
Binocular vision calibration and 3D re-construction
with an orthogonal learning neural network

Dong-yuan Ge1,2 & Xi-fan Yao3 & Zhao-tong Lian2

Received: 18 April 2015 /Revised: 28 June 2015 /Accepted: 26 July 2015 /
Published online: 16 August 2015
# Springer Science+Business Media New York 2015

Abstract A new approach for binocular vision system calibration and 3D re-construction is
proposed. While the system is calibrated, the sum of square distances between the vector
coordinates recombined with the coordinates of feature points in the world frame and those in
image frame to the fitted hyperplane is taken as an objective function. An orthogonal learning
neural network is designed, where a self-adaptive minor component extracting method is
adopted. When the network comes to equilibrium, the projective matrixes for the two cameras
are obtained from the eigen-vectors of the autocorrelation matrix corresponding to the
minimum eigen values, so the calibration of the binocular vision system is achieved. As for
3D re-construction, an autocorrelation matrix is obtained from feature point coordinates in
image planes and calibration data, and an orthogonal learning network is designed. After the
network is trained, the autocorrelation matrix’s eigen-vector corresponding to the minimum
eigen-values is obtained, from which the 3D coordinates are obtained also. The proposed
approach is a novel application of minor component analysis and orthogonal learning network
in binocular vision system and 3D re-construction.
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1 Introduction

Camera calibration is a process of determining the internal camera geometric and optical
characteristics (intrinsic parameters) and/or the 3D position and orientation of the camera
frame relative to a certain world frame (extrinsic parameters) [6, 12]. The applications of vision
system include 3D sensing and measurement, precision manufacturing, automated assembly,
monitoring and tracking etc. While a binocular vision system is calibrated, the scene’s 3D
geometric information can be reconstructed by obtaining two digital images from different
angles. There are many research reports on the camera calibration. For example, MA obtained
a intrinsic parameters of the camera by designing two sets of three pure orthogonal translation
movements, and the orientations of the camera with respect to the hand frame with a set
pairwise orthogonal translation movements [11]. ZHANG obtained the intrinsic and extrinsic
parameters via the homography matrix in the light of orthogonality of the rotational matrix
with the homography obtained from the 3D feature coordinates in a target block and its 2D
coordinates. In general, the calculated rotational matrix did not satisfy the orthogonal proper-
ties well [19]. Rahman and Krouglicof proposed the quaternion representation of spatial
orientation, which resulted in a system of equations that was minimally redundant and free
of singularities, and applied a technique to minimize the error between the reconstructed image
points and their experimentally determined counterparts in the Bdistortion free^ space, so the
technique facilitated the incorporation of the exact lens distortion model as opposed to that
relying on an approximation one [15]. Recently, we have proposed a method for camera
calibration with an adaptive principal component extraction network in which the sum of
square distances from the vector coordinates of feature points to those in hyperplane is taken as
objective function, and the eigen-vector of autocorrelation matrix corresponding to minimal
eigen-values as a projective matrix. But the calibration of binocular vision system and 3D re-
construction has not been done [5]. Chen presented a novel method to analyze the blur
distribution in an image and found the optimal focusing distance so that additional constraints
could be used to generate absolute measurement of the models [4]. ZHENG proposed a
minimum calibration condition that consisted of two vanishing points and a vanishing line
so as to estimate camera intrinsic parameters (including the principal point coordinates) and
rotation angles, which adopted least squares optimization instead of closed-form computation.
The proposed method was practical and suitable for more traffic scenes while roadside camera
is calibrated [21]. YIN presented a semi-automatic scene calibration method that combined
tracked blobs with user-selected line scene features to recover the homographies between
camera views, so the system could deal with mapping a network of cameras with overlapped
fields of view into a single ground plane view, even when the overlap was not substantial [17].
There is no similar work done on the binocular vision system calibration and 3D re-
construction by means of minor components analysis and the adaptive orthogonal learning
network. Therefore, based on our previous work on neuro-calibration techniques, in this study
we put forward a novel method where a self-adaptive orthogonal learning network is used to
achieve calibration for the binocular vision system and 3D measurement.

