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Abstract The performance of speech recognition in distant-talking environments is
severely degraded by the reverberation that can occur in enclosed spaces (e.g., meeting
rooms). To mitigate this degradation, dereverberation techniques such as network structure-
based denoising autoencoders and multi-step linear prediction are used to improve the
recognition accuracy of reverberant speech. Regardless of the reverberant conditions, a
novel discriminative bottleneck feature extraction approach has been demonstrated to be
effective for speech recognition under a range of conditions. As bottleneck feature extrac-
tion is not primarily designed for dereverberation, we are interested in whether it can
compensate for other carefully designed dereverberation approaches. In this paper, we
propose three schemes covering both front-end processing (cascaded combination and par-
allel combination) and back-end processing (system combination). Each of these schemes
integrates bottleneck feature extraction with dereverberation. The effectiveness of these
schemes is evaluated via a series of experiments using the REVERB challenge dataset.
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1 Introduction

Hands-free speech input techniques for various applications are increasingly popular. One
driving force behind this is the rapid rise in the use of portable devices such as hands-
free mobile telephones, tablets, and voice-controlled systems. However, in such distant-
talking conditions, the speech recognition performance of today’s automatic recognizers
is much lower than that of systems that use a close-talking microphone. One significant
impact is the presence of reverberation in an enclosed area (i.e., meeting rooms). In such
conditions, the direct speech signal becomes overlapped by reflected signals with various
delay times, and the delay is often longer than the length of the analysis window used in
speech recognition systems. As a result, the special speech clues that are necessary for
automatic speech recognition (ASR) become distorted.

A number of approaches have been proposed to overcome these problems. In particular,
single microphone approaches have the advantage of usability from an application point of
view. Cepstral mean normalization (CMN) [3, 15] is one of the simplest and most efficient
approaches, and is known to be useful when the distortion has a short impulse response.
However, CMN is not completely effective in environments with late reverberation. To
handle such cases, several methods have focused on spectral domain processing, i.e., multi-
channel least mean squares (LMS) [16, 26, 31] and multi-step linear prediction (MSLP)
[11]. In addition, deep neural networks (DNNs) have been successfully applied to ASR [8,
19, 29]. The emerging deep learning paradigm may therefore enable novel approaches to
address this challenge. Some pilot studies using an autoencoder to denoise and dereverber-
ate the speech signals have been reported [10, 25]. The key point of these autoencoders is
to train a sufficiently large network structure so as to reconstruct the clean speech from a
noisy or reverberant version. However, it is difficult to obtain good recognition accuracy
using this kind of single channel dereverberation.

To improve the speech recognition performance, DNNs have been found to be efficient
in many speech recognition systems [1, 8]. Making use of the capabilities of DNNs, two
popular configurations have been proposed. In the first configuration, a hybrid DNN is
used to predict context-dependent hidden Markov model (HMM) states [20, 29]. The sec-
ond configuration, which is called a tandem, exploits DNNs to perform nonlinear feature
transformation. The transformed features are used as the input to either a Gaussian mix-
ture model (GMM) or DNN-based acoustic model. The bottleneck feature (BF), the most
famous example of a tandem DNN, has been adopted and enhanced in various systems [5,
7, 13, 18, 21, 27, 30], and improved performance has been observed in many tasks when the
BF is used as a discriminative input [6, 14, 17, 28, 32].

Dereverberation methods can significantly suppress the degradation of both early and
late reverberation, and tandem DNNs, especially BFs, are often employed in either noisy or
reverberant speech recognition systems. In general, BFs and dereverberation are employed
separately in ASR systems. Some limited studies have investigated the integration of dere-
verberation approaches and discriminative BFs. Because BF extraction is not primarily
designed for reverberant speech conditions, we are interested in combining BF extraction
with some carefully designed dereverberation approaches. In this paper, we describe the
integration of BFs with a linear MSLP and a nonlinear denoising autoencoder (DAE). Three
schemes, including both front- and back-end processing, are introduced and evaluated, and
the effect of each scheme is evaluated using the REVERB challenge database [12], which
is focused on reverberant speech recognition.

