et al. [30]
perform better to other methods such as by Bradaski [4], Liu et al. [37] and
Meier and Ngan [44] in category-I because the results of methods reported in [4,
37, 44] depends on the motion of the object (see frame no. 125-200 (ix, X, Xiv)).
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Fig. 14 a—f PSNR variations with respect to frame no. for different Test cases (http://www.cvg.rdg.ac.uk/
PETS2013/a.html., http://www.openvisor.org/video_details.asp?idvideo=114, http://imagelab.ing.unimore.it/
visor_test/video_details.asp?idvideo=194, http://imagelab.ing.unimore.it/visor/video_details.asp?idvideo=113,
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/, http://crev.ucf.edu/data/crowd.php)
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Fig. 14 (continued)

(b)

If object is static then methods reported in [4, 37, 44] are not able to segment
the object but Kim et al. [30] method works well for different data sets (http://
www.cvg.rdg.ac.uk/PETS2013/a.html., http://www.openvisor.org/video details.asp?
idvideo=114, http://imagelab.ing.unimore.it/visor_test/video details.asp?idvideo=
194, http://imagelab.ing.unimore.it/visor/video_details.asp?idvideo=113, http://
homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/, http://crcv.uct.edu/data/crowd.php)
(see frame no. 125-200 (iv)).

the segmentation results obtained by the method proposed by Mcfarlane et al. [41]
perform better to other methods in category II (see frame no. 125-200 (iii)). From
Figs. 4-5, one can conclude that Mcfarlane et al. [41] give better shape of moving object
with least noise in segmented frames by the methods in category-II (see frame no. 125-
200 (iii)). From Figs. 6, 7, 8 and 9, it is clear that Wren et al. [59] and Zivkovic et al. [61]
both suffers from the ghost object, noise, and shadow (see frame no. 125-200 (v & xi))
but Mcfarlane et al. [41] give better result with least noise in segmented frame in
category-IL.
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(c) for the methods under category-III:

(d)

The segmentation results obtained by the method proposed by Kushwaha et al. [34]
perform better to other methods in category III (see frame no. 125-200 (xii)).
Results obtained by Cucchiara [12] suffer from the problem of ghosts, noise and
shadows and also some portion of the object is distorted (see frame no. 125-200 (vi)).
Results obtained by the method proposed by Oliver [46] have the problem of
disappearance of the object in the frame during segmentation process after some time
and the object is also distorted (see frame 125-150 (xiii)).

the segmentation results obtained by the method proposed by Khare et al. [28] under
category —IV perform better to other methods such as Kim et al. [33],Chien et al. [10] and
Hsia et al. [20]. From Fig. 4, it is clear that, results of methods reported in [10, 20, 33] is
not accurate (i.e., objects are collapsed) due to occlusions between multiple objects in the
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Fig. 15 a—f NAE variations with respect to frame no. for different Test cases (http://www.cvg.rdg.ac.uk/
PETS2013/a.html., http://www.openvisor.org/video_details.asp?idvideo=114, http://imagelab.ing.unimore.it/
visor_test/video_details.asp?idvideo=194, http://imagelab.ing.unimore.it/visor/video_details.asp?idvideo=113,
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/, http://crev.ucf.edu/data/crowd.php)
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Fig. 15 (continued)

(e)

frame (see frame no. 125-200 (vii, xv, xvi)). In this situation Khare et al. [28] method
works well but it suffers from the problem of ghosts (see frame no. 125-200 (viii)). From
Fig. 5, one can conclude that, methods reported in [10, 20, 33] is not able to give
comparable shape structure as compared to the Khare et al. [28] (see frame no. 125-200
(vii, viii, xvi)). From Fig. 6, it is also seen that the method proposed by Khare et al. [28]
suffered the problem of ghost as compared to the Chien et al. [10] and Hsia et al. [20]
(see frame no. 125-200 (vii, viii, xvi)). From Figs. 8 and 9, it is clear that, result obtained
by Hsia et al. [20] method is distorted (see frame 125-200 (vi)) due to speed change of
cars but in this condition Khare et al. [28] method work properly (see frame no. 125-200
(vil & viii)).