2 Model of the binocular vision system

In the binocular vision system as shown in Fig. 1, camera frames are C1 and C2, o1u1v1 and
o2u2v2 are the image coordinate systems measured in pixels, OwXwYwZw is the world frame
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measured in mm, the homogeneous coordinates of feature point P in the world frame are (Xwi,
Ywi,Zwi,1), which is projected into the image planes so p1 and p2 are obtained, and their
homogeneous coordinates are (u1i,v1i,1) and (u2i,v2i,1) respectively. The projective matrixes of
the left and right cameras are M1 and M2 respectively, and the transformation relations of
o1u1v1 or o2u2v2 and OwXwYwZw can be described as follows:
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where m 1ð Þ
11 ; ⋯;m 1ð Þ

34 ; m 2ð Þ
11 ;⋯; m 2ð Þ

34
are elements of projections matrices of the left and

right cameras.
If Zci

(1) and Zci
(2) in Eqs. (1) and (2) are cancelled respectively, then we can obtain
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At the same time, Eqs. (3), (4), (5) and (6) can be divided by −u1i, −v1i, −u2i and −v2i
respectively, which don’t change the transformation relation of two sides in Eqs. (3)–(6).
While the binocular vision system is calibrated, if n feature pionts’ coordinates in world frame

P(Xw, Yw, Zw)

p1 (u1, v1)
p2(u2, v2)

O1

C1
C2

O2

o1

u1

o2

v1 u2

v2

Ow

Zw Yw

Xw

Fig. 1 Binocular vision system
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and in image frames are obtained, a linear equation can be obtained according to Eqs. (3) and
(4), that is

A1n1 ¼ 0 1ð Þ ð7Þ
where

A1 ¼

−Xw1=u11 −Yw1=u11 −Zw1=u11 −1=u11 0 0 0 0 Xw1 Yw1 Zw1 1
0 0 0 0 −Xw1=v11 −Yw1=v11 −Zw1=v11 −1=v11 Xw1 Yw1 Zw1 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

−Xwn=u1n −Xwn=u1n −Xwn=u1n −1=u1n 0 0 0 0 Xwn Xwn Xwn 1
0 0 0 0 −Xwn=v1n −Xwn=v1n −Xwn=v1n −1=v1n X wn Xwn Xwn 1

2
66664

3
77775,

which is a 2n×12 matrix; n1 is a column vector, consisting ofm11
(1),⋯m14

(1),m21
(1),⋯m24

(1),m31
(1),⋯,

m34
(1); and 0(1) is a vector consisting of 12 constants of 0.
As for the right camera, a similar equation like Eq. (7) can be obtained from Eqs. (5) and

(6), that is

A2n2 ¼ 0 2ð Þ ð8Þ
According to Eqs. (7) and (8), we can get an overdetermined equation, that is

An ¼ 0 ð9Þ

where A ¼ A1 01
02 A2

� �
, which is a 4n×24 matrix; n=[n1,n2]

T, which is a column vector

consisting of elements of n1 and n2, and 01 and 02 are zero matrixes with 12×12.

3 Minor component analysis and solving algorithm

While the binocular vision system is calibrated, the 22 elements of the fitting projective
matrixes except m34

(1) and m34
(2) in Eq. (9) are taken as the coefficients of the hyper-plane, which

constitute the fitting vectorm=[m11
(1),⋯,m33

(1),m11
(2),⋯,m33

(2)]T. The coordinates of sampled points
in the world frame and in the image frame are transformed to vector points xi, so the algorithm
we adopted is to minimize the sum of the squared distances between all the vector points (i.e.
combination coordinates) xi and fitting hyper-plane, thus the objective function is

min
m

E mð Þ ¼
XN
i¼1

X4i
j¼4i−3

e2j ð10Þ

where ej=m
Txj/‖m‖2.
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� �T

,
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� �T

, x4i−1 ¼ 0½
−Xwi=u2i −Ywi=u2i −Zwi=u2i −1=u2i 0 1ð Þ Xwi Ywi Zwi �T, x4i ¼ 0 0 1ð Þ −Xwi

