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Abstract Accurate and fast depth map acquisition and enhancement is an important issue in the
area of computer vision and image processing. In this study, we present a novel method for
enhancing noisy depth maps using adaptive total variation minimization, which facilitates noise
smoothing and boundary sharpening for a given depth map image but without previous infor-
mation.We filter the noise in the depth mapwith a refined total variation minimization technique.
Our experimental results demonstrate that the proposed method outperforms other competitive
methods in both objective and subjective comparisons of depth map enhancement and denoising.

Keywords Image denoising . Total variationminimization

1 Introduction

A depth map is defined as an image that contains information related to the distance of object
surfaces from a viewpoint. Depth maps are widely used in many techniques including robotics,
three-dimensional (3D) television, and interactive view interpolation. Passive stereo and active
depth sensors are employed in many applications to facilitate the rapid acquisition of real-time
depth maps of dynamic scenes [10, 26]. Thus, the development of an autonomous system
capable of understanding the shape and location of a target object within a depth map is an
active research area in the field of computer vision and image processing [10, 11, 19, 26].
Kinect, which was designed by Microsoft for computer gaming, is a popular alternative to
expensive laser scanners in video surveillance, robotics, and forensics applications [27]. Kinect
sensors provide depth and color images simultaneously at frame rates up to 30 fps. The
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integration of depth and color data yields a colored point and each frame may contain 300,000
points. The characteristics of the data captured by Kinect sensors have attracted the attention
from other fields including mapping and 3D modeling. However, the high-level surface
geometry must be inferred from noisy point-based data to generate 3D models for use in
various applications, but connecting neighboring points obtains noisy and low-quality meshes,
thereby leading to occlusions, shadowing and the generation of erroneous regions during depth
estimation. Thus, to separate the layers of the acquired depth map in an effective manner, it is
necessary to remove the noise and to sharpen the boundary [25].

The resolution of a depth map is lower than that of a color image because of noise degradation
during the depth data acquisition process. Consequently, numerous approaches have been
proposed for depth map enhancement to remove the noise and retain the layers of the given
depth map. However, most of these approaches are affected by the same problems, which are
caused when focusing on monoscopic color image enhancement, including spatial resolution
enhancement, denoising, and sharpening. These approaches continue to produce problems when
enhancing the quality of the depth map because they use the color and depth images jointly to
improve the quality, or they require large numbers of training patches for learning-based depth
map enhancement. Therefore, these methods are highly dependent on the quality of the color
image, training patches, and applications. To overcome these drawbacks and to improve the
performance of depth map enhancement without prior information about the given depth map, we
propose a novel method called adaptive total variation minimization (ATVM), which facilitates
both noise smoothing and boundary sharpening. The proposed method is in fact obtained by
combining the moving least squares (MLS) and TV minimization methods. The MLS model
provides very satisfactory results for image reconstruction but weak against outliers. In contrast,
the process of minimizing TV eliminates outliers effectively since outliers make large variation
values. Thus, by incorporating the TV regularizer into the MLS model the solution becomes to
achieve a higher order approximation than that of the conventional TV and MLS methods. We
filter the noise in the depth map using a refined total variation minimization (TV) minimization
technique that uses edge-preserving and noise reduction smoothing filters [23].

