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Abstract Feature selection is a crucial factor in Kinect-based pattern recognition, including
common human gesture recognition. For Kinect-based human gesture recognition, the infor-
mation contained in the feature extracted for gesture recognition is conventionally the (x,y,z)
coordinates of the primary joints in the human body. However, such traditionally used feature
information containing only joint positions is apparently insufficient for clearly describing the
characteristics of human activity patterns. This paper proposes a feature design scheme
involving hybridizations of joint positions and joint angles for human gesture recognition
with the Kinect camera. The presented feature design method effectively hybridizes the 20
main human joint positions captured by the Kinect camera and the joint angle information of
12 critical joints, along with significant angle variations when a gesture is made. The method is
employed in dynamic time warping (DTW) gesture recognition. When the proposed feature
design method is used for Kinect-based DTW human gesture recognition, it derives an
appropriately sized feature vector for each of the gesture categories in the DTW-referenced
template database according to the activity characteristics of a certain category of gestures.
Experiments on Kinect-based DTW gesture recognition involving 14 common categories of
human gestures show that the feature determined using the proposed approach is superior to
that obtained using the conventional approach, which considers only the joint position
information.

Keywords Kinect camera . Human gesture recognition . Gesture feature . DTW. Recognition
performance

1 Introduction

Human computer interaction (HCI) design has become a challenging technical problem in
recent years. With the development of technology, machine manipulations or device control is

Multimed Tools Appl (2016) 75:9669–9684
DOI 10.1007/s11042-015-2782-3

* Ing-Jr Ding
ingjr@nfu.edu.tw

1 Department of Electrical Engineering, National Formosa University, Yunlin County, Taiwan

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-015-2782-3&domain=pdf


now achieved through advanced “noncontact” operations, in which biological characteristics
of a person, such as acoustic data consisting of speech utterances and image data comprising
human gestures, are acquired and used as control commands or analytic signals that are input
into an identity verification system. Automatic speech recognition and automatic speaker
recognition techniques, which involve the comparison of a person’s voice pattern with a
prerecorded voice pattern, are considered mature techniques [3, 6]. However, the presence
of background voices can hamper speech recognition. A solution to this problem is to use
human gesture recognition techniques for converting a person’s gestures into control com-
mands. Following the development of speech recognition, considerable attention has been paid
to gesture recognition recently. The appearance of the Microsoft Kinect camera in the market
has further accelerated the development of gesture recognition techniques [13].

The Kinect camera is a useful sensor that performs a fundamental analysis of the position
data of a 3D object in acquired image data. Numerous Kinect-related applications have been
developed, most of which involve human gesture recognition using Kinect-captured gesture
data [4, 5, 9, 16, 17]. In [17], a finger-writing system that recognizes characters written in the
air without requiring any additional handheld devices was presented. The system differs from
well-known handwriting recognition systems in which text images are used for recognizing
patterns, and it involves the use of Kinect-captured finger motion gesture images for recog-
nizing patterns. In the study of Qian et al. [9], a gesture-based remote human-robot interaction
system was developed. The developed system employs a gesture recognition technique to
classify Kinect-captured gesture commands of an active user, and recognized gesture com-
mands can then be used to control the action of a remote robot. In addition, a golf swing
classification system involving the use of the Kinect camera was presented by Zhang et al.
[16], in which the Kinect camera is used to capture a person’s golf swing gesture and the
gesture is then classified; a person learning golf could effectively learn the standard swing
gesture by using the system. In the works of [4] and [5], Kinect-based gesture recognition with
user adaptation is developed. The utilization of Kinect-based gesture recognition to the
application of the humanoid robot imitation is further investigated in [5]. The objective of
the current Kinect-related studies was to achieve Kinect-based human gesture recognition in a
particular application or to improve the recognition performance of human gesture recognition
by adjusting model parameters of gesture classification models using the test operator’s action
gesture data. Studies in the exploration of fine gesture feature designs for Kinect-based gesture
recognition are rarely seen.

