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Abstract In this paper, we present a novel video stabilization method with a pixel-wise
motion model. In order to avoid distortion introduced by traditional feature points based
motion models, we focus on constructing a more accurate model to capture the motion in
videos. By taking advantage of dense optical flow, we can obtain the dense motion field
between adjacent frames and set up a pixel-wise motion model which is accurate enough.
Our method first estimates dense motion field between adjacent frames. A PatchMatch
based dense motion field estimation algorithm is proposed. This algorithm is specially
designed for similar video frames rather than arbitrary images to reach higher speed and
better performance. Then, a simple and fast smoothing algorithm is performed to make the
jittered motion stabilized. After that, we warp input frames using a weighted average algo-
rithm to construct the output frames. Some pixels in output frames may be still empty after
the warping step, so in the last step, these empty pixels are filled using a patch based image
completion algorithm. We test our method on many challenging videos and demonstrate the
accuracy of our model and the effectiveness of our method.
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1 Introduction

For amateurs, hand-held video camera is an easy-to-use tool to shoot videos. It can be conve-
niently used by people without any knowledge about photography, even a child. Therefore,
it is getting more and more popular in recent years. Meanwhile, the quality of videos cap-
tured with hand-held cameras is still much lower than the quality of videos captured using
professional devices. The main problem for videos captured by hand-held cameras is jitter.
Professionals use special equipments, such as dolly tracks and steadicams, to make the path
of camera smooth and under control. However, camera path of hand-held camera cannot be
well controlled because of shake of hands and movement of photographer. Jitter decreases
the quality of videos very much. Therefore, the technique of stabilizing a jittered video is
necessary, which is called video stabilization.

Morimoto et al. [21] abstract video stabilization into three steps: motion estimation,
motion compensation and image reconstruction. Prior video stabilization methods can be
generally divided into two categories based on the motion model they use in the first two
steps. The first class is 2D methods. In these methods, every frame is considered as a sin-
gle plane and a 2D transformation (usually affine or perspective) between two frames is
used to model the motion. The video is stabilized by smoothing the parameters of these
transformation matrices. These methods are generally computationally efficient because the
models they use are very simple. But on the contrary, these simple models cannot handle
videos with complex scenes well, such as scenes containing multiple planes or large depth
change. The second class is 3D methods. These methods recover the full 3D structure of the
scenes in the jittered videos. After that, videos can be easily stabilized by directly smooth-
ing the camera path or simply designing the camera path. 3D methods can stabilize videos
with complex scenes on which 2D methods may fail. However, this class of methods highly
depends on Structure from Motion (SfM) method to recover the 3D structure of the scenes.
Since SfM methods are usually very slow and not robust enough, 3D stabilization methods
cannot work on videos without enough 3D structure information and usually very slow.

Most previous methods set up a motion model depending on feature points correspon-
dences (trajectories). However, in the image reconstruction step, every pixel in the output
video frames, rather than only several feature points, should be assigned a value. In previ-
ous methods, homographies are wildly used to solve this problem. Many works use single
homography warping to generate output frames. This is a 2D assumption which suffers from
the disadvantages of all 2D methods, i.e. it is not capable to model complex scenes. In order
to improve the performance of single homograpy warping, Liu et al. [13] propose a new
warping method named content preserving warping (CPW). This is a warping method using
multiple homographies. It splits each frame into many grids and warps each grid using a
different homography. While being robust enough, this technique can generate more plau-
sible results than single homography warping. CPW makes an improvement in the image
reconstruction step but its motion estimation step and motion compensation step are still
based on feature points. Liu et al. [16] propose a method which introduces mesh-based idea
into motion estimation step. This method splits every input frame into grids in the first place
and then models camera motion with a bundle of camera paths, each of which belongs to a
grid cell. An optimization based smoothing algorithm is performed on this bundle of cam-
era paths and then the multiple warping method of CPW can be combined with this method
seamlessly. Compared to other works, this method greatly reduces the use of feature points.
Feature points are only used when extracting the motion of grids between adjacent frames
and feature points are matched only between adjacent frames.
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From the above we can see that recent methods are trying to avoid the disadvantage of
using feature points. [13] and [16] try to handle all pixels in the frames rather than only the
detected feature points. In fact, a feature points guided homography cannot represent the
motion of a whole frame well because the number of feature points are usually much less
than the number of all pixels in one frame. Homographies are used to warp all pixels in each
frame, but they are calculated only using a few feature points. Therefore, the performance
is not uniform in frames. It is better in area with more feature points but worse in area with
less feature points.

