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Abstract This paper presents a robust method for recognizing human faces with varying
illumination as well as partial occlusion. In the proposed approach, a dual-tree complex
wavelet transform (DTCWT) is employed to normalize the illumination variation in the
logarithm domain. In order to minimize the variations under different lighting conditions,
appropriate low frequency DTCWT subbands are truncated and the rest of the directional
subbands are used to reconstruct the stable invariant face. Using the fundamental concept that
patterns from a single object class lie in a linear subspace, we develop class specific
dictionaries using principal component analysis (PCA) based subspace learning on illumina-
tion invariant faces. By representing the pre-processed probe image against each dictionary
using l1 regularization into PCA reconstruction, target face and sparse noises are effectively
factorized. Then, identification decision is made in favor of a class with minimum reconstruc-
tion error. Evaluations on challenging probe images demonstrate that the proposed method
performs favorably against several state of the art methods.

Keywords Face identification . Illumination normalization . Partial occlusion . Dual-tree
complex wavelet transform . Principal component analysis . Sparse representation

1 Introduction

Recently, face recognition research has seen a lot of success in less demanding commercial
applications like Apple iphoto, Google Picasa, and Microsoft Photo Gallery. On the other
hand, research in extremely demanding terrorist watchlist like applications in surveillance
videos are still in premature stage. However, in between these two there are many currently
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focused face identification applications like access control in secure buildings including
offices, prisons, automatic teller machines, automobiles and computers, in which controlled
gallery images can be collected in advance. In these kinds of identification applications, gallery
subjects would act like allies not opponents [27]. For these applications, coupling among
different variations like partial occlusion, blur, expression variation, illumination variation,
pose change makes the face recognition problem extremely difficult, yet more meaningful [7].
Recently, many efficient face identification approaches have been reported to handle variations
due to illumination [6, 8, 14, 26] and occlusion [21] separately. However, their performance
degrades sharply due to the complexity in simultaneously handling multiple variations.

In face identification, illumination variation due to darkness or brightness is a very
challenging issue to be addressed. It has been proven that intra-class difference due to
illumination variation is very significant than inter-class difference [1]. Various methods that
have been proposed in literature can be mainly classified into three categories; (i) illumination
modelling (ii) illumination invariant feature extraction and (iii) pre-processing and normaliza-
tion. In illumination modelling based approach, the main idea is to represent the illumination
variations in a subspace and estimate the model parameters [2, 4]. But, the major drawbacks of
this approach are requirement of larger amount of training data and huge computation time. In
the invariant feature extraction approaches, the goal is to extract the facial features which are
invariant to the illumination variations like gradient faces [26], local binary patterns (LBP) [24]
and 2-D Gabor features [16]. However, experimental studies show that none of these methods
are sufficient enough to represent the face images under extreme illumination variation [6].
The preprocessing and normalization approach remove the illumination variations in the
images and extract the illumination invariant face image without any prior knowledge. In
these approaches, histogram equalization [12] is the most commonly used one, in which the
pixel intensities of the face image are redistributed by using a non-linear transformation
function. Moreover, other non-linear image enhancement transforms like logarithmic and
exponential functions are also used to correct the illumination variation to some extent [12].
In Chen et al. work [8], low frequency coefficients of discrete cosine transform (DCT) are
discarded to eliminate the illumination variations because it mainly lies in the low-frequency
bands. However, there are two major issues involved in this method; (i) how to select the
appropriate number of DCT coefficients to be discarded; (ii) even after the normalization,
illumination discontinuities caused by shadows will exist since it lies in the high-frequency
bands. Goh et al. [11] proposed DWT decomposition based illumination normalization, by
setting low frequency illumination component as zero. However, this method could not
achieve better recognition performance due to aliasing and shift variance problems. To address
these issues, recently, Haifeng [14] proposed multiscale illumination normalization approach
using DTCWT for face recognition and achieved good recognition rate against illumination
variations. However, experimental results of all these illumination invariant face recognition
approaches show that good recognition rate was achieved only against the illumination
variation not with other realistic issues like occlusion. On the other hand, for occlusion, the
performance of the classical subspace learning based face recognition approaches like
Eigenfaces and Fisherfaces along with the nearest neighbor are shown to be very poor
recognition performance [3].