�
=v2i−Wwi=v2i−Zwi=v2i−1=v2i X wi Ywi Zwi �T. where 0 is a 1×11 row vector, and 0(1) is a
1×4 row vector. Thus
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� �2	 
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where R ¼ ∑
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In order to get the minimum, the critical point can be obtained from dE/dm=0, that is
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34 m
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34
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Let λ ¼ mTRmþ2m 1ð Þ
34 m

Tb1þ2m 2ð Þ
34 m

Tb2þ2N m 1ð Þ
34 þm 2ð Þ

34ð Þ2
jjmjj22

. According to the expected values of m34
(1)

andm34
(2) from Eqs. (7) and (8). And assumingm34

(1)=−mTb1/2N andm34
(2)=−mTb2/2N, so we have

Mm−λm ¼ 0 ð13Þ

where M=R−B, λ ¼ mTMm
mTm , B ¼ B1 B2½ �, B1=b1b1

T/2N, B2=b2b2
T/2N, and

M ¼ M1 0
0 M2

� �
. Thus λ is the eigen-value ofM, andm is its corresponding eigen-vector [1].

At the same time, assuming eigen values of M1 and M2 to be λ1, λ2,⋯, and λ11, μ1, μ2,⋯,
μ11, respectively, so there are orthogonal matrixes P andQ, which meetM1=PΛ1P

−1, andM2=
QΛ2Q

−1, where Λ1 ¼ diag λ1; λ2; ⋯; λ11ð Þ, Λ2 ¼ diag μ1; μ2; ⋯; μ11ð Þ. Thus

M ¼ PΛ1P
−1 0

0 QΛ2Q
−1

� �
¼ P 0

0 Q

� �
Λ

P 0
0 Q

� �−1
ð14Þ

As for the eigen values ofM, we have sorted them in order from large to small. For example
Λ ¼ diag μ1 λ1 ⋯ λ10 λ11 μ11ð Þ, or Λ ¼ diag λ1 μ1 ⋯ μ11 λ10 λ11ð Þ,
and so on. Thus M can be described as M=BΛ B−1, where B consists of 22 column vectors
such as [m1,0]

T, [0,m2]
T, [m3,0]

T,…, [0,mj]
T ,…, and [m22,0]

T, which is an orthogonal eigen
vector of M corresponding to the eigen values respectively, and the projective matrixes of
binocular vision are obtained from the normalization eigenvectors of the M corresponding to
the minimum eigen values.

Due to the projective matrices of the left and right cameras being different in binocular
vision system, if the left camera’s projective matrix is obtained from the eigen vectorm=[m22,
0]T of the autocorrelation matrices corresponding to the minimal eigen value λ11, so the right
camera’s projective matrix can be obtained from the eigen vector m=[0,m21]

T corresponding

to the minimal eigen value μ11, where 0 is a 1×11 matrix. And m 1ð Þ
34 ¼ −∑

N

i¼1
∑
4i−2

j¼4i−3
mT

22x j=2N ,

m 2ð Þ
34 ¼ −∑

N

i¼1
∑
4i

j¼4i−1
mT

21x j=2N , where i=1,2,⋯,N. Thus the projective matrix of the left camera

is mL=[m22,m34
(1)]T, and that for the right camera is mR=[m21,m34

(2)]T.
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4 Design of the self-adaptive orthogonal learning neural network

An orthogonal learning neural network with a lateral connection proposed by KUNG [10] was
adopted in the experiments. The structure is shown in Fig. 2, and its input data are the row
vectors of the auto-correlation matrix M. There are 22 neurons in the output layer, and the 1st
neuron connects with input neurons with m1=[m1

(1),m1
(2),⋯,m1

(22)]T, but without a lateral
connection while trained. The jth neuron connects with both the input neurons as mj=[mj

(1),
mj
(2),⋯,mj

(22)]T, and the front (j-1) outputs as the lateral weight vector Wj=[wj
(1),wj

(2),…,
wj
(j− 1)]T. The network is trained out step by step. While the jth neuron is training, the 1st,

2nd, …, and (j-1)th neurons have already been trained, i.e. stable values m1,m2,⋯,mj−1 are
obtained, all of which are orthogonal each other. When the jth neuron is trained completely, the
lateral connection weights approximate 0, and mj is perpendicular to m1,m2,⋯,mj−1 respec-
tively [13].