In this paper, we aim to stabilize jittered videos using a motion model which can rep-
resent the motion between frames more precisely than previous models based on feature
points. To this end, we propose a pixel-wise motion model which calculates the dense
motion field for every pair of adjacent frames. This pixel-wise motion model is based on
dense optical flow using nearest neighbour fields [1]. The corresponding position of one
pixel in another frame is calculated by finding the nearest neighbour patch. With the help
of dense optical flow, correspondences of all pixels between adjacent frames can be find
and thus the motion model is dense and uniform. Every pixel takes part in the stabiliza-
tion procedure, so their stabilized positions do not need to be approximated by other pixels
(warping using homographies). Therefore, this dense motion model is more precise than
models based on sparse feature points. In addition to the new motion model, we also pro-
pose a simple and fast smoothing algorithm, a pixel-wise frame warping algorithm and a
patch based image completion algorithm to fulfill the stabilization.

The main novelty of our work is that it stabilizes videos in a pixel-wise manner in the
whole stabilization process. [16] handles videos by a regular grid mesh ,which is the most
similar method to ours so far. In fact, our method can be considered as the extreme situation
of [16], i.e., the grid size is only one pixel. But the algorithm of our method is totally
different from [16] . The contribution of our method lies in the following aspects:

1. A novel dense motion estimation algorithm is proposed. Correspondence for every
pixel is searched from adjacent frames. Since there is strong spacial coherency between
adjacent frames, the searching range is greatly narrowed down by taking advantage
of it.

2. A pixel-wise frame warping algorithm is proposed. We use a weighted average strat-
egy to make most pixels in output frames get correct values. Some empty pixels may
still exist after warping. Finally, a simple patch based image completion algorithm is
proposed to fill them.

2 Related works

2.1 Video stabilization methods

According to the dimensionality of the motion model they use, previous video stabilization
methods can be divided into two categories: 2D methods and 3D methods.

2.1.1 2D methods

The basic assumption of 2D methods is that all the scenes are on the same plane. Under
this assumption, all pixels in one frame can be handled by one single transformation matrix.
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Some early methods such as [20] use a four-parameter rigid transformation and some meth-
ods such as [9] use a six-parameter affine transformation. Later 2D methods such as [5,
19] always use an eight-parameter perspective transformation because it is more flexible.
Litvin et al. [12] construct a chain of affine transformations among continuous frames. They
treat jitter as noise in the chain and propose a probabilistic model to filter the noise. This
method suffers from cumulative error obviously. With the increase of frame number, the
error becomes larger and larger. In order to avoid cumulative error, Matsushita et al. [19]
propose a local method that filters the motion of each frame only within a few neighbour
frames. Gleicher et al. [5] speculate users’ intention in operating the camera and carefully
design the transformations to fulfill the intentional motion rather than only simply filter-
ing the transformations. It assumes the video segments to be either static or moving and
calculates the transformation matrices using mosaic-based technique. This method can gen-
erate film-like effect. Similar with [5], Grundmann et al. [7] classify camera motion into
the following three categories: constant, linear and parabolic, depending on the high order
derivatives of trajectories. Then trajectories are smoothed using L1-optimization. Rather
than compensating inter-frame transformations directly, Lee et al. [11] seek the transforma-
tions that can make the trajectories as smooth as possible. Walha et al. [25] present a video
stabilization and moving object detection system based on camera motion estimation. Most
methods use SIFT [17] or KLT [23] to find and track feature points. Instead, Okade et al.
[22] use Maximally Stable Extremal Region (MSER) which is fast and robust for video
stabilization purpose.