In recent developments, face recognition approaches based on linear representation have
achieved state of the art performances against occlusion [23, 29]. Among them, linear
regression classification (LRC) [23], and sparse representation classification (SRC) [29] are
the most representative approaches. In LRC approach [23], face recognition has been cast as a
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linear regression problem by representing a probe image as a linear combination of training
images of each class. Reported results show that their modular approach algorithm has
performed well against contiguous occlusion. However, this method lacks direct mechanism
to handle partial occlusion. On the other side, to handle the partial occlusion, SRC approach
has been extensively used for various applications including face recognition and object
tracking [21, 29]. In the SRC based face recognition approach [29], it is considered to be a
problem of finding the sparse representation of a test image in terms of all the training images
and obtain the sparse error of that image which accounts for partial occlusion and random pixel
corruption. However, SRC is not robust against severe illumination variation and
contiguous occlusions such as shadow, sunglasses, and scarf. Moreover, it works fast
only in low dimension feature vectors (e.g., 12×15 patches [21]) which may not
capture the sufficient visual details to describe the face. Zhang et al., [31] argued that,
in SRC approach, better discrimination is achieved mainly because of collaborative
representation rather than l1 norm based sparse error. With this argument, they
proposed collaborative representation based classification using regularized least
squares (CRC-RLS) which has better classification rate and significantly less compu-
tation complexity than the SRC approach. In CRC-RLS, fast computation is achieved
due to l2 regularization, as it has a close-form solution. Dong et al. [9] proposed a
computationally efficient SRC approach by exploiting PCA subspace representation in
l1 regularization framework for tracking problems. Very recently, Xiao et al. [30]
proposed a face identification method using robust principal component analysis, in
which, given test face is decomposed into low rank face and error face for each
subject, by solving the low rank matrix recovery optimization problem. However, in
case of test images with large contiguous occlusion, discriminative information in the
sparse error images used for classification will decrease. In spite of huge success in
handling occlusion, all these sparse representation based methods cannot handle
illumination variation effectively.

From the cited literature review on face recognition, handling multiple issues like illumi-
nation variation and occlusion simultaneously is still a major challenge. In order to address this
problem, this paper proposes a novel face identification algorithm by combing DTCWT based
illumination normalization technique with PCA subspace based sparse representation. First,
the gallery images of all the subjects are preprocessed using DTCWT based illumination
normalization technique. It is very effective to retain the geometrical structures in the facial
image like the strength, orientation and contour. Then class-specific face model for all subjects
is constructed by applying PCA on DTCWT faces in the gallery. Thereby, face recognition
problem is defined as a problem of linear regression. This subspace representation helps to
capture the rich and redundant properties compactly with relatively few basis vectors com-
pared to a large number of training images. To handle the partial occlusion, sparse represen-
tation is used to represent the given probe image against all class models. This exploitation of
PCA subspace within the sparse representation framework significantly reduces the computa-
tion time for higher resolution face images. Finally, the decision is ruled in favor of the class
with minimum reconstruction error.

The remaining of this paper is organized as follows; Section II gives the DTCWT based
illumination normalization process. Then, construction of class specific dictionaries, PCA
subspace based sparse representation and proposed face identification algorithm are given in
Section III. In section IV, experimental results are presented. Finally, conclusion of our work is
drawn in section V.

Multimed Tools Appl (2016) 75:16073–16092 16075



2 Illumination normalization using DT-CWT

In this section, the DTCWT based illumination normalization technique and its effect on inter-
class difference is given.

2.1 Illumination-reflectance model and logarithm transform

In general, we denote images by two-dimensional functions of the form I(x,y). The function
I(x,y) can be characterized by two components (1) the amount of source illumination incident
on the scene being viewed and (2) the amount of illumination reflected by the objects in the
scene. These are called as illumination and reflectance components and are denoted by L(x,y)
and R(x,y) respectively. The two functions combine as a product to form I(x,y) [13, 15];

I x; yð Þ ¼ L x; yð ÞR x; yð Þ ð1Þ
Based on the model given in (1), the following two assumptions are made on reflectance

and illumination components. First, the reflectance component generally lies in the high
frequency band in the given signal I, due to its abrupt changes. Second, the illumination
component lies in the low frequency band of the given signal I, due its slow spatial variation.

Using the above assumptions, the goal is to extract the illumination invariant R(x,y), which
constitutes key geometrical structure in the facial image I(x,y). In general, extracting R is quite
difficult because of nonlinear variation of illumination. Equation (1) cannot be directly used to
operate on the frequency components of reflectance and illumination because the transform of
a product is not the product of transforms as shown below;

ℑ I x; yð Þ½ �≠ℑ R x; yð Þ½ �ℑ L x; yð Þ½ � ð2Þ

where ℑ[] represents the frequency domain transform. Therefore, a logarithm of input image
must be taken to approximate from the multiplicative reflectance-illumination model to the
additive reflectance-illumination model [22] as given below;

logI x; yð Þ ¼ logR x; yð Þ þ logL x; yð Þ: ð3Þ

Using the logI(x,y), the reflectance component is extracted by DTCWT based multiscale
illumination normalization technique.