The rest of this paper is organized as follows. Section 2 reviews two dereverberation
approaches. The BF is described in detail in Section 3, and Section 4 introduces the three
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proposed schemes. The experimental procedure and results are discussed in Section 5.
Finally, our conclusions and future work are described in Section 6.

2 Dereverberation approach

2.1 Denoising autoencoder

An autoencoder is a type of artificial neural network whose output is a reconstruction of the
input. They are often used for dimension reduction [9]. DAEs share the same structure as
autoencoders, but the input data is a noisy version of the output. Autoencoders use feature
mapping to convert noisy input data into clean output, and have been used for noise removal
in the field of image processing [24]. In speech recognition, DAEs have been applied for
dereverberation in both the spectral domain [10] and the cepstral domain [22]. Because
cepstral domain features such as mel-frequency cepstral coefficients (MFCCs) are conven-
tionally used in ASR systems, we adopt the cepstral domain DAE described by Ueda et al.
[22].

Unlike for conventional autoencoders, we use samples that include the corresponding
clean and reverberant speech. The DAE learns the nonlinear conversion function that con-
verts the reverberant speech into clean speech. In general, reverberation is dependent on
several previous observation frames, as well as the current frame. In addition to the vector of
the current frame, vectors from past frames are concatenated to form the input. For cepstral
feature Xi of the observed reverberant speech in frame i, cepstral features from the N − 1
frames before the current frame are concatenated to form a cepstral vector of N frames.
Output Oi from the nonlinear DAE-based transformer is given by:

Oi = fL(...fl(...f2(f1(Xi,Xi−1, ..., Xi−N−1)))) (1)

where fl is the nonlinear transformation function in layer l. The topology of cepstral-domain
DAEs for dereverberation is shown in Fig. 1. In this paper, we consider three hidden layers.
Details of parameter tuning for DAEs were discussed in [22]. In Fig. 1, Wi(i = 1, 2) denotes
the weighting of the different layers, and WT

i is the transpose of Wi .1 That is to say, W1 and
W2 form the encoder matrix, and WT

1 and WT
2 constitute the decoder matrix.

2.2 Multi-step linear prediction

The use of long-term MSLP for dereverberation has been described for both single and
multiple microphones [11]. Long-term MSLP was originally used to estimate the entire
impulse response of speech components [4]. For dereverberation, the long-term MSLP is
generally used to identify only the late reverberation [11]. Assuming that x1(n) is the speech
signal recorded by the first distant microphone, and that N and D are the number of filter
coefficients and the step-size (i.e., delay), respectively, MSLP can be formulated as

x1(n) =
N∑

p

w(p)x1(n − p − D) + e(n) (2)

where w(p) represents the prediction coefficients and e(n) is the prediction error. The coef-
ficients of linear prediction models are estimated in the time domain by minimizing the

1Wi and WT
i correspond to fL in (1).
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Fig. 1 Topology of a DAE for cepstral-domain dereverberation

mean square energy of e(n). Once the prediction coefficients W have been obtained, they
can be applied to the observed signal to estimate the power of the late reverberations as

E{(XT
1 W)2} (3)

where X1 and W are the matrix notation of x1(n) and w(p), respectively. Late reverber-
ations are then converted into the frequency domain and reduced by subsequent spectral
subtraction.

3 Bottleneck feature extraction

BFs are generated from DNN that include a hidden layer with fewer units than other hid-
den layers, just as showed in Fig 2. This hidden layer creates a constriction in the network
that forces the information pertinent to classification into a low-dimensional representation.
BFs are most commonly used in autoencoders where the neural network is trained to predict
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Fig. 2 Topology of bottleneck DNN

the input features themselves [23]. BFs for speech recognition are extracted from DNNs that
have been trained to predict phonemes or phoneme states, which are normally generated
from an HMM-based recognizer. The inputs to the hidden units of the bottleneck layer are
then used as features for further processing, and it is these that are known as Bottleneck Fea-
tures. Because of the capabilities of DNNs, BFs always represent a nonlinear transformation
and discriminative classification pre-processing for speech recognition.
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Fig. 3 Cascaded combination diagram

4 Proposed method

It is not always beneficial to combine different approaches. However, some schemes can
efficiently integrate a number of techniques. In this paper, to determine whether derever-
beration and discriminative BF transforms can be effectively combined, we explore three
schemes that consider the characteristics of BF and dereverberations.