the segmentation results obtained by proposed method perform well to other methods in
the category I to IV having fast moving objects, crowdie and shadow environment in the
video dataset. The proposed method does not suffer from the problem of ghost, object
distortion, shadow, and disappearance of object in video scene (see frame no. 125-200
(ii)) in comparison to other method in the category I to IV for different datasets (http://
www.cvg.rdg.ac.uk/PETS2013/a.html., http://www.openvisor.org/video details.asp?
idvideo=114, http://imagelab.ing.unimore.it/visor_test/video_details.asp?idvideo=194,
http://imagelab.ing.unimore.it/visor/video_details.asp?idvideo=113, http://homepages.
inf.ed.ac.uk/tbf/CAVIARDATA 1/, http://crcv.uct.edu/data/crowd.php).
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4.3.2 Quantitative analysis

In this section of the paper, the performances of the proposed method have been compared
quantitatively under categories I to IV and proposed method in terms of seven different
performance metrics divided under two categories viz. segmentation accuracy and noise
removal as discussed in section 4.2.

From Tables 2, 3, 4, 5, 6, 7 and 8 and Figs. 10, 11, 12, 13, 14, 15 and 16a—f it can be
observed that the following methods are performing better under each of their respective
categories. These methods are associated with high value of RFAM, RPM, PCM and low
value of MP in comparison to other methods under each category which indicate better
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Fig. 16 a—f PCM variations with respect to frame no. for different Test cases (http://www.cvg.rdg.ac.uk/
PETS2013/a.html., http://www.openvisor.org/video_details.asp?idvideo=114, http://imagelab.ing.unimore.it/
visor_test/video_details.asp?idvideo=194, http://imagelab.ing.unimore.it/visor/video_details.asp?idvideo=113,
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/, http://crev.ucf.edu/data/crowd.php)
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segmentation accuracy. The high values of PSNR and NCC and low value of NAE indicate
better noise removal capacity in comparison to other methods under respective categories for
different datasets (http://www.cvg.rdg.ac.uk/PETS2013/a.html., http://www.openvisor.org/
video_details.asp?idvideo=114, http://imagelab.ing.unimore.it/visor_test/video_details.asp?
idvideo=194, http://imagelab.ing.unimore.it/visor/video_details.asp?idvideo=113, http://
homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/, http://crev.ucf.edu/data/crowd.php). Also, the
following methods under each of the respective category are associated with less
computational time and memory consumption in comparison to other methods in their
respective categories. These observations are summarized as:

*  Kim et al. [30] method is performing better in terms of segmentation accuracy, noise
removal capacity and computational complexity in category-I for each of the datasets.

*  Macflrane et al. [41] method is performing better in terms of segmentation accuracy, noise
removal capacity and computational complexity in category-II for each of the datasets.

e Kushwaha et al. [34] method is performing better in terms of segmentation
accuracy, noise removal and computational complexity in category-III for each
of the datasets.
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Table 9 Computational Time and Consumption Memory for One step video sequence (http://homepages.inf.ed.
ac.uk/rbf/CAVIARDATA1/)

S.no. Methods Computational Time (in frame/second) Memory Consumption (MB)
1 McFarlane et al.[41] 1376 8.68
2 Kim et al.[30] 0.722 22.92
3 Zivkovic [61] 1.864 9.40
4 Cucchiara et al.[12] 1.625 24.95
5 Hsia et al.[20] 1.912 8.64
6 Khare et al.[28] 1.753 7.08
7 Kim et al. [33] 1.325 11.37
8 Chien et al. [10] 1.687 13.35
9 Bradski [4] 0.912 17.62
10 Liu et al. [37] 1.412 30.92
11 Wren et al.[59] 1.443 25.17
12 Kushwaha et al. [34] 0.824 15.26
13 Oliver et al.[46] 1.392 20.62
14 Meier and Ngan [44] 1.427 18.35
15 The Proposed Method 1.232 3.90

* Khare et al. [28] method is performed better in terms of segmentation accuracy,
noise removal and computational complexity in category-IV for each of the
datasets.