Many recent methods, which also belong to 2D methods, directly calculate the stabilized
position of feature points. In order to avoid distortion, they take some different constraints
into consideration. Liu et al. [14] propose a video stabilization method based on an obser-
vation that smoothed trajectories should approximately lie in a low-rank subspace. They
enforce subspace constraints on the trajectories matrix to get the smoothed trajectories. In
order to avoid the reconstruction of 3D structure, Goldstein et al. [6] present a method
to smooth trajectories utilizing the constraint of epipolar geometry. Wang et al. [26] filter
trajectories while keeping similarity constrains among neighbour trajectories using trian-
gulation. Wang et al. [27] detect multiplane structure from videos and then stabilize every
plane independently. Liu et al. [16] make an improvement upon [13]. In this method, frames
are divided into grids immediately after trajectory extraction step and the motion of grids
are calculated using the motion of trajectories. Not only the warping step but also the
stabilization step is applied using multiple homographies.

2D methods are usually fast and robust, but they cannot handle videos with complex
scenes because of the single plane assumption. If the scene is constructed by more than
one plane, the motion between frames cannot be modelled using only one homography.
In contrast, the motion model of our method is much more flexible. Since we deal with
every pixel separately, the motion between two frames is modelled using dense optical flow.
Therefore, no matter how complex the scene is, our method can handle it well.

2.1.2 3D methods

3D methods recover the full 3D structure of the scene and the camera motion. Videos can be
stabilized easily by smoothing or planning the path of camera directly. Zhang et al. propose
a 3D video stabilization method [28]. It requires intrinsic and extrinsic parameters of the
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camera of every frame as input of stabilization step and calculates the stabilized camera
parameters using optimization. Liu et al. [13] propose a new warping method in order to
generate perceptual plausible output frames. This method divides every frame into grids and
applies spatially-varying warps according to the smoothed trajectories. Zhou et al. propose
another 3D method [29]. It detects planes from videos and improves [13] to achieve higher
performance on videos with multiple planes. Chouvatut et al. [3] estimate camera motion
and reconstruct human face from a video sequence.

If the dense 3D structure of the scenes can be recovered, 3D methods can generate results
easily. However, it is too difficult to recover dense 3D structure from videos. In fact, nearly
all previous 3D methods recover only sparse 3D structure, except that Liu et al. [15] use a
depth camera to get additional dense depth information. Dense optical flow is also used in
[19], but it is only used to find the 2D transformation matrix between two frames. Recently,
Liu et al.[24] propose a method which also stabilize videos in a pixel-wise manner. Instead
of smoothing trajectories, this method smooths pixel profile, which collects motion vectors
at the same pixel location, to stabilize jittered videos.

3D methods can generate many satisfied results, but they are usually not robust enough.
They strongly depend on Structure from Motion (SfM) methods, which are used to recover
the 3D structure of the video. However, even state-of-art SfM methods may fail in some
situation, leading to failure cases in 3D video stabilization methods. On the contrary, our
method depends on dense optical flow, which seldom fails. Therefore, our method is more
robust than 3D methods.

2.2 PatchMatch based dense optical flow

Optical flow is a basic and important technique in computer vision which has been studied
for a very long time. Sparse optical flow methods extract and track feature points in videos,
while dense optical flow methods do that for every pixel. In sparse methods, only highly
reliable points are chosen as feature points, so the number of feature points are much less
than the number of all pixels. There is a large number of works on optical flow. Here we
only discuss some of them which are strongly related to our work.

PatchMatch [1] is an algorithm to match similar patches between a pair of images.
For one patch in one image, it can find the most matched patch in another image by cal-
culating Nearest-Neighbour Field (NNF). Instead of using a naive brute force searching
algorithm, [1] proposes a fast searching algorithm. This algorithm is based on an obser-
vation that since the image is continuous, the displacements of best matches of neighbour
patches should also be in the neighbour. Block matching is also used for motion estima-
tion. Block based motion estimation can also be used. Some fast techniques are proposed
in [4].