In this study, 14 common human gesture categories were employed for the command
control of a smart home or a smart office. The dynamic time warping (DTW) method
[10] was adopted for Kinect-based gesture recognition, and a feature design scheme
was proposed for the recognition system. Figure 1 depicts the framework of the feature
design scheme. In Kinect-based DTW gesture recognition involving the developed
feature design scheme, the optimal gesture feature type is derived for each of 14
gesture categories. The most popular classification methods used for Kinect-based
gesture recognition are DTW and the hidden Markov model (HMM) method. The
HMM method is a model-based classification technique, and it is required for estab-
lishing a statistical classification model before gesture recognition. By contrast, DTW is
categorized as a feature-based classification technique that is simple and computation-
ally fast. A performance evaluation report of HMM and DTW gesture recognition was
provided in [2]. Studies of Kinect-based gesture recognition involving the HMM
method were presented in [7, 8, 15] and studies of Kinect-based gesture recognition
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using DTW were discussed in [1, 11, 12, 14]. The studies that have used DTW for
Kinect-based gesture recognition can be divided into two categories: 1) those using
general DTW in a specific application for achieving a certain purpose such as a
personal rehabilitation exercise assistant [11] and user identification and authentication
[14], and 2) DTW template matching improvements on recognition calculations, such
as probability-based DTW [1] and fuzzified DTW [12]. However, studies on feature
analysis or feature design of gesture templates are rare. For feature-based DTW
recognition, the feature of the template has the most significant effect on recognition
performance, particularly for a DTW gesture recognition system using Kinect-captured
data. As shown in Fig. 1, the current study developed a Kinect-based DTW gesture
recognition system with a feature design scheme for the DTW-referenced template
database and a corresponding DTW recognition scheme that is compatible with various
feature type settings in DTW-referenced templates.

The proposed Kinect-based DTW gesture recognition system with a feature design scheme
has several merits compared with that without a feature design scheme:

& It contains abundant and accurate 3D gesture feature information in DTW-referenced
template databases.

& It is robust against the irregular gesture category since it derives the appropriate feature
type.

& It shows superior performance and greater flexibility compared with conventional DTW
gesture recognition systems with only invariable features.

& It is more competitive in recognition performance compared with the Kinect-based gesture
recognition system involving the HMM method.

For the last advantage, the presented feature design scheme for Kinect-based DTW gesture
recognition can enhance the recognition performance compared with conventional DTW
gesture recognition, and therefore, the recognition performance is higher. Such a feature design
scheme is highly suitable for the feature-based DTWmethod proposed in this study. Compared
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human skeleton using Microsoft SDK 

Joint relative angle calculations from 3D 

joint position data

Feature design schemes of hybrid joint 

position data and relative angle data

DTW recognition operations with feature 

design schemes
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Fig. 1 The proposed feature design scheme for Kinect camera-based DTW gesture recognition using both
Microsoft SDK and self-developed recognition techniques
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with the model-based HMM recognition method in which a statistical model for gestures
should be trained in advance, the feature design scheme developed in this study can be used to
establish a model-like DTW-referenced template database, and therefore, feature-based DTW
with the proposed method is superior to the model-based HMM method.

2 Kinect-based DTW human gesture recognition using joint positions

RGBD data containing information on both image data and depth data are captured by
the Kinect camera [13]. For facilitating gesture recognition, the RGBD data can further
be analyzed and transformed into human joint position data for a human skeleton.
When a user makes a gesture, a series of continuous frames containing (x,y,z)-coordi-
nate information of the joint positions is extracted. Figure 2 shows a human skeleton
captured by the Kinect camera; the (x,y,z) coordinates of 20 joint points are calculated.
In this study, the (x,y,z) coordinates of the 20 joint points were determined using the
Microsoft software development kit (SDK). As shown in Fig. 2, 12 joints were defined
as key joints, and they had relatively large motion variations. In the human skeleton
defined by Microsoft Kinect, there are a total of 20 joints, which are distributed
throughout the skeleton [13]. A frame rate of 30 frames/s was used in Kinect, and a
frame had a dimension size of 60, corresponding to the three-dimensional (x,y,z)-
coordinate positions of the 20 joint points. Equation (1) shows the joint position

Fig. 2 The human skeleton captured by the Kinect camera where 20 joint point (x,y,z)-coordinate positions are
calculated, and 12 joints are defined as key joints with large motion variations
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features of n frames captured by the Kinect camera; each of the n gesture frames
contained three-dimensional coordinate positions of the 20 joint points.

Positions of 20 joints of the frame m ¼ Pi j mð Þ; m ¼ 1; 2;…; n; i ¼ 1; 2;…; 20; j ¼ x; y; z

ð1Þ
In this study, human gesture recognition using Kinect-captured joint positions (i.e.,

(x,y,z) coordinates of joint positions) was conducted using a DTW classification method.
Owing to its simplicity, DTW is a popular classifier for pattern recognition using
template matching. The main operation in DTW is matching the referenced gesture
template and a test gesture template. This operation is explained in this section. DTW
is a type of dynamic programming method, and it is highly effective in determining the
degree of similarity between the referenced gesture template and the test gesture template
in the time domain for gesture recognition [10]. The main operations of DTW gesture
recognition by the Kinect camera would be introduced herein. In the current study,
Kinect-based DTW gesture recognition involved two stages: the training stage for
establishing the database of DTW-referenced gesture templates, and the test stage for
performing matching the test template with each of the referenced templates established
in the training stage. When performing DTW template matching in the test stage, a low
distortion value between the test template and the reference template indicates a high
degree of similarity between them.