The output of the 1st neuron is

O1 ¼ mT
1Mi ð15Þ

Due to the fact that there is no lateral connection, the learning algorithm for the 1st neuron
is as following,

Δm1 ¼ β O1Mi−
O2

1

mT
1m1

m1

	 

ð16Þ

The 1st term of Eq. (16) is that for Hebbian learning rule, which represents a self-
strengthening function. When the network comes to the stable state, i.e. Δm1→0, we have

O1Mi−
O2

1

mT
1m1

m1 ¼ 0. According to Eqs. (15) and (16), Mmi−λ1m1=0, and λ1 ¼ mT
1Mm1

mT
1m1

,

where m1 is the eigen-vector of the self-correlation matrix M, which is corresponding to the
max eigen value λ1.

The training for the jth neuron is similar to the above method, i.e.

O j ¼ V jMi ð17Þ

Oj ¼ mT
j Mi þWT

jO j ð18Þ

Fig. 2 Structure of an orthogonal learning network
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where Oj=[O1,O2,⋯,Oj−1]
T, which is the output of the front (j-1) neurons; V j ¼

m1; m2;⋯;m j−1½ � T, a weight matrix; and Wj=[wj
(1),wj

(2),⋯,wj
(j−1)]T, the vector of the

lateral connection weights for the jth neuron.
After normalized, the learning rule for the jth neuron is as follows [8, 18],

Δm j ¼ β OjMi−
O2

j

mT
jm j

m j

 !
ð19Þ

ΔW j ¼ −γ OjO j þ O2
jW j

� �
ð20Þ

where β and γ are positive parameters which determine the learning rates, and their values are
set according to the corresponding autocorrelation-matrix for fast training speed with no
oscillations. The 1st term of Eq. (19) is that for Hebbian learning rule, which represents a
self-strengthening function; the 2nd terms in Eqs. (19) and (20) play a stable role for system,
and the 1st term in Eq. (20) stands for the anti-Hebbian learning rule, which causes an
inhibition function, and makes the outputs of the network non-correlative even if the input
signals are correlative. That is the weight Wj plays the role of Bsubtracting^ the first (j-1)
components from the jth neuron, i.e. the first principal component m1 of M, the second
principal component m2 of M, …, and the (j-1)th principal component mj−1 of M are
subtracted. Thus the jth vector mj tends to become orthogonal to all the previous components,
i.e. m1, m2, ⋯,mj−1, when the train of jth neuron is over. Hence the orthogonal learning rule
constitutes an anti-Hebbian rule.

And the iteration algorithms for mj(t+1) and Wj(t+1) are mj(t+1)=mj(t)+Δmj(t), and
Wj(t+1) =Wj(t) +ΔWj(t), respectively. Assuming β and γ are sufficiently small values so that
the values of mj(t+1) and Wj(t+1) remain approximately constant during that period of time
while an average of the variable in an equation is taken over one sweep of the training data
(one sweep means one round of training process involving all the given sample input patterns).
To facilitate the proof, we assume that β=γ. Therefore, according to the Eqs. (19) and (20) the
weight iteration in one sweep for the orthogonal learning network can be rewritten in the form
of state transition matrix as follows,

m j t þ 1ð Þ
W j t þ 1ð Þ
� �

¼ M11 M12

M21 M22

� �
m j tð Þ
W j tð Þ
� �

ð21Þ

where M11 ¼ E22 þ γ ∑
22

i¼1
MiM

T
i

	 

− σ tð Þ

mT
jm j

E22

	 

, M12 ¼ γ ∑

22

i¼1
MiM

T
i

	 

VT

j , M21 ¼ −γV j

∑
22

i¼1
MiM

T
i

	 

, M22 ¼ E j−1−γ V j ∑

22

i¼1
MiM

T
i

	 

VT

j þ σ tð ÞE j−1

	 