2.2 Dual-tree complex wavelet transform

Conventional DWT mainly suffers from shift variance, and directional selectivity in denoising
and pattern recognition applications [25]. In order to address these problems, Kingsbury
introduced computationally efficient DTCWT [18]. Only the brief introduction of 2D DTCWT
is given here and the comprehensive coverage of DTCWT and its relationship with other
transforms can be found in [18]. For 2-D DTCWT, the separable implementation of 2-D
wavelet ψ(x,y)=ψ(x)ψ(y) is done by using filter-bank (FB) structure with associated complex
wavelets as given below;

ψ xð Þ ¼ ψh xð Þ þ jψg xð Þ
ψ yð Þ ¼ ψh yð Þ þ jψg yð Þ

�
ð4Þ
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The expression for ψ(x,y) is obtained as follows;

ψ x; yð Þ ¼ ψh xð Þ þ jψg xð Þ� �
ψh yð Þ þ jψg yð Þ� �

¼ ψh xð Þψh yð Þ−ψg xð Þψg yð Þ þ j ψg xð Þψh yð Þ þ ψh xð Þψg yð Þ� � ð5Þ

The all other 2-D real orientation wavelets are obtained by repeating the above procedure

with following 2-D complex wavelets: ϕ(x)ψ(y), ψ(x)ϕ(y), ϕ xð Þ ψ yð Þ, ψ xð Þ ψ yð Þ, and ψ xð Þ
ϕ yð Þ, where ϕ(x)=ϕh(x)+jϕg(x) and ϕ(y)=ϕh(y)+jϕg(y). The real parts of all these six oriented
2-D complex wavelets can be defined as

φi x; yð Þ ¼ 1ffiffiffi
2

p ψ1;i x; yð Þ−ψ2;i x; yð Þ� �

φiþ3 x; yð Þ ¼ 1ffiffiffi
2

p ψ1;i x; yð Þ−ψ2;i x; yð Þ� �
9>>=
>>;

for i ¼ 1; 2; 3: ð6Þ

where ψ1,1(x,y)=ϕh(x)ψh(y), ψ1,2(x,y)=ψh(x)ϕh(y), ψ1,3(x,y)=ψh(x)ψh(y), ψ2,1(x,y)=
ϕg(x)ψg(y), ψ2,2(x,y)=ψg(x)ϕg(y), ψ2,3(x,y)=ψg(x)ψg(y). The normalization factor 1ffiffi

2
p is used

to keep sum or difference as orthonormal operation. By the same way, the imaginary parts of
six oriented 2-D complex wavelets are defined as follows;

ξi x; yð Þ ¼ 1ffiffiffi
2

p ψ3;i x; yð Þ−ψ4;i x; yð Þ� �

ξiþ3 x; yð Þ ¼ 1ffiffiffi
2

p ψ3;i x; yð Þ−ψ4;i x; yð Þ� �
9>>=
>>;

for i ¼ 1; 2; 3: ð7Þ

where ψ3,1(x,y)=ϕg(x)ψh(y), ψ3,2(x,y)=ψg(x)ϕh(y), ψ3,3(x,y)=ψg(x)ψh(y), ψ4,1(x,y)=
ϕh(x)ψg(y), ψ4,2(x,y)=ψh(x)ϕg(y), ψ4,3(x,y)=ψh(x)ψg(y); ϕh(.) and ϕg(.) are the low pass
functions of upper FB and lower FB respectively along first dimension. ψh(.) and ψg(.) are
the high pass functions of upper FB and lower FB respectively along second dimension.
Equations (6) and (7) produce the six directionally selective wavelets for each scale of the 2D
DTCWT at approximately oriented angles of ±15ο,±45ο,±75ο. The impulse responses of real-
part of each complex wavelet obtained using Eq. (6) are shown in Fig. 1. In this work, we have
used the freely available DTCWT implementation by Cai and Li [5].