In DTW template matching, an attempt is made to find an optimal comparison path
between the test template feature vector and the referenced template feature vector [10].
Generally, in conventional Kinect-based DTW human gesture recognition, the feature of
gesture signals used for DTW template matching is the joint positions. Figure 3 shows
the template matching calculations of Kinect camera-based DTW gesture recognition, in
which the feature vector of joint positions is used. The test gesture consists of T gesture

Fig. 3 Template matching calculations of Kinect camera-based DTW gesture recognition
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frames, and an arbitrary frame (an arbitrary feature vector) is denoted by t. The gesture of
the reference template consists of R gesture frames and an arbitrary frame is represented
as r. The distortion between the T and R gesture frames can be represented as d[T(t),
R(r)]. For frame t and frame r, the feature vectors are as follows:

T tð Þ ¼ P1x tð Þ;P1y tð Þ;P1z tð Þ; P2x tð Þ;P2y tð Þ;P2z tð Þ;…;P20x tð Þ;P20y tð Þ;P20z tð Þ
� �

; t ¼ 1; 2;…; T

ð2Þ

R rð Þ ¼ P1x rð Þ;P1y rð Þ;P1z rð Þ; P2x rð Þ;P2y rð Þ;P2z rð Þ;…;P20x rð Þ;P20y rð Þ;P20z rð Þ� �
; r ¼ 1; 2;…;R:

ð3Þ
The starting point and the ending point of the comparison path for DTW template matching

are (T(1), R(1))=(1, 1) and (T(M), R(M))=(T, R), respectively. If it is assumed that
(T(0), R(0))=(0, 0) and d(0, 0)=0, the accumulated shortest distance used for selecting the
optimal source path can be represented as

min D t; rð Þ ¼ d t; rð Þ þ min
distance t‐1; rð Þ
distance t‐1; r‐1ð Þ
distance t‐1; r‐2ð Þ

8
<

:

9
=

;
; ð4Þ

where D(t, r) is the shortest distance from the starting position (0, 0) to position (t, r). When
DTW template matching is completed, the recognition outcome is the label of the referenced
template with the smallest value of D(T, R).

The conventional Kinect-based DTW human gesture recognition scheme involving joint
positions is inefficient and ineffective with regard to gesture recognition performance because
the gesture feature information acquired (consisting of only joint positions) is insufficient. For
overcoming this problem and enhancing the recognition performance, a feature design scheme
involving the determination of the appropriate hybridization of joint positions and joint angles
is presented in the next section.

3 Proposed feature design scheme involving hybridization of joint positions
and joint angles for Kinect-based DTW human gesture recognition

Figure 4 shows the training and testing phases of the proposed feature design method
used for Kinect-based DTW human gesture recognition. This section describes the
proposed feature design method, which involves the hybridization of joint positions
and joint angles for Kinect-based DTW human gesture recognition. Joint angle infor-
mation of 12 human key joints with significant activity variations is introduced first
(the block of calculations for the 12 key joint angles in Fig. 4), and this is followed by
a feature determination algorithm, developed in the current study, for each of the
gesture categories in the referenced template database of DTW gesture recognition
(the block of optimal hybridizations of joint positions and angles in Fig. 4). Kinect-
based DTW human gesture recognition (based on various categories of designed
features) for each gesture categorization is presented at the end of this section (the
block of feature selections in Fig. 4).
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3.1 Joint angle information for 12 human key joints with significant activity
variations

In the conventional Kinect-based DTW human gesture recognition method, the feature used
for representing the gesture is the joint position information. However, this gesture information
is insufficient due to ineffective feature extraction, and therefore the recognition performance
of the conventional method is unsatisfactory. In the proposed method, for feature extraction
from Kinect-captured gesture data, joint angle information is considered in addition to joint
position information.

Joint position information refers to the relative angle between two joints, with a third joint
being considered the original point. As shown in Fig. 2, 20 human joints are defined in the
Kinect-captured human skeleton: P1 to P20. Among these 20 joints, 12 joints with the
apparent motion variation were defined as “key joints” in this study. In the captured human
skeleton of Fig. 2, these 12 key joints are P6, P7, P8, P10, P11, P12, P14, P15, P16, P18, P19,
and P20, and they correspond to the left elbow, left wrist, left hand, right elbow, right wrist,
right hand, left knee, left ankle, left foot, right knee, right ankle, and right foot, respectively.
The primary rationale for the determination of the 12 key joints is that they introduce an
apparent change in the joint position information when specific gestures are performed; this
apparent change also introduces a significant variation in the joint angle information. The
remaining eight joints not included in the set of key joints provide considerably less informa-
tion on the variation of the joint angle information available, and therefore, these joints are
used as auxiliary joint points or the original joint points when it is necessary to calculate the
joint angle. In this study, among the eight joints, three joints were considered to assist
calculations of the joint angle of the key joint, with one original joint point and two auxiliary
joint points, which is detailed as follows.