PatchMatch [1] is speeded up by many following methods. Korman et al. [10] use hash-
ing to make information propagate faster. He et al.[8] use Propagation-Assisted KD-Trees
to avoid the time-consuming backtracking in traditional tree method. PatchMatch [1] is fur-
ther used to compute dense optical flow. Chen et al. [2] use NNF of PatchMatch to compute
an initial motion field and refine it as a motion segmentation problem. PatchMatch Filter
[18] combines PatchMatch-based randomized search and efficient edge-aware image filter-
ing together to get a state-of-the-art dense optical flow algorithm with high accuracy and
speed.
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3 Our approach

3.1 Overview

Given a jittered input video which consists of n frames, we denote the input frames as
{Ii}, i ∈ [1, n]. We assume that the size of the frames is h by w, then every pixel can be
denoted by its coordinate x = (x, y), x ∈ [1, h], y ∈ [1, w]. The output of our method is a
stabilized video which consists of n frames denoted as {Oi}, i ∈ [1, n].

The pipeline of our method is shown in Fig. 1. We can see that our method mainly
consists of four steps. The first step is motion estimation step. For every frame in the input
video, we detect the motion of every pixel between this frame and each adjacent frame to
form a dense motion field. For every pixel x in frame Ii , we find the corresponding pixel in
frame Ii−1 and denote the position of the corresponding pixel as Ci−1

i (x). Similarly, we also
find the corresponding pixel Ci+1

i (x) in frame Ii+1. In order to achieve high performance
and efficiency, we propose a PatchMatch based dense optical flow algorithm which focuses
on adjacent video frames with strong spacial coherency.

The second step is motion smoothing step. In this step, we calculate the stabilized posi-
tion Si(x) for every pixel x in input frame Ii . Similar to smoothing a trajectory, low-pass
filters can be used. In our experiments, Gaussian filter is used for simplicity. Although we
only know the motion between adjacent frames, we can calculate the motion between every
two frames by joining the motion of every two adjacent frames between these two frames.

The third step is frame warping step. After the two steps above, we have known the
stabilized position of every pixel in input frames. In order to construct the output frames, we
need to warp Ii to Oi using these correspondences. If the stabilized positions are all integers,
this step can be easily done by directly copying the values. But since the original integer
coordinates are smoothed in the second step, the stabilized positions may not be integers.
So we use an weighted average algorithm inspired by bilinear interpolation to calculate an
average value for every pixel in output frames.

(a) Step 1: Motion estimation

(b) Step 2: Smoothing (c) Step 3: Frame warping

(d) Step 4: Image completion

Fig. 1 Algorithm pipeline
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The last step is image completion step. It cannot be guaranteed that all the pixels in output
frames are assigned a value in the third step, so we propose an image completion algorithm
to fill the empty pixels. Since the number of empty pixels are very small compared to the
number of all pixels, we can calculate the corresponding position in input frame for every
empty pixel using a patch based algorithm. Corresponding pixel’s value is copied to fill the
empty pixels.

3.2 Motion estimation

In this section, we describe the dense optical flow based motion estimation algorithm in
detail. For every pixel x in every input frame Ii , the goal of our motion estimation algorithm
is to find the corresponding positions in Ii−1 and Ii+1:

x → Ci−1
i (x)

x → Ci+1
i (x) (1)

Denote the patch centering at x in Ii as Pi(x). For every pixel x in Ii , we get the
corresponding pixel in Ii−1 by searching for the nearest neighbour patch for the patch Pi(x):

Ci−1
i (x) = arg min

y∈Ii−1
||Pi(x) − Pi−1(y)|| (2)

|| · || denotes the L2 norm. Obviously, it is not practical to do this search exhaustively.
Since most area of an image is continuous, spacial coherency constraint should be hold.
Equation (2) is improved to:

Ci−1
i (x) = arg min

y∈Ii−1
(||Pi(x) − Pi−1(y)|| + w ·

∑

x′∈N(x)

||Ci−1
i (x′) − y||) (3)

where N(x) contains the four neighbour pixels of x and w is a weight to balance the data
term and smoothing term.