2.3 Illumination normalization algorithm

As the DTCWT holds better orientation selectivity, shift invariance, and less computation
characteristics, it can be more efficient in eliminating illumination effect when compare to
other representative methods. The block diagram of the DTCWT based illumination normal-
ization technique is given in Fig. 2. Initially, the input image to this block diagram is enhanced
by using the logarithm transform and then decomposed into three levels of frequency subbands
by employing DTCWT. The number of levels of decomposition is decided based on the length
of the filter coefficients and the dimension of the input image. The illumination component

Fig. 1 Impulse responses of six real valued directional wavelets associated with 2-D DTCWT obtained using
Eq. (6)
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responsible for degrading recognition performance is eliminated by zeroing up the low
frequency approximation subbands obtained at the highest level decomposition. Finally, the
reflectance component is extracted by applying the inverse DTCWT over the high frequency
directional subbands, followed by exponential transform on the reconstructed face image.
Fig. 3a and b show the different lighting images and the corresponding illumination normal-
ized images for Extended Yale-B dataset [10] and AR dataset [20] respectively.

Furthermore, in face identification problem, the illumination normalization step is mainly
intended to reduce the intra-class difference and increase the inter-class difference. To dem-
onstrate the ability of DTCWT illumination normalization step towards classification, we have
used all training images of two example subjects i.e. class A and class B from the subset 5 of
extended Yale-B dataset. Before and after illumination normalization, the training images of
both class A and class B are provided to PCA, and then projected onto first two factors given
by that dimensionality reduction method. Figure 4a and b show the training points projected
onto PCA subspace before and after illumination normalization respectively. It is very clear
that the separation between class A and class B after illumination normalization is superior.

3 Face identification using subspace based sparse representation

In this section, a new face identification algorithm is proposed using class specific face
appearance models and subspace representation based l1 regularization on illumination nor-
malized feature space.

3.1 Class specific face appearance model

In linear face representation approaches, it is assumed that the faces belonging to one subject
will lie in a linear subspace. Based on this principle, the proposed method uses PCA based
subspace representation technique to learn face appearance model for each subject on illumi-
nation normalized feature space. The illumination normalized training faces of each subject are
rescaled into same size feature vector f∈ℜd to learn the appearance model. Let N be the total
number of subjects and Di be the dictionary that contains face images of particular subject as
given below;

Di ¼ f 1;…; f ni
� 	

∈ℜd�ni ; i ¼ 1; ::::;N ; ð8Þ
where ni is the number of training images for each subject. Using PCA, linear subspace model
for each Di is learned as explained below. To normalize the feature vectors, each dictionary is
subtracted with their mean as

Logarithm  
Transform  

3-level 2D 
DTCWT 
decomposition 

Zero up the 3rd level low 

frequency subbands 

responsible for illumination 

Image 

reconstruction 

Exponential 

function 

Fig. 2 DTCWT based illumination normalization block diagram
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Fig. 3 Illustration of before and after illumination normalized sample input images of (a) AR dataset (b)
Extended Yale B dataset
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normalization
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Di ¼ Di−mi � 11�ni ; ð9Þ

where mi∈ℜd×1 is the mean of the ni observations in Di, and . The

subspace model of the each subject is obtained by directly decomposing the Di using
Singular Value Decomposition (SVD). The eigenvectors of the p

i
largest singular

values (i.e., diagonal elements) ξ1i
�

; ξ2i ;…; ξpii g of Di define the projection matrix as

given below;

Ui ¼ u1; ::::; upi
� 	

∈ℜd�pi ; ð10Þ

where p
i
is the number of principal components. The p

i
can be chosen by

pi ¼ arg min
k

Xk

j¼1

ξ ji

X
j¼1

ni

ξ ji

≥T ; k ¼ 1; ::; ni; 0≤T ≤1;

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð11Þ

where T is the predefined threshold. A larger T will lead to larger p
i
and correspond-

ing subspace will preserve the most variation of the Di. All the chosen principal
components are the basis vectors of the corresponding subspace and all are orthogonal
to each other. The learned subspace model of ith subject can be explained by the
projection matrix U

i
and the mean m

i
.

3.2 Face and noise factorization using subspace based sparse representation

Consider the probe image y∈ℜd×1, and it can be explained as given below;

y ¼ Uσþ e; ð12Þ
where σ indicates corresponding representation vector and e is error vector. In PCA,
the error vector e is assumed to be Gaussian distributed with small variance and
therefore σ is estimated as

σ ¼ UTy ð13Þ

By using σ, the reconstruction error can be approximated by ‖y−Uσ‖22. However,
this assumption is not valid when the given test face is significantly corrupted due to
occlusion. Hence, to estimate the sparse noise term successfully, along with face
templates, trivial templates are used in sparse representation based face recognition
as given in (14). Trivial template set is a vector that has only one nonzero element,
which explicitly codes the pixels being corrupted by noise or occlusion [29].