The method for obtaining the relative joint angle information for a key joint is based on the
simple concept that a two-dimensional plane is basically composed of three different joint
points. The joint points P4, P3, and P1 in Fig. 2 are defined as the original point, auxiliary
point of the key joint points in the upper limb, and auxiliary point of the key joint points in the
lower limb, respectively; these points are considered as invariable fixed points in the two-
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20 joint positions
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12 key joint angles

Optimal hybridizations of
joint positions and angles

Training data of 
gesture class 1

Training data of 
gesture class 2
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Determinations of 
20 joint positions

Calculations of 
12 key joint angles

Test gesture data
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Fig. 4 Training and testing phases of the proposed feature design method for Kinect-based DTW human
gesture recognition
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dimensional plane for conveniently calculating the relative joint information of the 12 key
joints. For each of the 12 key joints, the relative joint information mainly relating to angles
between the indicated key joint point and the auxiliary joint point in the x-y plane and y-z plane
is derived. Figure 5 illustrates an example of relative joint angle information: the joint angle
information for key joint P8 when joint P4 and joint P3 are used as the original point and
auxiliary point, respectively. Another example is presented in Fig. 6, which shows the relative
joint angle information of key joint P16 when joint P4 is the original point and joint P1 is the
auxiliary point. As shown in Figs. 5 and 6, key joint P8 contains two relative angles, the x-y
plane angle Axy(P8) and the y-z plane angle Ayz(P8); similarly, two relative angles, the x-y plane
angle Axy(P16) and the y-z plane angle Ayz(P16), are included in the relative angle information
for key joint P16. The relative angle information for the remaining ten key joints—P6, P7,
P10, P11, P12, P14, P15, P18, P19, and P20—with angles Axy(P6) and Ayz(P6), Axy(P7) and
Ayz(P7), Axy(P10) and Ayz(P10), Axy(P11) and Ayz(P11), Axy(P12) and Ayz(P12), Axy(P14) and
Ayz(P14), Axy(P15) and Ayz(P15), Axy(P18) and Ayz(P18), Axy(P19) and Ayz(P19), and Axy(P20)
and Ayz(P20), respectively, is derived in a similar manner.

In addition to the 60 conventional joint position parameters (the x-coordinate, y-coordinate,
and z-coordinate obtained for each of the 20 joints), 24 relative joint angle parameters (2
relative angles derived from each of the 12 key joints) can be additionally employed as gesture
feature information for increasing the accuracy of gesture descriptions. The hybridization of
joint positions and joint angles for use as the feature vector of a Kinect-captured gesture frame
is designed as follows:

Gesture featureof a frame ¼ Pi j Axy Pkð Þ Ayz Pkð Þ� �
; i ¼ 1; 2;…; 20; j ¼ x; y; z; k ¼ 1; 2; :::12;

ð5Þ
where Pk denotes the kth key joint among the 12 key joints, Axy(Pk) is the x-y plane angle of the
kth key joint, and Ayz(Pk) represents the y-z plane angle of the kth key joint. Compared with the
feature vector of a gesture frame in (1) that contains only 60 position parameters, the improved
feature vector of a gesture frame in (5) consists of a maximum of 84 parameters, which is a

Fig. 5 The relative joint angle information of the key joint P8, including both the x-y plane angle Axy(P8) and the
y-z plane angle Ayz(P8), using the joint P4 as the original point and the joint P3 as the auxiliary point
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result of combining both joint positions and joint angles; therefore, the improved feature vector
contains a larger amount of information.

3.2 Feature design algorithms for determining an appropriate feature for each
gesture category in DTW gesture recognition

As mentioned earlier, the hybridization of joint positions and joint angles for representing the
feature vector of a Kinect-captured gesture frame as shown in (5) can help describe the
characteristics of gestures accurately. However, the direct combination of joint position
information and joint angle information is extremely inflexible and also redundant in some
situations. Fuzzy thinking is a more appropriate choice for carefully considering an effective
combination of joint position information and joint angle information. A soft computing-like
thought on gesture feature design is that not all 24 relative joint angle parameters should be
inserted in the feature vector; rather, an appropriate selection of some of the 24 relative joint
angle parameters may be used as the gesture feature information, and the number of relative
joint angle parameters selected for addition to the gesture feature vector should be determined
according to the degree of motion variation of each gesture category in the gesture recognition
system. The rationale behind the design is that categorization of a gesture with a high degree of
motion variation requires a gesture feature vector with few relative joint angle parameters. By
contrast, a small number of relative joint angle parameters are insufficient for accurately
categorizing a gesture with a small degree of motion variation, and in this case, a large amount
of relative joint angle information should be provided during the design of the gesture feature
vector.