2 Related work

Many previous studies have proposed conventional two-dimensional image enhancement
approaches in the field of computer vision and pattern recognition [1, 6, 23]. In particular,
BM3D is very popularly used to remove the noise from a given image, but it require the
statistical variance of the noise to effectively remove the noise in prior. The conventional
techniques used to enhance the contrast, sharpness, and color vividness in an image are applied
directly during depth map enhancement, where local adjustments are made to increase the
amount of high frequency components [21]. Previous approaches have achieved denoising and
image sharpening by decreasing or increasing the high frequency components according to the
local image characteristics [10, 21]. In particular, Subedar et al. [1] and Kim et al. [12] used
high pass filters to enhance the depth-based sharpness, as well as depth estimation and contrast
enhancement. In particular, Kinect-based depth map enhancement and denoising researches [9,
21] received numerous concerns as the preprocessing to analyze the 3D scene and human
motion analysis. The KinectFusion [16] was also designed to enhance the quality of depth map
using multiple depth map images. However, these previously proposed depth map enhance-
ment algorithms used the normal light image, and the enhanced image were obtained by adding a
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depth-weighted high pass-filtered color image to the original image [21]. This approach has the
limitation that it cannot remove the noise from an unknown depth map image without prior
information. Eisenmann and Durand [7] proposed a cross-bilateral filter, where they modified the
bilateral filter and computed the edge-preserving term as a function of the depth map image.
However, their method preserved edges that did not actually appear in the noisy input depth map
image. Eisenmann and Durand [7] replaced the intensity value of each pixel in an image with
weighted average intensity values based on nearby pixels. PDE-based denoisingmethods based on a
variational approach of energy functional minimization have also been used for image smoothing
with edge preservation. A popular variational denoising method is the TV minimizing process of
Rudin-Osher-Fatemi [20]. According to previous image restoration studies, TV regularization has
the effect of preserving salient edges and removing noise. However, if the variation minimizing
effect is too strong, the smooth regions become flat or constant, thereby yielding a restored image
that looks unnatural. This is known as the staircase effect [18] and it is primarily attributed by the fact
that the TV minimization method estimates the image using a piecewise constant approximation.
Thus, several variants of the TV function have been proposed to avoid the staircase effect and to
obtain a higher-order approximation of the reconstructed image [3, 5, 17]. TheMLS [2, 14] or kernel
regression [24] methods, where the optimal fitting is expressed as a linear combination of polyno-
mials, have been proved to be quite useful in image interpolation as well as denoising and super-
resolution [22]. However, MLS based algorithms are weak against noise, since, in general, least
squares methods are weak against outliers. Also, when interpolating images across edges, some
artifacts (blurring or ringing) are produced into the result images.

In this study, we employ an ATVM technique that has high accuracy to preserve the details
of the observed depth map. To preserve strong edges while smoothing noise, we add a TV
regularization term to the moving least squares method, and use weight functions that consider
the similarity of the local areas in the evaluation and the reference positions.

3 ATVM-based depth map enhancement

Let I:={I(i,j):i=1,…,n1,j=1,…,n2} with positive integers n1 and n2. Put [1,…,n1]×[1,…,
n2]=[Χ1,Χ2,Χ3,..,ΧN]. Then the observed depth map image I can be treated as a discrete
sampling of a function at a point set {Χ1,..,ΧN} in a domain Ω⊂ℝ2, where N is the size of
the image. If the given image is contaminated by noise during the image acquisition process,
we may write I as I(Χl)=f(Χl)+εl, l=1,…,N, where f(Χl) is the value of an underlying function f
and εl indicates the additive noise at the location Χl. The denoising method used to construct a
denoised image from a depth map image is introduced below.

3.1 Total variation minimization method

For a given noisy image I, the TV minimization technique [4, 15] generates a denoised image Î
by solving the following minimization problem

Î ¼ argmin
u

u−Ik k22 þ μ uk kTV ð1Þ

where uk kTV ¼ ∫
Ω
∇uj jdΧwith the gradient operator∇. The second term in Eq. 1, ‖⋅‖TV is called the

total variation norm, and the solution of the minimization problem has the property of preserving
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sharp edges in images while removing noise. This is a desirable property for images because the
visual quality of an image depends greatly on the preservation of edges. However, this TV scheme
processes the observed image to obtain a piecewise constant image, which exhibits many false jump
discontinuities and is visually unpleasant. This is mainly attributable to the fact that the TV
minimization variation method approximates an image with a first-order accuracy.

3.2 Adaptive moving least squares method with a total variation minimizing
regularization term

In this section, we suggest an improved TV minimization approach, which is formulated
specifically for depth map image denoising.