y ¼ A I½ � σ
e


 �
¼ Bc; ð14Þ
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where A is the matrix which contains target templates and I is the identity matrix that
represents trivial templates. The σ indicates corresponding target template coefficients
and e is the noise term which can be viewed as the coefficients of trivial templates.
By assuming that the probe image can be sparsely represented by target and trivial
templates, the ill-conditioned Eq. (7) can be solved via l1 regularization [29] as given
below;

min
c

1

2
y−Bck k22 þ λ ck k1 ð15Þ

where ‖.‖1and ‖.‖2denote the l1 and l2 norms respectively. The underlying assumption
of this method is that the error e can be modeled arbitrary but sparse noise, and
therefore it can be used to handle partial occlusion. However, in spite of its huge
success in handling partial occlusion in tracking and face recognition applications, it
suffers from huge computation drawback. Moreover, in this l1 regularization formula-
tion, the error term is approximated with the assumption that pixels are randomly
corrupted. So, for the realistic contiguous block occlusions caused by sunglasses, scarf
etc. this framework cannot factorize face and noise effectively.

To model the noise term effectively for contiguous block occlusions with less
computation time, fast l1 regularization is achieved by exploiting PCA subspace in
sparse representation framework. Therefore, the face recognition problem can be cast
as finding the nearest subspace to the probe image and handling partial occlusion with
trivial templates by

y ¼ U I½ � σ
e


 �
¼ Bc ð16Þ

where y∈ℜd×1 is an illumination normalized probe vector, U∈ℜd×p represents or-
thogonal basis matix (i.e. face templates), σ∈ℜp×1 indicates the coefficients of basis
vectors, e∈ℜd×1 give the error term, the λ is a l1 regularization parameter, and I∈ℜd×

d indicates an identity matrix for trivial templates. As e is assumed as arbitrary but
sparse noise, (15) can be rewritten as,

min
σ;e

1

2
y−Uσ−ek k22 þ λ ek k1 ð17Þ

To solve Eq. (17), let the objective function be,L σ; eð Þ ¼ 1
2 y−Uσ−ek k 2

2 þ λ ek k 1, and

the optimization problem is

argmin
σ;e

L σ; eð Þ s:t:UTU ¼ I ð18Þ

As there is no analytical solution for Eq. (18), σopt and eopt are solved using iterative
technique as given in [30]. By using Lemmas 1 and 2, the optimization problem (18), can be
solved efficiently as given in algorithm 1.

Lemma 1 Given eopt, the σopt can be obtained by σopt=U
T(y−eopt).

Proof If eopt is given, Eq. (18) becomes the minimization of J(σ), where J σð Þ ¼ 1
2 y−eopt

� ���
−Uσk 2

2. The solution for this least squares problem can be obtained via σopt=U
T(y−eopt).
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Lemma 2 Given σopt, eopt can be obtained from eopt=Sλ(y−Uσopt), where Sλ(x) is a shrinkage
operator, and defined as Sλ(x)=sign(x).(|x|−λ). λ is a regularization parameter and it can be a
small constant.

The sign function of x∈ℜ is defined as

sign xð Þ :¼
−1 if x < 0;
0 if x ¼ 0;
1 if x > 0:

8<
: ð19Þ

Proof If σopt is given, Eq. (18) becomes the minimization of G(e), where G eð Þ ¼ 1
2 e−k

y−Uσopt
� �k 2

2 þ λ ek k 1. For this convex optimization problem, global minimum can be

obtained by the shrinkage operator, eopt=Sλ(y−Uσopt).

Algorithm 1 Face representation using linear subspace and l1 regularization

Input: Probe image vector y, orthogonal basis vectors U, total number of iterations N,
termination condition T and regularization parameter .

1: Initialize e0 =0
2: for z =1: N
3: Obtain z via z = UT(y−ez−1)
4: Obtain ez via ez=Sλ(y−U z)
5: if |‖y−ez‖2

2−‖y−ez−1‖2
2|<T

6: break;
6: end
7: Output: opt and eopt

Using the algorithm 1, the given illumination normalized probe image is factorized
into target face and sparse noise image. The effectiveness of the proposed algorithm is
demonstrated in Fig. 5 using the example images of AR dataset with different kind of
illumination variations. In this figure, first column represents probe image, second
column represents illumination normalized image, third column represents extracted
target face and fourth column represents sparse error image. It can be seen from
Fig 5a that when a training image is given as probe image, the target face is exactly
reconstructed and intensity value of all the pixels in the sparse error image are zero.
Sparse error image generated from the true identity contains only intra-class difference
while the ones from incorrect subjects will not only contain the intra-class difference, but
also include a lot of detailed information that is the inter-class difference. In the case of
Fig 5b, the extreme illumination variation in the probe image is eliminated by illumina-
tion normalization step itself. On the other hand, when the given test image is very
different from the gallery image, the extracted noise image would contain all the intra
class differences like sunglasses, expression variation and shadows as shown in Fig. 5c
and d. It is very evident from Fig 5e that the proposed algorithm has handled the partial
occlusion and illumination variation simultaneously in very efficient manner.