Key joints P8 and P12 in the upper limb and P16 and P20 in the lower limb were chosen for
evaluating the degree of motion variation of a gesture for categorization. Figure 2 shows that
these four key joints have considerably more apparent motion variations compared with the
other 16 joints in the Kinect-captured human skeleton when an indicated gesture is performed.
For efficiently evaluating the degree of motion variation of a gesture category by using each of
these four key points, a complete gesture operation can be further divided into four active

Fig. 6 The relative joint angle information of the key joint P16, including both the x-y plane angle Axy(P16) and
the y-z plane angle Ayz(P16), using the joint P4 as the original point and the joint P1 as the auxiliary point
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gesture segments: the segment of the left upper limb, the segment of the right upper limb, the
segment of the left lower limb, and the segment of the right lower limb; the decision of feature
choices is made locally for each of these four segments. Consider the feature choice in the
segment of the left upper limb as an example. As mentioned, the derived relative joint angles
of key joint P8 are the x-y plane angle Axy(P8) and the y-z plane angle Ayz(P8). The values of
Axy(P8) and Ayz(P8) are used to determine the size of the relative joint angle required in the
active segment of the left upper limb. Such mentioned logical reasoning to explain the
relationship between the indexes Axy(P8) and Ayz(P8) of the key joint P8 and the required
joint relative angle information size in the situation of the left upper limb segment is
summarized in the following If-Then rules:

Rule 1: If Axy(P8) is large, then the x-y plane joint relative angle information size is small;
Rule 2: If Axy(P8) is medium, then the x-y plane joint relative angle information size is medium;
Rule 3: If Axy(P8) is small, then the x-y plane joint relative angle information size is large;
Rule 1-1: If Ayz(P8) is large, then the y-z plane joint relative angle information size is small;
Rule 2-1: If Ayz(P8) is medium, then the y-z plane joint relative angle information size is

medium;
Rule 3-1: If Ayz(P8) is small, then the y-z plane joint relative angle information size is large;

Accordingly, a feature design algorithm for considering all four local active sections is designed
for determining an appropriate gesture feature for each of the gesture categories in DTW gesture
recognition. Figure 7 shows the feature design algorithm used in this study. The algorithm can be
used for appropriately designing a gesture feature for a gesture category according to the degree of
motion variation of the gesture category. If there are a total ofN gesture categories in the recognition
system, there will be a maximum of N designed gesture feature vectors.

3.3 Kinect-based DTW human gesture recognition with gesture categories having
different features

The proposed Kinect-based DTW gesture recognition method with a feature design scheme has an
appropriate set of feature parameters for each active gesture categorization in the recognition system.
WhenDTW templatematching is performed using the proposedKinect-basedDTWhuman gesture
recognitionmethod and gesture categories (of theDTW-referenced template database) with different
features, a feature selection process is required for the test gesture template for extracting the specific
type of feature parameters identical to the feature parameter type of the encountering referenced
template. Feature extraction is performed on the test gesture template according to the feature type
determined during feature selection, and therefore, the test gesture template has the same type of
gesture feature parameters as the matched referenced template. The feature selection process in the
test phase of DTW gesture recognition effectively overcomes the problem of the test gesture
template possibly encountering a referenced template such that the specific type of gesture feature
information in both templates match. Figure 8 shows the Kinect-based DTW human gesture
recognition algorithm for gesture categories with different features.

For the DTW method, the proposed feature design scheme does not have any effect on the
main pattern recognition calculation of the method. The functionality of the DTW template
matching operation remains unchanged, and, therefore, the computational complexity of DTW
template matching does not increase for the proposed feature design method. Compared with
conventional DTWwith only one given feature type, in DTWwith the proposed feature design
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scheme, there is more abundant and accurate gesture feature information in the DTW-
referenced template database, where each referenced template has an appropriate correspond-
ing feature type according to the provided gesture categorization of the referenced template.

Proposed feature design algorithm for Kinect-based DTW gesture recognition

/* Initialize the feaure vector of each active gesture class to be the 60-D vector. */

For each n = 1 to N /* N is the number of active gesture classes in DTW referenced templates */

The feature vector of the n-th gesture class nV = zyxjiPij ,,,20,...,2,1],[ ;

End For

Set counters, 8)(PAxy _Counter, 8)(PAyz _Counter, )21(PAxy _Counter, )12(PAyz _Counter, 16)(PAxy _Counter,

)16(PAyz _Counter, 20)(PAxy _Counter, and )20(PAyz _Counter, to be zero;

/* Feature determinations for each gesture class in DTW recognition systems */

For each n = 1 to N /* N is the number of active gesture classes in DTW referenced templates */

For each m = 1 to M /*M is the number of the referenced template with the class label n */

T = Calculate the total frame number of the reference template m;

For each t = 1 to T /* T is the total frame number contained in the referenced template m */
Determine the (x, y, z)-coordinate positions of 20 joints in the gesture frame t;
Derive the joint relative angles of the x-y plane and the y-z plane of 12 key joints; 