It is very difficult to solve (3) directly. PatchMatch [1] uses an iterative strategy. In every
iteration, it searches two patches according to its two neighbour pixels and a random patch.
Result is updated by the best one. This strategy greatly reduces computation, but since
PatchMatch is designed for two arbitrary images, the searching range is still too wide for
adjacent frames.

We still take advantage of the iterative strategy of PatchMatch. Moreover, we greatly
narrow down the searching range for every pixel based on the following observation: it can
be intuitively observed that, if two pixels are neighbour in one frame, their corresponding
pixels in the other frame will be very near, usually within several pixels. Since two adja-
cent frames are captured almost at the same time under the same scene (except for sudden
scene change, which is generally not considered in video stabilization methods), the motion
between these two frames approximates to translation. It is obviously that two neighbour
pixels are still in neighbour after a translation motion.

Now we explain our motion estimation algorithm in detail. Assuming we are dealing
with frames Ii and Ii−1.

1. At first, we initialize the dense motion field Ci−1
i (x) with random value and run original

PatchMatch for 1-2 iterations. After that, a large number of pixels in Ii are correctly
matched to Ii−1. Though not all pixels are matched correctly, the overall motion can be
detected, which is used to further refine the motion field.
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2. Next, we calculate the average motion for every pixel using neighbour pixels:

C
i−1
i (x) =

∑
y∈N(x)C

i−1
i (y)

|N(x)| (4)

If ||Ci−1
i (x) − Ci−1

i (x)|| > th, we use C
i−1
i (x) to replace Ci−1

i (x). |N(x)| denotes the
element number of N(x) and th is set to 5 in our experiments.

3. Then we perform a modified version of PatchMatch. In this process, the window of
random search is limited to a small window around Ci(x)(30 × 30 in our experiments)
and we use the energy term in (3) instead of (2) to calculate distance between two
patches.

4. Repeat step 2 and 3 for 3-5 times to get the final dense motion field.

3.3 Smoothing

When the motions of all pixels are known, the smoothing step is carried out to get the
stabilized position of pixels. In fact, any low-pass filter can be used and we use simple
Gaussian filter in our experiments.

According to Section 3.2, for every pixel at x in frame Ii , we know the corresponding
pixel in Ii+1 is at Ci+1

i (x). Since we also know that the corresponding pixel for x′ in Ii+1

is at Ci+2
i+1 (x′) in Ii+2, we can calculate the coordinate of corresponding pixel for pixel at x

in frame Ii as Ci+2
i+1 (Ci+1

i (x)) in frame Ii+2. Generally we can propagate the motion to get
the correspondence of this pixel in any frame. For example, the coordinate of corresponding
pixel in frame Ij (j > i) is:

C
j
i (x) = C

j

j−1(C
j−1
j−2 (· · · Ci+2

i+1 (Ci+1
i (x)) · · · )) (5)

For correspondence in frame Ik(k < i), the equation is similar:

Ck
i (x) = Ck

k+1(C
k+1
k+2(· · ·Ci−2

i−1 (Ci−1
i (x)) · · · )) (6)

For every pixel x in frame Ii , we calculate its stabilized position using Gaussian filter as
follow:

Si(x) =
∑

j∈W(i)

C
j
i (x) · g(j − i) (7)

where W(i) = {j |i − n ≤ j ≤ i + n} is the indices of neighbour frames of frame Ii

and g(k) = 1√
2πσ

e−k2/2σ 2
is the Gaussian kernel. n controls the size of neighbour frames.

A larger value of n leads to more smoothed results but lower speed. We find that n = 15 is
enough for most videos. σ controls the strength of smoothing and we set it to 50.