After probe image factorization, the obtained representation coefficients σopt and eopt for
each subject, are used to calculate the residual error as given below;
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ri yð Þ ¼ y−Uiσi−eik k22 ð20Þ

Using ri, the class of the test face is identified as

identity yð Þ ¼ argmin
i

ri yð Þ ð21Þ

Using (20) and (21), the proposed face identification algorithm is given in algorithm 2.

Fig. 5 Illustration of face and noise factorization after illumination normalization using algorithm 1, for (a)
training image (b) drastic illumination variation (c) expression variation (d) occlusion, and (e) both illumination
variation as well as occlusion of AR dataset
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Algorithm 2 Proposed face identification algorithm

1: Input: Subject models Ui∈ℜd�pi ; i ¼ 1;…;N, illumination normal-
ized probe vector y∈ℜd×1

2: for i=1:N
3: Calculate opt and eopt for each Ui using algorithm 1
4: Calculate the reconstruction error ri(y) using (20)
5: end
6: Output: Identity yð Þ ¼ argmin

i
ri yð Þ.

4 Experimental results and discussion

We have validated the proposed method on two popular databases namely Extended Yale B
and AR datasets. The experiments are conducted using Matlab 2013 on a computer with
Windows XP operating system and Intel core 2 duo processor with 2.53 GHz clock. For each
experiment, the recognition rate of the proposed method is compared with that of the other
state of the art representative methods.

4.1 Extended Yale B dataset

The Extended Yale B dataset consists of 2414 frontal faces of 38 subjects taken under different
lighting conditions. The detailed description about this dataset can be found in [10]. Here,
subset 1 is used as training images and subset 2, 3, 4 and 5 are used as test images. The sample
images of all the subsets are shown in Fig. 3b. Table 1 shows the recognition rate of various

Fig. 6 Sample images of the 10 to 70 % artificially occluded subset 2 test images

Table 1 Recognition accuracy (%) for the extended Yale –B dataset

Method Subset

2 3 4 5

Eigenfaces + NN 89.91 37.58 5.32 3.08

Fisherfaces + NN 100 97.14 38.59 5.74

LRC [16] 100 100 83.27 33.61

SRC [17] 100 100 67.87 17.51

CRC-RLS[18] 100 100 90.68 45.10

SRPCA-weighted [20] 100 100 95.06 49.38

Proposed method 100 100 82.89 67.36
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methods for all subsets. As shown in this table, Fisherfaces + NN[13], LRC[16], SRC[17],
CRC-RLS[18], SRPCA[20] and proposed method have yielded 100 % recognition accuracy
against moderate light variations in subset 2 and subset 3. In case of severe light variations in
subset 4, the recognition accuracy of SRC falls to 67.87 % and LRC, CRC-RLS, SRPCA and
proposed method achieve good performance with above 80 % recognition accuracy. In subset
4, in most of the images, only half of the face is affected by the illumination and other half is
very clear. This fact makes the SRPCA to perform better by relying on one half of the very
discriminating information. However, in subset 5, most of the images, entire face is affected by
illumination and the SRPCA heavily suffers. The reason behind the lower performance of the
proposed method in subset 4 when compared to SRPCA is losing some discriminating face
features during illumination normalization. This is the common limitation of most of the
reflectance field estimation based illumination preprocessing methods. Interestingly, for ex-
treme light variations in subset 5, the proposed method achieves 67.36 % recognition accuracy
and distinguishably outperforms all other representative methods. In this case, the contribution
of the DTCWT based reflectance component extraction step in the proposed method is very
crucial for its stable performance.