, and σ(t)= E{Oj

2(t)}, where

E22 is a unit matrix with 22×22, and Ej−1 is a unit matrix with (j−1)×(j−1).
In the experiment, first the mj is initialed at random; then let them be normalized to form a

unitary vector; and at every iteration, while the tuned vector mj is obtained, which is
normalized to obtained a unitary vector again. Thusmj

Tmj=1, i.e.mj is a unitary vector during
the iteration processing. On the other hand, while mj(t+1) in Eq. (21) is left multiplied by Vj,
then Wj(t+1) is added, so we have

V jm j t þ 1ð Þ þW j t þ 1ð Þ ¼ 1−γσ tð Þð Þ V jm j tð Þ þW j tð Þ
� � ð22Þ
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As 1−γσ(t)<1, when t →∞, we have

V jm j t þ 1ð Þ þW j t þ 1ð Þ→0 ð23Þ
At the same time, according to Eq. (19), when the system comes to the steady state, that is

Δmj(t+1)→0, we have ∑
22

i¼1
MiM

T
i

	 

−λ jE22

	 

m j þ ∑

22

i¼1
MiM

T
i

	 

VT

j W j→0. Due to

∑
22

i¼1
MiM

T
i

	 

−λ jE22

	 

m j→0, thus we have ∑

22

i¼1
MiM

T
i

	 

VT

j W j→0, and Wj→0 (with

probability 1). From Eq. (23) we know Vjmj(t+1)→0, that is mj(t+1) is orthogonal to the
vector elements of Vj (i.e. m1, m2, … ,mj−1), if the iteration times are sufficiently large.

Assuming the learning rates β and γ decrease to zero at the proper speed (for example, let
β=Δt) , thus the Eq. (19) can be described differentially, that is,

dm j

dt
¼ OjMi−

O2
j

mT
jm j

m j ð24Þ

When the system comes to a stable equilibrium, i.e. dmj/dt→0, the lateral connection
approximates to zero. Thus, Oj=miMi. According to Eq. (24), the asymptotic stable solution is
obtained as follows,

Mm j ¼
mT

jMm j

mT
jm j

m j ð25Þ

where M ¼ ∑
22

i¼1
MT

i Mi, which is an auto-correlation and symmetrical matrix.

The flow of the solving program is shown in Fig. 3, where ε1 and ε2 are jump conditions for
program iteration.

When the network comes to the stable state, m1, m2, ⋯,m22 will converge to the eigen-

vectors of an auto-correlation matrix M, that is lim
n→∞

λ j ¼ mT
jMm j

� �
= mT

jm j

� �
, which is

equivalent to the Lagrange multiplier in Eq. (13). Thus the eigenvectors ofM corresponding to
a minimum eigen value λ11 and μ11, i.e. m1 0½ � and 0 m2½ � are obtained respectively,
elements of which can be taken as the fitting coefficients of the projective matrixes of the
cameras in the binocular vision system.

5 Results system calibration and 3D re-construction

5.1 Binocular vision system calibration experiment

As been shown in Fig. 4, a precise robot, which consists of servomechanism, motion
controllers, mechanical body, binocular vision system and so on. In the vision system, two
cameras are mounted at the ends of a manipulator, which move with the end-effector together
(eye-in-hand), so the transformation relation of end-effector and cameras is constant while the
manipulator moves. While the vision system is calibrated, first the 3D coordinates of feature
points are measured with a 3 dimension coordinate measuring machine [16, 22]. And in order
to obtain the variations in Z axis direction of feature points coordinates, the target block’s
images are sampled with the cameras at different positions by moving the manipulator
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vertically. Then the corresponding 2D coordinates are estimated with sub-pixel accuracy in the
light of the improved Canny’s edge detector algorithm [2, 9].

In the program, the forward and lateral connection weights are initialized at random, and let
ε1= 0.05, ε2= 0.005. After the 22nd neuron trained, the eigen-vector of an auto-correlation
matrix of input signals can be obtained, which corresponds to the minimal eigen values, and if

v22 ¼ m 1ð Þ 0
� �T

, else v21 ¼ 0 m 2ð Þ� �T
. So parameters m34

(1) and m34
(2) can be obtained, i.e.