We employ the adapted least squares technique with the total variation regularization term in
[13]. Let I be a given reference image defined on a domainΩ and letXo be an evaluation point in
Ω. We obtain a solution Î(Xo) as a denoised image by constructing local polynomial of degreem
inℝ2, p Χð Þ :¼ pXo Xð Þ and evaluating p atXo, i.e., Î(Xo):=p(Xo). The polynomial can bewritten
as p Xð Þ :¼ ∑

αj j1 ≤m
cαX α. For example, if m=2,α∈{(0,0),(1,0),(0,1),(2,0),(1,1),(0,2)}. Spe-

cifically, the coefficients cα are obtained by minimizing the following energy functional:

argmin
p∈Πm

XN

l¼1

�
p X lð Þ−I X lð Þj j2w Xo;X l; Ið Þ þ λ ∇p X lð Þk kTV

( )
ð2Þ

whereΠm is the space of bivariate polynomials of degree ≤m and w is a specialized weighting
function for the denoising solution, which ensures that it obtains a result that preserves textures
or repeated local features. Specifically, we use the weighting function defined as

w Xo;X ; Ið Þ ¼ exp −

X

l∈S
Ga lð Þ I X o þ lð Þ−I X þ lð Þj j2

h20

8
>><

>>:

9
>>=

>>;
ð3Þ

where h0
2 is a small positive value and Gα is a Gaussian function with standard deviation a and

where S is a suitable (small) stencil for patch comparison around Xo and X. The weighting
function is data adaptive and it considers the similarity of the local areas in two positions Xo and
X. In our proposed method, we construct p locally in the image by solving the minimization
problem in Eq. 2 for each evaluation point in Ω. Thus, the overall approximation function Î
becomes Î(X):=p(X):=pX(X) for all X∈Ω.

The minimization model (Eq. 2) with the L1 term can be solved using the split Bregman
iteration algorithm [8]. In our method, we obtain the solution based on the following iterated
steps for each X:

step 1 : pkþ1 Xð Þ ¼ argmin
p

nXN

l¼1

λ
2

p X lð Þ−I X lð Þj j2w X ;X lð Þ

þ μ
2

dk X lð Þ−∇p X lð Þ−bk X lð Þ�� ��2 w X ;X lð Þ
o

step 2 : dkþ1 Xð Þ ¼ shrink ∇pkþ1 þ bk X lð Þ; 1
.
μ

� �

step 3 : bkþ1 Xð Þ ¼ bk Xð Þ þ ∇ pkþ1 Xð Þ − dkþ1 Xð Þ
where shrink(x,γ)=max(|x|−γ,0)⋅sign(x).
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Without the second term in Eq. 2, the energy functional in Eq. 2 simply becomes the
conventional least squares approximation, which fits data by local polynomial approximation
[14]. In the previous study for Eq. 2, the TV regularization term was proved to have a better
denoising property. In general, a least squares method is weak against outliers; therefore, it is
not usually the best tool for denoising. However, in our method, the TV regularization term
eliminates the noise very quickly, which helps the regularized method produce a better
approximation of the original noise-free image.

4 Experiments

We conducted numerical experiments by using synthetic and real depth map data to evaluate
the performance of the ATVM-based depth map enhancement method. In order to assess the
improvement in the depth accuracy obtained with the proposed method, we tested the method
using known ground truth (synthetic) data from the Middlebury stereo data set, as shown in
Table 1. To generate a noisy depth map from the data sets, we added Gaussian noise with a
standard deviation of 20 to the ground truth image. We used the peak signal-to-noise ratio
(PSNR) which is popularly used as the qualitative measure of the engineering terms for the
ratio between the maximum possible power of a signal and the power of the noise. PSNR
based on the established ground truth data to quantitatively evaluate the depth map enhance-
ment. Table 1 compares the depth map enhancement results obtained by using our approach
and previous approaches, i.e., a TV-based approach and a bilateral approach. As shown in
Table 1, the quantitative comparison of the depth map enhancement and denoising using
bilateral denoising [7], generous TVM [20], and our approach is represented. The PSNR
represents that our proposed approach is very effective to remove the noise from given data. In
particular, our approach provides better noise reduction and sharpening from given noisy depth
map including multiple layers.