To evaluate the robustness of the proposed method against the contiguous block occlusion,
subset 1 is used for training, and subset 2 is used for testing purpose. Like the experimental
settings given in [29], test images are simulated with different level of artificial block occlusion
from 10 to 70 % by inserting a Baboon image. Moreover, the location of the occlusion is
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Fig. 7 Recognition accuracy plot
of artificial occlusion experiment
on Extended Yale-B dataset

Table 2 Recognition accuracy (%) under different level of contiguous occlusion

Method 10 % 20 % 30 % 40 % 50 % 60 % 70 %

Eigenfaces + NN 85.53 81.58 75.22 57.89 44.3 25.66 28.51

Fisherfaces + NN 100 99.56 81.8 45.61 53.73 28.51 14.25

LRC[16] 99.34 98.03 94.74 72.15 49.12 22.59 8.55

SRC[17] 100 98.9 94.96 67.54 41.45 17.54 11.40

SRPCA-weighted [20] 99.78 99.56 96.92 99.12 95.40 83.99 60.53

Proposed method 99.78 99.34 99.12 98.90 96.71 87.71 57.23
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unknown to the algorithms. Figure 6 shows the simulated block occluded test images of subset
2 of an example subject.

Table 2 shows the recognition results of block occluded experiment for all the compared
algorithms. Figure 7 shows the recognition performance of block occlusion experiments for all
compared algorithms. It can be seen that, the proposed method significantly outperforms all
the representative methods in 10 to 60 % occlusion cases. Only in 70 % of block occlusion, the
proposed method yields less than 3 % recognition accuracy when compare to the nearest
competitor SRPCA-weighted. It is also observed in experiments that the recognition rate varies
based on the location of the block occlusion. If the block occlusion is inserted in the lower part
of the face, the recognition rate slightly increases, due to the availability of highly discriminant
eye features for recognition when compare to the relatively less discriminant mouth and nose
features. In our experiment, for an effective evaluation, the block occlusion is inserted in the
upper part of the face.

4.2 AR dataset

In this section, 100 subjects (50 male and 50 female) of AR dataset [20] is used to evaluate the
proposed method with different kind of experiments. Each subject has 26 images which are
captured in two different sessions. The training set for all the experiments conducted in this
section is shown in Fig. 8. It can be observed in the training set that only five images are used,
in which, images with illumination variations, extreme expressions and partial occlusions are
not included. Moreover, our experiments use minimum number of training images compared
to other representative methods. First, to individually evaluate the proposed method’s ability
against illumination variations, the test images are segregated into four different groups like
left side light variation (LL), right side light variation (RL), and extreme light variation (EL) as
shown in Fig. 9. For each group, 200 test images are used for evaluation. For face recognition,
compared to Discrete Wavelet Transform and Gabor wavelet Transform, DTCWT based
illumination normalization is shown to be yielding better results [6, 14]. To show the

Fig. 9 Testing images of a sample subject in AR dataset with (a) left-side light variation (LL), (b) right side light
variation (RL), and (c) extreme light variation (EL)

Fig. 8 Training images of a typical subject for experiments using AR dataset
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robustness of DTCWT against illumination variation, we have compared it with DCT based
illumination normalization technique along with the PCA subspace based sparse representa-
tion. Table 3 shows the recognition rate of the proposed method against the different test
groups and it can be seen that proposed DTCWT based method is obviously superior to the
DCT method. Although the proper number of low frequency DCT coefficients has been
truncated, its recognition performance is unsatisfactory when testing images are captured
under extreme lighting (EL) conditions. This indicates that DCT method is not suitable for
dealing with face images with large illumination variations. In the DTCWT based method key
facial features are retained using the directional subbands information. Without illumination
normalization, PCA subspace learning based sparse representation method performs very
poorly against extreme illumination variation. From the results given in Table 1 and 3, it is
very clear that the proposed method is robust against illumination variation due to darkness as
well as brightness.

To evaluate the robustness against block occlusion in AR dataset, two separate sets of 200
test images are selected. The first set contains the images with nearly 20 % of sunglasses
occlusion while the second set contains the images with nearly 40 % scarf occlusion as shown
in Fig. 10. Table 4 depicts the recognition rate for this experiment along with all other
compared methods. For the sunglasses case, the proposed method achieves 93.3 %, which is
considered as very competitive when compare to other results obtained by the representative
methods. Moreover, due to the modular approach, LRC could achieve higher recognition rate
of 96 %. If the occlusion spreads for more partitions, LRC method would fail as shown in
scarves case. In the case of scarf occlusion the proposed method outperforms SRPCA-
weighted method by a margin of 40.5 %. In SRPCA [30], classification is relies only on the
sparse error images and in case of test images with large contiguous occlusion, discriminative
information of the error images used for classification will decrease. From these observations,
it is clear that integration of DTCWT based illumination normalization step does not affect the
natural ability of the sparse representation framework against the partial occlusion. It also
proves that subspace learning based sparse representation can effectively factorize the target

Fig. 10 AR dataset test samples of (a) sunglasses and (b) scarves

Table 3 Recognition accuracy of
proposed method without and with
DCT and DTCWT based illumina-
tion normalization techniques on
AR dataset with different face
disguise

Method Illumination variation

LL RL EL

PCA subspace + sparse representation 69.5 80.5 6

DCT 95 97 80.5

DTCWT 98.5 99.5 94.5
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face and noise than conventional sparse representation method due to the class specific
dictionaries and PCA subspace learning based sparse representation.