Fig. 3 Flow chart of the program

Fig. 4 Binocular vision system and manipulators
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m 1ð Þ
34 ¼ −∑

N

i¼1
∑
4i−2

j¼4i−3
mT

22x j=2N , and m 2ð Þ
34 ¼ −∑

N

i¼1
∑
4i

j¼4i−1
mT

21x j=2N , where i=1,2,…,N, m21 and

m22 are corresponding to eigen values λ11 and μ11 respectively. So the projective matrixes of
the left and right cameras in the binocular vision system can be obtained from the eigenvectors
corresponding to minimum eigen values m34

(1) and m34
(2) respectively, which are shown in

Table 1.
The elements in Table 1 constitute the projective matrices of left and right cameras, so the

transformation relations between the image frames and the world frame in binocular vision
system are estimated, which are obtained at once.

5.2 3D re-construction by the self-adaptive orthogonal learning network

In the system of binocular vision, the 3D re-construction can be carried out in the light of the
self-adaptive orthogonal learning network with lateral restraint. Assume homogeneous coor-
dinates of a feature point in the world frame to be (X,Y,Z,1), whose projective coordinates in
the left and right camera image planes are (u1i,v1i,1) and (u2i,v2i,1), according to the camera’s
mathematic model, 4 equations can be obtained from Eqs. (3) – (6) as follows:

u1m
1ð Þ
31 −m

1ð Þ
11

� �
X þ u1m

1ð Þ
32 −m

1ð Þ
12

� �
Y þ u1m

1ð Þ
33 −m

1ð Þ
13

� �
Z ¼ m 1ð Þ

14 −u1m
1ð Þ
34 ð26Þ

v1m
1ð Þ
31 −m

1ð Þ
21

� �
X þ v1m

1ð Þ
32 −m

1ð Þ
22

� �
Y þ v1m

1ð Þ
33 −m

1ð Þ
23

� �
Z ¼ m 1ð Þ

24 −v1m
1ð Þ
34 ð27Þ

u2m
2ð Þ
31 −m

2ð Þ
11

� �
X þ u2m

2ð Þ
32 −m

2ð Þ
12

� �
Y þ u2m

2ð Þ
33 −m

2ð Þ
13

� �
Z ¼ m 2ð Þ

14 −u2m
2ð Þ
34 ð28Þ

v2m
2ð Þ
31 −m

2ð Þ
21

� �
X þ v2m

2ð Þ
32 −m

2ð Þ
22

� �
Y þ v2m

2ð Þ
33 −m

2ð Þ
23

� �
Z ¼ m 2ð Þ

24 −v2m
2ð Þ
34 ð29Þ

According to analytic geometry, the physical meaning of Eqs. (26) and (27) (or
Eqs. (28) and (29)) denotes the line for O1P1 (or O2P2) as shown in Fig 1. In order to
obtain the 3D information, the coordinates of P can be obtained from the cross point
of O1P1 and O2P2 [20]. In the solving algorithm, from Eqs. (26)–(29), we let

Table 1 Projective matrixes of binocular vision system obtained with the proposed approach

Projective matrices

Left camera 3.8260×10−3 −1.5979×10−4 2.0241×10−3 7.9791×10−1

6.1174×10−4 3.9304×10−3 1.1073×10−3 6.0275×10−1

−4.5228×10−7 −2.4757×10−7 4.6707×10−6 1.9841×10−3

Right camera −4.1328×10−3 −1.5096×10−4 −1.5225×10−3 −7.6599×10−1

−9.1105×10−5 −4.1629×10−3 −1.6724×10−3 −6.4283×10−1

−1.7054×10−7 −4.0999×10−7 −4.7566×10−6 −1.9938×10−3
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N ¼

u1m 1ð Þ
31 −m
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34
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34
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34

v2m
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31 −m
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21
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34
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2ð Þ
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34
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666666666666664
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, d ¼
x
y
z