Some previous methods, such as [14, 26] smooth trajectories while keep some constraint
between trajectories. However, we smooth every pixel independently without any constraint
and get quite good result (please refer to Section 4 and accompanying video). This is
attributed to the patch based dense motion estimation algorithm in Section 3.2. In fact, the
relationships between neighbour pixels have been constrained in the motion estimation step
by using patches. Similar to the situation between two adjacent frames in Section 3.2, the
motion between Ii and Oi are nearly translation, so neighbour pixels are very likely to be
neighbour after stabilization. Therefore, the distortion in output frames is too small to be
observed.
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3.4 Frame warping

Now we want to generate every stabilized frames Oi . We need to warp Ii to Oi using the
correspondences of all pixels. A simple consideration is to copy the value of pixel x in Ii

to the position Si(x) in Oi . But unfortunately, Si(x) is the result of Gaussian smoothing,
which is usually not integer, so it does not correspond to a pixel directly. We tried to use the
rounded value of Si(x) so that we can copy the pixel value directly, but from Fig. 2a, we
can see that many pixels cannot be assigned a value because of the discontinuity of using
rounded values. Instead, we use a weighted average algorithm to calculate the pixel value
for every pixel x′ in Oi . In Fig. 2b, we can see that most of these pixels are assigned a value
using our algorithm.

In an ordinary warping process (such as affine or perspective warping), the corresponding
position S−1

i (x′) (not integer) in input frame Ii for every pixel x′ (integer) in output frame Oi

is known, which is the inverse situation to our problem. Bilinear interpolation is generally
used in this situation to get the value for every pixel in output frame using four nearest pixels
in the input frame. Inspired by bilinear interpolation, we make every pixel x in Ii contribute
to four pixels in Oi nearest to Si(x). Every pixel x′ in Oi may be affected by more than one
pixels in Ii , so a weighted average value is calculated. The weight in our algorithm is the
same as in bilinear interpolation. The algorithm detail of this step is shown in Algorithm 1.
Note that the second output S−1

i (x′) is used in the image completion step (Section 3.5).

3.5 Image completion

Some pixels in the output frames may still not be assigned a value after the warping step.
From Algorithm 1 we can see that our warping method is applied on every pixel in the input
frames rather than directly on pixels in output frames. Every pixel in input frames affects
four nearest pixels in output frames but it is not ensured that all pixels in output frames
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(a) (b)

Fig. 2 Performance of weighted average algorithm in frame warping. a Result using rounded values. Many
pixels remain empty. b Result using weighted average values. Most pixels are filled

can be affected. Fortunately, the number of these empty pixels is usually very small. In our
experiments, the number of empty pixels is usually less than 1 % of the frame pixel number.

In order to generate complete output frames, an image completion step is proposed. Our
image completion algorithm is also based on PatchMatch. The PatchMatch method[1] is
originally designed for structural image editing, including image completion. In fact, we can
directly use PatchMatch or any other image completion algorithm to fill the empty pixels.
But since we have already known the correspondences of most pixels between each pair of
input and output frame, we can simplify this procedure using these information.

In Algorithm 1, the second output is calculated for assisting image completion. S−1
i (x′)

is approximate original position of every pixel x′ in Oi if it is not empty. This is not the
exact value but it can narrow down the searching range for empty pixels nearby. Firstly we
find out all empty pixels. We identify empty pixels by setting empty(x) = true according
the output of Algorithm 1:

empty(x) =
{

T rue, S−1
i (x′) = 0

False, Otherwise
(8)

Then we find the corresponding patch in Ii for every empty pixel (in fact, the patch centering
at this pixel) in Oi with least distance and copy the center pixel’s value to fill the empty
pixel. In order to find the patch with least distance, we simply apply PatchMatch between
Oi and Ii , but we add following limitation to make it work more efficiently:

1. The values of non-empty pixels should not be modified, i.e. the PatchMatch algorithm
are applied only on empty pixels. This greatly reduces computation.