Finally, to have more comprehensive observation of the ability of these methods against
coupling multiple variations simultaneously, a more challenging experiment is conducted. The
performance of proposed method is compared with those of LRC, SRC, SRPCA, and PCA
subspace based spare representation based methods. For this experiment another two separate
sets of 600 test images are selected. The first set contains all the sunglasses occluded images in
which most of them also have illumination variations. In the same way, the second set contains
all the scarves occluded images in which most of them also have illumination variations. The
example test images of a sample subject for this experiment are shown in Fig. 11. It can be
observed that the test images of real disguise are affected with illumination variation as well as
large contiguous occlusion.

The results of this experiment are shown in Table 5. It is clear that without illumination
normalization, the proposed PCA based sparse representation method outperforms other
representative methods. However, illumination variations in the test images affect its recogni-
tion accuracy. After DTCWT based illumination normalization, proposed method further
improves the recognition accuracy. For the sunglasses case, the proposed method outperforms
all other representative methods with significant margin. In the case of scarves, the proposed
method achieves 10 % better recognition rate when compare to its nearest competitor SRPCA.
Overall, the proposed method shows very robust performance against the real disguise when
compare to other representative methods.

Fig. 11 Example AR dataset test images with illumination variation as well as occlusion

Table 4 Recognition accuracy on
AR dataset with contiguous
occlusion

Method Sunglasses Scarves

Eigenfaces + NN 43.5 7.5

Fisherfaces + NN 38.5 67.5

LRC [16] 96 26

SRC [17] 87 59.5

SRPCA-weighted [20] 94 40

Proposed method 93.3 80.5
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The computation time requirement of the proposed and other representative algorithms for
face identification is presented in Table 6 using 2.53 GHz Intel Core 2 Duo processor. The
computational time required for the training is usually an offline process. The presented
computation time is measured for 100 subjects AR dataset with image size of 48×48 and
five training images per subject. To solve for l1 regularization in SRC method, SPArse
Modeling Software (SPAMS) package [19] and to solve SRPCA, Augmented Lagrange
Multiplier (ALM) algorithm software is used [28]. From the table 6, it is very clear that even
with DTCWT based preprocessing step, the proposed method takes very minimum computa-
tion time compared to other competitive methods. This indicates that the proposed method
might be very suitable for time critical face identification applications. However, one drawback
of this work is, in all the experiments face misalignment due to pose variation in test images is
not considered. In order to pre-align and crop the faces, facial landmarks obtained using Active
Shape Models approach can be used [17].

5 Conclusions

An efficient face identification method for simultaneous handling of illumination variation and
partial occlusion is presented by using DTCWT and PCA subspace based sparse representa-
tion. The good properties of DTCWT like approximate shift invariance, directional selectivity,
and fast computation are effectively harnessed to accurately extract the illumination invariant
geometrical structure of the face image. Then, partial occlusion is handled via factorizing the
probe image into target face and sparse noises by exploiting PCA subspace representation in l1
regularization with less computation. Experimental results show that structurally stable illu-
mination normalized images do not affect robustness of the sparse representation framework
against partial occlusion. Moreover, the proposed method achieves better recognition for
illumination variations due to darkness as well as brightness. To test the ability of the proposed
method against the real disguise, a challenging experiment is conducted by using the test
images affected with partial occlusion as well as illumination variation. Results show that the
proposed method significantly outperforms the other representative methods.

Table 6 Average computation time for different methods for an incoming probe image of size 48×48 pixels

Method LRC SRC SRPCA PCA subspace + Sparse representation Proposed method

seconds/probe image 0.041 24 18.4 0.11 0.46

Table 5 Recognition accuracy of
an experiment with illumination
variation as well as occlusion

Method Sunglasses Scarves

LRC 51 11.2

SRC 69.8 40.8

SRPCA-weighted [20] 73.3 58

PCA subspace + Sparse representation 82 62.3

Proposed method 87 68
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