Further, the proposed method is associated with high value of RFAM, RPM, PCM,
PSNR, NCC; and low value of MP and NAE in most of the frames in comparison to
other methods under each category for different datasets (http://www.cvg.rdg.ac.uk/
PETS2013/a.html., http://www.openvisor.org/video_details.asp?idvideo=114, http://
imagelab.ing.unimore.it/visor_test/video details.asp?idvideo=194, http://imagelab.ing.
unimore.it/visor/video_details.asp?idvideo=113, http://homepages.inf.ed.ac.uk/rbf/
CAVIARDATAL1/, http://crev.ucf.edu/data/crowd.php). From Table 9, one can also
observe that the proposed method had taken less computational time and consumed
only 3.90 megabytes of RAM which was the least in comparison with the other
methods in category-1 to IV. Hence, proposed method is performing better in terms of
segmentation accuracy, noise removal and computational complexity in comparison to
other methods in categories I to IV for each of the datasets.

In Figs. 10, 11, 12, 13, 14, 15 and 16a—f, Y-axis shows the different quantitative
measure such as RFAM, MP, RPM, NCC, PSNR, NAE, PCM and X-axis shows the
frame number. From Figs. 10, 11, 12, 13, 14, 15 and 16a—f, one can conclude that
proposed method performed better than other methods in different quantitative mea-
sures such as RFAM, MP, RPM, NCC, PSNR, NAE, and PCM.
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M1: Bradski [4]; M2: Kim et al.[30]; M3: Liu et al. [37]; M4: Meier and Ngan [44]; M5: McFarlane et al. [41];
M6: Wren et al.[59]; M7: Zivkovic [61];M8: Kushwaha et al. [34]; M9: Cucchiara et al.[12]; M10: Oliver
et al.[46]; M11: Hsia et al.[20]; M12: Khare et al.[28]; M13: Kim et al. [33]; M14: Chien et al. [10];
M15:Proposed Method

Overall observation of performance of methods under Categories I to IV and the proposed
method:

From qualitative and quantitative observations of the comparative analysis and
results of methods in Categories I to IV and the proposed method, we conclude that
proposed method is performing better in comparison to all methods under consider-
ation for different datasets (http://www.cvg.rdg.ac.uk/PETS2013/a.html., http://www.
openvisor.org/video_details.asp?idvideo=114, http://imagelab.ing.unimore.it/visor_test/
video_details.asp?idvideo=194, http://imagelab.ing.unimore.it/visor/video_details.asp?
idvideo=113, http://homepages.inf.ed.ac.uk/rtbf/CAVIARDATA1/, http://crcv.ucf.edu/
data/crowd.php). For experimentation, we have taken different complex datasets i.e.,
multiple objects with partial and full occlusion, crowded object, and fast moving
object with shadow. After overall observation, we conclude that the proposed
method perform better to other methods from category I to IV. The other methods
which perform better after the proposed method in decreasing order of their
performances are Kushwaha et al. [34], Mcflarne et al. [41], Khare et al. [28], and
Kim et al. [30].

5 Conclusions

This paper presented a review and experimental study of various recent moving object
segmentation methods available in literature and these methods were classified into four
categories i.e., moving object segmentation methods based on (i) motion information (ii)
motion and spatial information (iii) learning (iv) and change detection. The objective of
this paper was two-fold i.e., firstly, this paper presented a comprehensive literature
review and comparative study of various classical as well as state-of-the art methods
for moving object segmentation under varying illumination conditions under each of the
above mentioned four categories. Further, in this paper, an efficient approach for moving
object segmentation under varying illumination conditions was proposed and its com-
parative study with other methods under consideration was presented. The qualitative
and quantitative comparative study of the various methods under four categories as well
as the proposed method was presented for six different datasets (http://www.cvg.rdg.ac.
uk/PETS2013/a.html., http://www.openvisor.org/video details.asp?idvideo=114, http://
imagelab.ing.unimore.it/visor_test/video details.asp?idvideo=194, http://imagelab.ing.
unimore.it/visor/video details.asp?idvideo=113, http://homepages.inf.ed.ac.uk/rbt/
CAVIARDATAL/, http://crev.ucf.edu/data/crowd.php). The advantage, limitations, and
efficacy of each of the methods under consideration have been examined. The
extensive experimental results on six challenging data sets demonstrate that the
proposed method is superior to other state -of-the-art background subtraction methods
as well as this paper also provided an insight about other methods available in literature.
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