2
4
3
5, and c ¼ −1 −1 −1 −1½ �T,

so we have

Ndþ c ¼ 0 ð30Þ
According to the above methods, let the objective function be as follows,

min
d

L dð Þ ¼
X4
i¼1

r2i ð31Þ

where ri ¼ Nidþcij j
dk k2 , and Ni is the ith row vector of N. In the algorithm, let ci=c (i=1,2,3,4),

where c is the constant proportional to 1, which has no influence on the solving iteration of 3D
re-construction. For example, if a fitting coefficient vector d can make the sum of the squares
of the distances from all the vector points’ coordinates Ni to the fitting hyperplane minimizing
Eq. (31) with constant 1, it is the same for Eq. (31) with arbitrary constant c, and there is only
an offset value for Eq. (31). Thus Eq. (31) can be re-written as follows,

L ¼

X4
i¼1

dTNT
i Nidþ 2c

X4
i¼1

Nidþ 4c2

dk k22
¼ dTsdþ 2ctdþ 4c2

dk k22
ð32Þ

where s ¼ ∑
4

i¼1
NT

i Ni, and t ¼ ∑
4

i¼1
Ni, where Ni is the i

th row vector of N.

In order to minimize L, the critical points of Eq. (32) can be gotten by letting dL/dd=0, that
is

sdþ ctT−
dTsdþ 2ctdþ 4c2

dk k22
d ¼ 0 ð33Þ

According to Eq. (30), we know the expected value of c ¼ −Nid ¼ −td=4, thus

Td−λd ¼ 0 ð34Þ

where T ¼ s−tTt=4, and λ ¼ dTTd
dk k22

.

Thus d is the eigen-vector of T corresponding to the eigen-value λ, and the 3D coordinates
of the feature points in the world frame can be obtained from the eigen-vector of T corre-
sponding to the minimum eigen-value.

For the 3D re-construction, the experiment is carried out in high precision robot, as can be
seen from Fig. 4. Firstly move the manipulator in vertical direction through controller of
servosystem, and the target block’s images are sampled by the two cameras in the stereo vision
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system. Then 6 points are chosen at random for precision analysis at several positions, and the
2D coordinates of the feature points projected in the left and right camera image planes are
obtained and shown in Table 2.

In the 3D re-construction programming, the adaptive orthogonal learning network is
designed similarly as Fig. 2; and the flow chart of program is similar to Fig. 3, whose input
neurons are three and the output neurons are three too. And the input signals are the ith row
vector of T. After the 3rd neuron trained, the system came to an equilibrium state, and the scale
was obtained according to Eq. (35), so the world coordinates of the feature points could be
obtained from the weight vector which connected the input neurons according to Eq. (36), and
the 3D re-construction was achieved.

s ¼ td
.
4 ð35Þ

D ¼ d 3ð Þ.
s

ð36Þ

where d(3) is the eigen-vector of T corresponding to the minimal eigen-value, and D is the
solved 3D coordinates of the feature point in the world frame.

On the other hand, if the least square method (LSM) is adopted, the projective matrixes of
the left and right camera are obtained as shown in Table 3.

While precision analysis experiment is carried out, the actual coordinates (AC) of feature
points in the world frame are measured and shown in the 1st line of Table 4. When the 3D re-
construction is achieved, if their coordinates are obtained in the light of the adaptive orthog-
onal learning algorithm (abbreviated as CwAOL), which are shown in the 2nd line in Table 4.
For the system calibration with the least square method, the 3D coordinates of the feature
points in the world coordinate system (abbreviated as CwLSM) are obtained as shown in the
3rd line in Table 4.

Table 2 Coordinates of the feature points projected in the left and right image planes (/Pixel)

Left camera planes Right camera planes

1 (483.1786, 325.9986) (415.7194, 381.6402)

2 (482.5360, 385.5565) (415.4020, 438.8772)

3 (504.5829, 372.8164) (437.6854, 421.7096)

4 (526.6801, 316.3231) (459.5774, 362.9787)

5 (463.9776, 345.7225) (398.7574, 402.3754)

6 (464.4011, 390.5767) (400.6617, 444.0929)