4.1 Cascaded combination

As BFs are a kind of feature transform, they are more easily applied to the front-end pro-
cessing. Thus, a natural idea is to connect them one-by-one in series, as shown in Fig. 3.
The dereverberation approach is followed by a BF extractor. This is trained by the dere-
verberant training features, and is relatively simple and easy to implement. Employed in
clean conditions, BF extractors exhibit greatly improved speech recognition performance.
It is expected that the BF extractor in the proposed approach can be as effective as in
clean conditions, enabling the performance of distant-talking systems to catch up with that
of close-talking systems. This is because dereverberation approaches followed by a BF
extractor are designed to provide essentially clean features.

4.2 Parallel combination

Considering that BF extractors are a kind of DNN and are capable of dealing with
high-dimensional features, additional information should be useful. In this scheme, both
dereverberant and reverberant speech are imported into the BF extractor, and the input infor-
mation is extended with dereverberant information. This paradigm is illustrated in Fig. 4.
A number of dereverberation methods have been designed with the aim of mitigating the
degradation caused by reverberation. The processed speech should contain more pure infor-
mation about the relevant utterance, and thus provide correct information to the BF extractor.
Unlike the cascaded combination, a parallel combination does not abandon the reverberant
speech containing the complete utterance information. Dereverberation approaches can-
not accurately eliminate the impact of reverberation, and may distort or damage the key
information required for speech recognition. From this point of view, reverberant and dere-
verberant speech could supply compensatory information to the BF extractor in a parallel
combination.

Fig. 4 Parallel combination diagram
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Fig. 5 System combination diagram

4.3 System combination

In fact, dereverberation approaches are mainly intended to obtain clean-like features from
a reverberant speech source. However, the BF extractor does not account for any rever-
beration, but instead attempts to generate a kind of discriminative feature that is easy to
distinguish during classification. Because the key points of these two approaches differ, the
correct prediction of words and patterns of mistakes are likely to be totally different. From
this point of view, it the idea of a confusion network combination (CNC) [2] appears suit-
able. A CNC should be able to catch the correct predictions from both parts (i.e., the BF
extractor and dereverberation approach). In this scheme, a CNC is integrated in the man-
ner shown in Fig. 5. The dereverberation approach and the BF system are first applied
separately, and these two separate systems are then combined by the CNC. Thus, correct
predictions from each approach can be captured, and system performance will be improved.

5 Experiments

5.1 Experimental setup

5.1.1 Dataset

The data for the experiments were provided by the “REVERB Challenge” [12], and con-
sist of a clean WSJCAM0 training set and a multi-condition (MC) training set. Reverberant
speech was generated from the clean WSJCAM0 training data by convoluting the clean
utterances with measured room impulse responses and adding recorded background noise.
The reverberation times of measured impulse responses ranged from approximately 0.1–
0.8 s. The MC training dataset was used to train a DNN-HMM acoustic model, bottleneck
DNN, and DAE. To train the DAE, the clean training data were used as target signals. Note
that the recording rooms used to obtain the MC training data and the test data were different.
It is important to note that the evaluation data consisted of real recordings (RealData) and

Table 1 Details of SimData and RealData datasets

speech
reverberant time

signal-to-noise rate
distance between the

microphones

room1 room2 room3 near far

SimData 0.25s 0.5s 0.7s 20dB 50cm 200cm

RealData 0.7s – – – 100cm 250cm
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Fig. 6 Performance of BF with respect to the number of nodes in each layer

simulated data (SimData). In particular, the development (Dev.) test set and the final evalu-
ation (Eval.) test set each consist of SimData and RealData. Details of the training and test
datasets are presented in Table 1. In the experiments, the Dev. test set was used to optimize
the parameters of each component.

5.1.2 Baseline system

A state-of-the-art hybrid DNN-HMM acoustic model was used in all of the experiments.
The phone targets used to train the DNN-HMM acoustic model were obtained from a pre-
trained GMM-HMM with about 2000 triphone HMM states. The DNN was trained with an
initial learning rate of 0.015 and a final learning rate of 0.002. Stochastic mini-batch gra-
dient descent (SGD) was used on the MC training examples to minimize the cross-entropy
cost function. As the training dataset only contained about 16.5 h of speech, the DNN was
designed to have two hidden layers and 500 nodes in each layer.