Figure 1 shows the given depth map image with noise and the final image after removing
the noise by our proposed approach. To effectively visualize how much our proposed approach
is better than given noisy depth map image, we represent the depth map with normal vector. As
shown in Fig. 1, our proposed approach is superior in the complex areas that are mixed with
different objects because ATVM-based denoising and enhancement approach is very efficient
at retaining the edges while removing the noise around the object.

In the next experiment, we tested the performance of the ATVM-based depth map
enhancement method using a real depth map obtained by Kinect sensors, which has the

Table 1 Quantitative comparison of depth map enhancement using our proposed approach and previous
approaches based on the PSNR

Test data Noisy depth map Bilateral [7] TVM [20] Our approach

Bowling 17.47 19.75 19.93 21.72

Midd1 18.25 21.35 22.84 23.97

Monopoly 18.64 20.12 22.48 23.63

Cones 16.82 17.95 18.57 21.26

Dolls 14.41 16.34 17.38 20.53
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resolution of 640×480 pixels. Figure 2 represents the depth map obtained after applying our
proposed ATVM-based approach. The middle column of Fig. 2 is the original depth map
image from Kinect, but it is not easy to understand the shape and depth of the target object.
The right column of Fig. 2 is the refined depth map using our approach. The enhanced depth
map obtained using the ATVM-based approach displays the details of the scene better,
compared with the input Kinect depth map image. By removing the noise and enhancing
the layers of the depth map, it provides effectiveness to analyze the shape of the target objects
and 3D scene. Thus, by applying ATVM-based depth map enhancement, we can separate the
layers of the given image and analyzed the scene. In particular, compared to remarkable
previous approach like KinectFusion [16] which also refines the depth map from Kinect using
multiple depth map, the advantage of our approach is in that we use single depth map by
retaining the edges and removing the noise from input depth map.

(a) Input noisy depth and its normal image   (b) Enhanced depth and its normal image

Fig. 1 Depth map enhancement using our approach using normal image. a Input noisy depth and its normal
image. b Enhanced depth and its normal image
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To effectively visualize the differentiation between our approach and previous approaches
like bilateral and TV methods, Fig. 3 shows the noise removed depth maps which are captured
from Kinect. Especially, depth map enhancement and denoising using our approach keeps the
separation of the layers and remove the noise in a flat layer. It can be used for layer separation
by removing the noise from Kinect.

(a) Input RGB image  (b) Given noisy depth from Kinect    (c) Our approach 

Fig. 2 Real depth map enhancement using our proposed approach based on images captured by Kinect sensors.
a Input RGB image. b Given noisy depth from Kinect. c Our approach
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5 Conclusion

In this study, we proposed a novel depth map enhancement approach based on ATVM.Our method
employs amoving least squares method combined with TVminimization, to retain the edges and to
remove the noise from input depth images. The moving least squares method facilitates rapid
denoising, which allows us to obtain a sufficiently smooth approximation. The TV-based depthmap
denoising and deblurring approach exhibits robust performance in reducing the noisewhile retaining
the edges in the depth map. Experiments using real/synthetic images demonstrated that our ATVM-
based depth map enhancement method satisfied our objectives. By enhancing the resolution of the
depthmap, the proposed scheme retained the benefits of the TVminimizationmethod and preserved
geometric information. In particular, the proposed ATVM performed well in maintaining the details
of the target object while reducing the noise, but without requiring prior information.
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(a) Bilateral approach [15]   (b) Generous TVM approach [16]   (c) Our approach

Fig. 3 Quantitative comparison of depth enhancement and denoising using our approach and previous
approaches. a Bilateral approach [7]. b Generous TVM approach [20]. c Our approach
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