Table 3 Projective matrixes obtained with LSM

Projective matrixes

Left camera 1.929473 −8.0778×10−2 1.0222826 4.0213×102

3.0807×10−1 1.98270185 5.5941×10−1 3.0380×102

−2.2964×10−4 −1.2526×10−4 2.3587×10−3 1

Right camera 2.0725555950 7.5858×10−2 0.764422705 3.8425×102

4.4564×10−2 2.0889978 0.839632498 3.2244×102

8.2712×10−5 2.0608×10−4 2.3880×10−3 1
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The difference between the actual coordinates in the world frame and the solved coordi-
nates is taken as the precision performance index [3, 7, 14]. That is

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X að Þ

i −X sð Þ
i

� �2
þ Y að Þ

i −Y sð Þ
i

� �2
þ Z að Þ

i −Z sð Þ
i

� �2r
ð37Þ

where (Xi
(a),Yi

(a),Zi
(a)) are the actual coordinates in the world frame, and (Xi

(s),Yi
(s),Zi

(s)) are the
solved 3D coordinates according to the proposed technique, or the other data processing
methods such as LSM.

The precision performance index of the two algorithms can be obtained according to Eq. (37),
as shown in the 4th and 5th line in Table 4. PIwAOL in Table 4 denotes the precision index with
the proposed technique, i.e. the self-adaptive orthogonal learning network. And PIwLSM denotes
the precision index with the least square method. From Table 4, it is demonstrated that the
proposed approach has higher precision, and can meet the precision requirements for engineering
practice. From the above caculation, we found that the presented results are interesting: with
patterns of lateral inhibition, the orthogonal learning neural network can achieve fast self-
organization for relatively loose structural constraints according to simple anti-Hebbian rule, or
a slight modification. The proposed technique is referential and helpful for precision manufacture
and measurement, such as precision processing of micro-drill, gear, and other work-pieces.

6 Conclusions and future works

The proposed approach in the paper has the following key features as opposed to other
techniques [4–6, 11, 12, 15, 17, 19, 21]: 1) The fitting projective matrixes for the left and
right cameras in the binocular vision system are obtained from the eigen-vectors of an auto-
correlation matrix corresponding to minimal eigen-values, which minimize the sum of the

Table 4 3D coordinates and precision performance indexes (/mm)

No. 1 2

AC (66.0076, 45.0060, 450.0000) (66.0047, 105.0050, 450.0000)

CwAOL (66.0914, 45.0819, 450.1075) (66.0331, 104.9067, 449.8954)

CwLSM (66.0776, 45.0737, 450.1294) (66.0092, 104.8910, 449.8587)

PIwAOL 0.1560 0.1463

PIwLSM 0.1619 0.1816

No. 3 4

AC (86.0086, 85.0002, 430.0000) (106.0013, 25.0011, 420.0000)

CwAOL (86.1524, 85.1208, 430.1142) (106.0368, 25.0341, 420.1894)

CwLSM (86.1420, 85.1188, 430.1399) (106.0318, 25.0243, 420.2013)

PIwAOL 0.2197 0.1955

PIwLSM 0.2268 0.2050

No. 5 6

AC (46.0048, 65.0066, 420.0000) (46.0026, 105.0088,400.0000)

CwAOL (45.9932, 64.9682, 419.8164) (46.1314, 104.9285, 399.8992)

CwLSM (45.9707, 64.9566, 419.8124) (46.1135, 104.9248, 399.9403)

PIwAOL 0.1879 0.1822

PIwLSM 0.1972 0.1514
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square of distances from the combined vector coordinates of the feature points to the fitting
hyperplane; 2) A self-adaptive orthogonal learning neural network is designed to obtain the eigen-
vectors of the autocorrelation matrix corresponding to the minimal eigen-values, where the jth

neuron is trained, its corresponding vector is perpendicular to the front (j-1) vectors already
obtained; 3) 3D re-construction is carried out according to the technique proposed above with the
advantages such as programming easily and high precision. Such a study provides a new and
applicable technique in data processing for calibrating binocular vision systems and 3D re-
construction. In the future we will carry out research on how to set the learning rate of the
orthogonal learning neural network to enable the training speed as fast as possible.
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