5.1.3 Optimal conditions for BF extraction and dereverberation

The baseline BFs were extracted from a bottleneck DNN with an input layer consisting
of nine adjacent frames of 13-dimensional MFCCs (i.e., a total of 9 × 13 = 117). The
bottleneck DNN was trained using the same approach as for the DNN-HMM, but with an

Fig. 7 Performance of BF with respect to the number of BF dimensions
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Table 2 WERs (%) of various de-reverberation approaches and BF extraction

SimData RealData

Room1 Room2 Room3
Ave

Room1
Ave

near far near far near far near far

none 12.96 14.09 14.47 25.43 16.80 31.01 19.13 47.72 45.61 46.67

MSLP 12.64 13.74 13.70 23.48 16.31 28.97 18.14 47.21 46.73 46.97

DAE 12.11 12.84 11.67 22.44 28.78 14.30 17.02 41.94 41.73 41.83

BF 9.40 10.99 11.00 19.32 14.18 25.44 15.05 38.07 38.79 38.43

initial learning rate of 0.005 and a final learning rate of 0.0005. It was constructed to have
four hidden layers, and the optimal number of nodes in each hidden layer was determined
experimentally. Figure 6 shows the experimental results obtained from the Dev. test set,
from which it is clear that 500 nodes should be used for the experimental task. This can be
explained by the complex structure of DNNs: a DNN with too many parameters is prone to
over-fitting when using a limited set of training data. The dimension of the bottleneck layer
was also determined experimentally. The results presented in Fig. 7 show that the word
error rates (WERs) for SimData changed little with different BF dimensions. However, the
optimal 35-dimensional BFs attained the best performance for RealData and a comparable
score for SimData. The other BFs were extracted from a similar bottleneck DNN trained
using the dereverberant features corresponding to the dereverberation method (i.e., DAE
and MSLP-based dereverberation).

For DAE-based dereverberation, feature vectors from the current frame and the previous
eight frames of reverberant speech were used as input. The 39-dimensional MFCCs (which
include 12 MFCCs plus their power, Delta, and Delta-Delta coefficients) of the current
frame of clean speech were used as teacher signals. An optimized DAE structure with three
hidden layers and 1024 units in each layer was used in the experiments. This has been
verified by Ueda et al. [22] for the same REVERB challenge. The DAE employed conjugate
gradients with a mini-batch size of 256 samples. Pre-training involved 50 epochs with a
learning rate of 0.002 for all layers, and the network was then fine-tuned over 100 epochs
with a learning rate of 0.1.

The MSLP parameters were taken from the original paper [11], which used a step size of
512 and a filter order of 750 for linear prediction. (We also tested a filter order of 1500, but
the performance was worse than for 750.)

Table 3 WERs (%) of cascaded combination integrating dereverberation with BF

SimData RealData

Room1 Room2 Room3
Ave

Room1
Ave

near far near far near far near far

MSLP 9.54 10.88 10.34 18.69 14.16 24.70 14.72 35.36 38.62 36.99

DAE 10.38 11.76 11.03 20.64 26.20 12.45 15.41 38.33 38.93 38.63
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Table 4 WERs (%) of parallel combination integrating dereverberation with BF

SimData RealData

Room1 Room2 Room3
Ave

Room1
Ave

near far near far near far near far

MSLP 10.25 11.60 11.27 19.16 14.18 24.58 15.17 37.72 39.06 38.39

DAE 10.23 10.86 11.06 20.59 19.07 15.73 14.59 41.20 41.09 41.15

5.2 Experimental results

The proposed methods were evaluated and analyzed on the Eval. test set. The perfor-
mance of various dereverberation approaches and BF extraction is presented in Table 2.
These results indicate that both techniques are efficient for reverberant speech. The last row
of Table 2 represents the usability of BF extraction, and this is used as the baseline for
comparison.

5.2.1 Results of each scheme

We now analyze the performance of each combination scheme. The results for the cascaded
combination (Table 3) show that integrating BF with MSLP decreases the average WERs in
most of the test conditions. However, DAE did not perform well, and degraded the speech
recognition in most cases. This may be because both DAE and BF are nonlinear transforma-
tions in the feature space, and combining similar transforms serially effectively over-tunes
the system.