2. We use S−1
i (x) as initial value for every pixel x in Oi rather than a random value. Values

of non-empty pixels has been calculated in Algorithm 1 . For every empty pixel x, it is
initiate as average of values of neighbour non-empty pixels:

S−1
i (x) =

∑
y∈Nne(x)(S

−1
i (y))

|Nne(x)| (9)

Nne(x) = {y|||y − x|| < th, empty(y) = f alse} and |Nne(x)| is the element number
of Nne. th is set to 5 in our experiments.

3. The window of random search is restricted to a window centering at the initial position
S−1

i (x). Because of the spacial continuity of video frames, the correspondence of every
empty pixel ought to be near neighbour pixels so we do not have to search patches far
away. The window of random search is set to 30 × 30 in our experiments.

4. Note that the patch centering at one empty pixel may contain other empty pixels. These
pixels are ignored when calculating patch distance.

Figure 3 presents some frames before and after our image completion step.
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Fig. 3 Performance of image completion algorithm. Top: Frames before image completion. Some pixels are
empty (black pixels in red circles). Bottom: Frames after image completion. All pixels get appropriate values

4 Results and comparisons

We have tested our algorithm on many different videos, which cover a variety range of
scenes, such as indoor and outdoor scenes. All videos used in our experiment are captured
by hand-held cameras and there is obvious jitter in all videos. Many successful results show
that our method is effective and robust. In Fig. 4, we show the frames of some results.
Since videos can not be shown in this paper, please refer to accompanying videos. We
also compare our method with some previous methods. We discuss the comparison in this
section.

Comparison with PatchMatch The algorithm of motion estimation step in our method
is based on PatchMatch. PatchMatch can find nearest neighbour patches very quickly.
Although it takes spacial coherency into consideration, it does not force this constraint.
However, in our experiment, we find that spacial coherency is very important in stabi-
lization. So we force this constraint in our motion estimation step. Figure 5 shows the
comparison of our method and PatchMatch on one frame. Figure 5a and b shows the

Fig. 4 Some results of our method



15950 Multimed Tools Appl (2016) 75:15939–15954

(a) (b)

(c) (d)

Fig. 5 Comparison with PatchMatch. a Spacial coherency energy of result of PatchMatch. b Spacial
coherency energy of result of our motion estimation algorithm. c Final stabilization result after (a). d Final
stabilization result after (b)

spacial coherency energy (the second energy term in (3)) of the matching results of Patch-
Match and our algorithm respectively. Whiter pixel indicates larger energy at that position.
We can obviously see that the spacial coherency energy is much smaller in our algorithm.
The final stabilization results using these two algorithms are shown in Fig. 5c and d and our
result is also much better.

User study A user study is conducted to compare the performance of our method with
other methods. Two previous methods are used in this user study: one of them[19] uses
single homography warping, and the other one [16] uses multiple homographies warping.
10 sets of videos are used and each video set consists of an original shaky video and 3
stabilized results (including results of our method and the two methods above). Each set of
videos is displayed to the 78 participants and they are asked to give a score between 0 and
100 for every stabilization result. Better stabilization performance gets bigger score. The
results are displayed randomly and anonymously to the participants. The snapshots of ten
shaky videos and the average scores of the 10 sets of videos are shown in Fig. 6. Some
detailed information of the 10 shaky videos is shown in Table 1.

Fig. 6 User study. Top: Snapshots of ten shaky videos. Bottom: Scores of ten sets of stabilized videos using
[16, 19] and our method
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Table 1 Information of shaky
videos used in user study Duration Frame rate Format Resolution