8)(PAxy _Counter += 8)(PAxy ; 8)(PAyz _Counter +=  8)(PAyz ;

)21(PAxy _Counter += )21(PAxy ; )12(PAyz _Counter += )12(PAyz ;

16)(PAxy _Counter += 16)(PAxy ; )16(PAyz _Counter += )16(PAyz ;

20)(PAxy _Counter += )20(PAxy ; )20(PAyz _Counter += )20(PAyz ;

End For

End For

If ( 8)(PAxy _Counter > Threshold_High) /* Relative angle parameters of the key joints in the left upper limb */

Add  only 8)(PAxy into the feature vector of the n-th gesture class, nV ;

Elseif (Threshold_Low 8)(PAxy _Counter Threshold_High)

Add 8)(PAxy and )7(PAxy into the feature vector of the n-th gesture class, nV ;

Elseif ( 8)(PAxy _Counter < Threshold_Low)

Add 8)(PAxy , )7(PAxy and )6(PAxy into the feature vector of the n-th gesture class, nV ;

End If

If ( 8)(PAyz _Counter > Threshold_High)

Add  only 8)(PAyz into the feature vector of the n-th gesture class, nV ;

Elseif (Threshold_Low 8)(PAyz _Counter Threshold_High)

Add 8)(PAyz and )7(PAyz into the feature vector of the n-th gesture class, nV ;

Elseif ( 8)(PAyz _Counter < Threshold_Low)

Add 8)(PAyz , )7(PAyz and )6(PAyz into the feature vector of the n-th gesture class, nV ;

End If

If ( )12(PAxy _Counter > Threshold_High) /* Relative angle parameters of the key joints in the right upper limb */

The remainder is similar as the pesudo-code described in the case of the key joint P8;
...

If ( )16(PAxy _Counter > Threshold_High) /* Relative angle parameters of the key joints in the left lower limb */

The remainder is similar as the pesudo-code described in the case of the key joint P8;
...

If ( )20(PAxy _Counter > Threshold_High) /* Relative angle parameters of the key joints in the right lower limb */

The remainder is similar as the pesudo-code described in the case of the key joint P8;
...

End For

Establish the feature index table to record feature information of each gesture categorization;

Fig. 7 The developed feature design algorithm for determining the gesture feature of each active gesture class in
a Kinect-based DTW gesture recognition system
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4 Experiments and results

Kinect-based DTW gesture recognition experiments were performed in the application of the
gesture command recognition task. As voice command for target object control applications in
speech recognition, a commandmade using the indicated human gesture could be efficiently used to
control household electric equipment in a smart home, or to control the action of a robotic toy. Such
Kinect-based DTW gesture recognition using gesture command operations could be conveniently
integrated with a target hardware system with a specific purpose. A set of 14 categories of human
gesture commands was designed in this study: “lifting the right foot with both hands held,” “lifting
the left foot with both hands held,” “waving the right hand on the left side,” “waving the left hand on
the right side,” “waving the right hand by positioning the hand above the head,” “pulling a ceiling
fan by using the right hand,” “pulling a ceiling fan by using the left hand,” “jumping in place,”
“maintaining a standing posture,” “holding a phone in the right hand,” “holding a phone in the left
hand,” “pushing a door with the right hand,” “placing both hands on the hip with the right foot lifted
to the right side,” and “placing both hands on the hip with the left foot lifted to the left side”; these
categories were labeled as Classes 1 to 14, respectively. When a series of active frames is captured
using the Kinect camera, the Kinect camera has a default frame rate of 30 frames/s, is deployed at a
height of 1.2 m, and is at a distance of 3 m from the active user. For effectively acquiring the (x,y,z)
coordinates of the position of the 20 human joints in the human skeleton, theMicrosoft Kinect SDK

Algorithm for Kinect-based DTW gesture recognition by presented feature designs
/* Initialize the joint position data and the key joint relative angle data of all gesture frames of test data to be zero. */
For each t = 1 to MAX /* MAX is the defined max value for gesture frames in the test template. */

For each j = 1 to 20 /* j denotes the joint index. */
X_position[t][j] = 0;
Y_position[t][j] = 0;
Z_position[t][j] = 0;

End For
End For
For each t = 1 to MAX /* MAX is the defined max value for gesture frames in the test template. */

For each k = 1 to 12 /* k denotes the key joint index. */
XY_Angles[t][k] = 0;
YZ_Angles[t][k] = 0;

End For
End For
For each t = 1 to T /* T is the total number of gesture frames in the test template */

Acquisitions of 3D-positions of 20 joints (X_position[t], Y_position[t], Z_position[t]);
Acquisitions of the x-y plane angle of 12 key joints (XY_Angles[t]);
Acquisitions of the y-z plane angle of 12 key joints (YZ_Angles[t]);