A similar trend can be observed for the parallel combination (Table 4). MSLP is the best
choice for parallel combination, which is more effective in real conditions than for simulated
conditions. However, the overall performance of parallel combination is worse than that of
cascaded combination.

Table 5 presents the results for the system combination, which integrates BF with dif-
ferent dereverberation approaches. Both DAE and MSLP improve the recognition accuracy
when applied in combination with BF. Unlike cascaded combination and parallel combina-
tion, DAE is more efficient in this system combination. In short, the linear processing of
MSLP is better suited to feature space combination, and the nonlinear processing of DAE
is more appropriate for back-end combination.

Table 5 WERs (%) of system combination integrating dereverberation with BF

SimData RealData

Room1 Room2 Room3
Ave

Room1
Ave

near far near far near far near far

MSLP 9.44 10.76 10.63 19.34 14.14 24.27 14.76 37.85 38.15 38.00

DAE 9.18 10.22 10.21 18.73 15.27 15.39 13.17 36.67 36.73 36.70
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Fig. 8 WERs (%) of each scheme in simulated test conditions

5.2.2 Best scheme for dereverberation and BF

We now determine which scheme is the best choice for combining BF and dereverbera-
tion. To obtain a clear view, Fig. 8 shows the WERs of each simulated condition from
the best performance of each scheme, and Fig. 9 shows that for each real test condition.
Obviously, system combination works better than both the baseline system and the other
two combination schemes in most test conditions. However, compared with feature-level
combination, the computational cost of the decoding process increases twofold. Compar-
ing the feature-level decoding in the cascaded and parallel combinations, we found that the
cascaded combination achieves a small gain in all conditions (both simulated and real con-
ditions). Parallel combination is also comparable to the BF-only system in most conditions.
For feature-level combination, the cascaded combination is the best choice.

Inspired by the improved feature-level cascaded combination, we considered whether the
system combination could be enhanced using cascaded combination. We applied the system
combination between the cascaded combination and BF systems (referred to as “∗-cascaded
+ BF”, where “∗” is the dereverberation approach applied in the cascaded combination).
The experimental results are presented in Table 6. We found that these new system combi-
nations achieved comparable performance to that of the best system combination of “DAE
+ BF”, and the new-style “DAE-cascaded + BF” achieved even better recognition accuracy
with both SimData and RealData. Note that the best system performance was obtained
by applying the system combination between the cascaded combination systems of “DAE-
cascaded” and “MSLP-cascaded”. This is because cascaded combination-based front-end
processing and system combination-based back-end processing achieve complementary
improvements in the recognition of distant-talking speech.

Fig. 9 WERs (%) of each
scheme in real test conditions
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Table 6 WERs (%) of system combination between cascaded combination and BF

SimData RealData

Room1 Room2 Room3
Ave

Room1
Ave

near far near far near far near far

DAE + 9.18 10.22 10.21 18.73 15.27 15.39 13.17 36.67 36.73 36.70

BF

MSLP-cascaded 8.69 10.33 9.92 17.44 13.14 23.20 13.79 34.65 36.12 35.39

+ BF

DAE-cascaded 8.78 10.16 10.00 18.18 15.34 13.63 12.68 34.17 36.12 35.14

+ BF

MSLP 10.57 11.72 11.06 20.82 17.21 15.20 14.43 41.42 40.58 41.00

+ DAE

MSLP-cascaded + 8.86 10.25 9.53 17.62 14.93 13.70 12.48 33.92 35.85 34.88

DAE-cascaded

6 Conclusion

In this paper, we have proposed and investigated three schemes that integrate dereverbera-
tion approaches and BF extraction, and analyzed the details of each scheme. Based on the
experimental results, the most efficient approach appears to be system combination, which
is based on a confusion network combination. For the feature-level combination schemes,
cascaded combination achieved better performance. In terms of dereverberation approaches,
the linear processing of MSLP is better suited to integration with BF in both cascaded and
parallel combination. Finally, optimal system performance was obtained by applying the
system combination with the cascaded combination systems. We expect this paper to be
helpful to other researchers and application engineers.
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