v1 14s 30 avi 800 × 450

v2 8s 29 mp4 640 × 360

v3 12s 29 mp4 640 × 360

v4 16s 29 mp4 1280 × 720

v5 17s 50 avi 640 × 360

v6 12s 30 avi 640 × 360

v7 8s 29 mp4 1280 × 720

v8 15s 29 mp4 1280 × 720

v9 9s 30 avi 640 × 360

v10 9s 30 avi 640 × 360

From Fig. 6 we can see that [19] gets the lowest scores in all cases and the scores of [16]
are obviously higher than [19]. The scores of our method are very close to those of [16].
Although the scores of our method are a little lower in most cases, the difference of visual
effect is too small to be perceived. Based on our experience, the difference in stability of
two videos can hardly be distinguished by human eyes if the difference in scores is less than
10. In the user study, participants are asked to give an accurate score to every video, so they
may watch every video for many times carefully before giving the scores. In practice, when
the videos are watched normally for only once, their performances are quite comparable.
This can be easily understood by taking a glance at the demo we proposed together with
this paper. The comparisons between our method and these two categories of methods are
shown below.

Comparison with methods using single homography warping Single homography
warping is used widely in early methods, especially in 2D methods, such as [5, 19]. These
methods are based on single plane assumption, so they cannot handle videos with complex
scene well. Different from these methods, our method directly handle every pixel separately
no matter whether they are on the same plane or not. From Fig. 6 we can see that our method
gets much higher scores than [19].

Comparison with methods using multiple homographies warping Multiple homo-
graphies warping is proposed in order to avoid the disadvantage of single homography
warping. Different homographies are used in different area in each frame. This kind of
method includes [13, 16] and [26]. A step further, our method calculate the stabilized
position for every pixel in the frames, which generates comparable results to state-of-art
methods. From Fig. 6 we can see that the scores of our methods are very close to those
of [16].

Quantitative evaluation It is a difficult problem to evaluate the stability of a video using
quantitative metric. In most previous methods, there are only subjective evaluation or com-
parisons. In [16], three metrics are proposed to evaluate the quality and stability of result
videos. However, the stability metric of [16] require the bundled camera paths calculated in
this method, which is not suitable for our method. We propose another metric that is suit-
able for other methods. Between each pair of adjacent frames, the correspondence of every
pixel is already known. The distance of correspondence pixels is the motion of that pixel.
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Table 2 Motion in videos before
and after stabilization Origin [19] [16] Our

v1 4.8 2.3 1.3 1.4

v2 3.5 2.0 1.3 1.3

v3 7.6 3.2 1.2 1.3

v4 9.8 4.0 1.6 1.5

v5 4.4 2.5 2.0 2.1

v6 1.0 0.9 0.8 0.8

v7 5.8 1.7 1.0 0.9

v8 4.3 1.9 1.1 1.0

v9 8.9 3.2 1.9 2.0

v10 5.5 2.7 1.7 1.6

We use the average motion of all pixels in a video to represent the motion of the video. The
motion data of original videos and result videos of our method and [16, 19] are shown in
Table 2. We can see that the motion of shaky videos is greatly reduced using our method.

Limitation The major limitation of our method is the low computation speed. Video pro-
cessing usually costs much time since a video contains many frames. Although all the four
steps of our method do not cost too much time, the total time cost to stabilize a video is quite
large. Another limitation of our method is that it does not works well on moving objects
because the motion of moving objects is not regular and is difficult to estimate.

Future work One future work is to speed up this method. The high precision of our
method slows down the computation speed. Maybe we do not need to handle every pixel so
that the computation burden can be reduced. Besides, we need to improve the performance
on moving objects. One consideration is to pick out move objects from video and handle
them in a different way. So far, there is not a widely accepted numerical standard to evaluate
the stability of videos. Therefore, the evaluation of results and comparison between differ-
ent methods are accomplished by human eyes at most time. In order to avoid subjective
evaluation, a numerical stability evaluation method is strongly needed.

5 Conclusions

In this paper, we present a novel pixel-wise video stabilization method. Instead of using
model based on sparse feature points, dense motion field is used to model the motion
between adjacent frames . A patch based motion estimation algorithm is proposed to get the
dense motion field, followed by an Gaussian smoothing step. Frames are warped using an
weighted average warping algorithm and empty pixels are filled using a patch based image
completion algorithm. Our method can handle videos with complex scenes well. Many
successful results show the effectiveness of our method.
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