End For
/* Initializations of the accumulated distance index of each referenced template to be matched */
For each r = 1 to R /* R is the number of the referenced templates in DTW recognition systems */

distance[r] = 0;
End For
/* Performing feature selection for each referenced template and then doing template matching */
For each r = 1 to R /* R is the number of the referenced templates in DTW recognition systems */

feature_type = feature selection (r-th_referenced_template, feature_index_table);
test_template_features = feature extraction (X_position, Y_position, Z_position, XY_Angles, YZ_Angles, 

feature_type);
distance[r] = template matching (test_template_features, r-th_referenced_template_features);

End for
target_referenced_template = search the minimum distance element (distance[R]);
recognition_outcome = gesture label checking (target_referenced_template);

Fig. 8 The recognition algorithm for Kinect-basedDTWgesture recognition by the presented feature design scheme
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(Version 1.8.0) was adopted. The Microsoft Kinect SDK was used only at the stage in which joint
position information was acquired.

There were two main experimental phases in this study: the training phase of system establish-
ments of Kinect-based DTW gesture recognition with the proposed feature design scheme and the
test phase of performance evaluation of the proposed gesture recognition system established in the
training stage. In the training phase, the training gesture data collected from active users are used to
establish the DTW-referenced template database, in which each referenced template is a complete
gesture representing a certain category of gestures performed by an active user. Fivemale users were
requested to capture their gestures using the Kinect camera. The training data in the training stage
consisted of 700 active gestures. Each of the five users was requested to perform the indicated 140
active gestures, 10 gestures for each of the 14 categories of gestures. In the proposed feature design
scheme for Kinect-based DTWgesture recognition, the gesture feature for each of these 14 category
gestures was determined using 50 captured gestures (10 gestures of each of the 5 active users). After
the feature design for all these referenced template gestures was completed, a feature index table
providing the corresponding feature type for each gesture category was constructed. For the
conventional Kinect-based DTW gesture recognition with an invariable type of gesture features,
the 700 active gestures collected were used only as the referenced templates for DTW template

Table 1 Estimated gesture feature types of 14 indicated gesture categories in Kinect-based DTW gesture
recognition with the proposed feature design scheme

Gesture
category

Gesture feature contents Feature
dimensions

Position data of 20 joints Angle data of the key joints

Class-1 Pij, i=1,2,…,20, j=x,y,z Axy Pkð Þ; Ayz Pkð Þ; k ¼ 1; 2;…12;
excludingAxy P1ð Þ; Ayz P1ð Þ;Axy P4ð Þ; Ayz P4ð Þ

80 (60+20)

Class-2 Pij, i=1,2,…,20, j=x,y,z Axy Pkð Þ; Ayz Pkð Þ; k ¼ 1; 2;…12;
excludingAxy P1ð Þ; Ayz P1ð Þ;Axy P4ð Þ; Ayz P4ð Þ

80 (60+20)

Class-3 Pij, i=1,2,…,20, j=x,y,z Axy Pkð Þ; Ayz Pkð Þ; k ¼ 1; 2;…12;
excludingAxy P4ð Þ; Ayz P4ð Þ

82 (60+22)

Class-4 Pij, i=1,2,…,20, j=x,y,z Axy Pkð Þ; Ayz Pkð Þ; k ¼ 1; 2;…12;
excludingAxy P1ð Þ; Ayz P1ð Þ

82 (60+22)

Class-5 Pij, i=1,2,…,20, j=x,y,z Axy Pkð Þ; Ayz Pkð Þ; k ¼ 1; 2;…12;
excludingAxy P4ð Þ; Ayz P4ð Þ;Axy P5ð Þ; Ayz P5ð Þ

80 (60+20)

Class-6 Pij, i=1,2,…,20, j=x,y,z Axy Pkð Þ; Ayz Pkð Þ; k ¼ 1; 2;…12;
excludingAxy P4ð Þ; Ayz P4ð Þ;Axy P5ð Þ; Ayz P5ð Þ

80 (60+20)

Class-7 Pij, i=1,2,…,20, j=x,y,z Axy Pkð Þ; Ayz Pkð Þ; k ¼ 1; 2;…12;
excludingAxy P1ð Þ; Ayz P1ð Þ;Axy P2ð Þ; Ayz P2ð Þ

80 (60+20)

Class-8 Pij, i=1,2,…,20, j=x,y,z Axy(Pk), Ayz(Pk), k=1,2,...12 84 (60+24)

Class-9 Pij, i=1,2,…,20, j=x,y,z Axy(Pk), Ayz(Pk), k=1,2,...12 84 (60+24)

Class-10 Pij, i=1,2,…,20, j=x,y,z Axy Pkð Þ; Ayz Pkð Þ; k ¼ 1; 2;…12;
excludingAxy P4ð Þ; Ayz P4ð Þ

82 (60+22)

Class-11 Pij, i=1,2,…,20, j=x,y,z Axy Pkð Þ; Ayz Pkð Þ; k ¼ 1; 2;…12;
excludingAxy P1ð Þ; Ayz P1ð Þ

82 (60+22)

Class-12 Pij, i=1,2,…,20, j=x,y,z Axy Pkð Þ; Ayz Pkð Þ; k ¼ 1; 2;…12;
excludingAyz P4ð Þ

83 (60+23)

Class-13 Pij, i=1,2,…,20, j=x,y,z Axy(Pk), Ayz(Pk), k=1,2,...12 84 (60+24)

Class-14 Pij, i=1,2,…,20, j=x,y,z Axy(Pk), Ayz(Pk), k=1,2,...12 84 (60+24)
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matching calculations and not for designing the gesture feature. In the test phase, test experiments
were conducted; gesture recognitionwas performed on gesturesmade by two newmale users. These
two male users were not among the active users in the training stage. Each of these two users was
requested to capture ten gestures for each of the 14 category gestures. Therefore, a total of 280 active
gestures were used as the test data for a performance comparison of the gesture recognitionmethods.

Table 1 shows the appropriate feature type derived using the proposed feature design
scheme for each of 14 indicated categories of gestures. As can be seen in Table 1, after the
developed gesture feature design algorithm was run, each gesture category in the DTW
recognition system had an optimal gesture feature type. The gesture feature of the 14 gesture
categories included the original 60 joint position parameters (each of the 20 joints containing
the x, y, and z coordinate values) and a variable number of relative joint angle parameters of the
key joints. Classes 1, 2, and 5 to 7 had the minimum number of feature parameters at 80,
consisting of 60 joint position parameters and 20 joint angle parameters. Classes 8, 9, 13, and
14 had the largest number of feature parameters, and these consisted of all 60 joint position
parameters and all 24 relative joint angle parameters. The conventional Kinect-based DTW
gesture recognition method involves only the 60 fixed joint position parameters, and it is
considerably less flexible than the variable-sized gesture feature design in this study.

A recognition performance comparison between the proposed Kinect-based DTW gesture
recognition method with feature design and the conventional Kinect-based DTW gesture
recognition method with only joint position data features is presented in Table 2. In the test
experiment, an experiment for evaluating Kinect-based DTW gesture recognition using all 84
feature parameters (joint position parameters and joint angle parameters) was also conducted.
The proposed recognition algorithm with a feature selection scheme discussed in Section 3.3
was specifically used for Kinect-based DTW gesture recognition with feature design. As
shown in Table 2, in gesture recognition test experiments on the recognition of 14 designed
gesture categorizations, the proposed feature design scheme for Kinect-based DTW gesture
recognition achieved an exceptional recognition rate of 87.5 %, which was superior to the
recognition rate of 82.14 % achieved using the conventional Kinect-based DTW gesture
recognition method using only fixed-sized features of 60 joint position parameters. The recog-
nition rate improvement of 5.36 % was considerable. In addition, the proposed feature design
scheme using soft combinations of joint position data and joint angle data for deriving an optimal
feature set for each gesture category in the recognition systemwas also superior to inflexible hard
feature combinations of the 84 feature parameters, consisting of all 60 joint position and all 24
relative joint angle parameters. In Table 2, the comparable recognition experiment results of
Kinect-based DTW gesture recognition in various feature setting situations show the effective-
ness and competitiveness of the feature design scheme proposed in this paper.

Table 2 Recognition rates of Kinect-based DTW gesture recognition using conventional fixed 60 joint position
parameters, 84 parameters of hard combinations of 60 joint position parameters and 24 joint relative parameters,
and the proposed feature design scheme for each gesture category

Average recognition rates of Kinect-based DTW gesture recognition in different feature setting situations

Conventional fixed
60 joint position
parameters

Hard combinations of 60 joint position
parameters and 24 joint relative
parameters (84 parameters)

Proposed feature design schemes to
derive the optimal feature set for
each gesture category

82.14 % 77.86 % 87.50 %
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5 Conclusions

In this paper, a feature design scheme involving appropriate hybridizations of joint
position data and relative joint angle data is proposed for Kinect-based DTW human
gesture recognition. The proposed scheme derives the optimal gesture feature parameters
for each gesture category (defined in the DTW recognition system) according to the
degree of motion variation of the gesture category, and it is expected to effectively
increase the recognition accuracy in the template matching process in the DTW recog-
nition test phase. Gesture recognition experiments involving classification calculations
for 14 gesture categories showed that the proposed Kinect-based DTW gesture recogni-
tion method with a flexible feature design is superior to the conventional Kinect-based
DTW gesture recognition method, in which only an inflexibly immutable joint position
parameter determines the recognition performance.
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