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Abstract Among different types of video manipulations, video inter-frame forgery is a powerful
and common tampering operation. Several forensic and anti-forensic techniques have been
proposed to deal with this challenge. In this paper, we first improve an existing video frame
deletion detection algorithm. The improvement is attributed to the combination of two properties
resulted from video frame deletion, the periodicity and the magnitude of the fingerprint in the P-
frame prediction error. We then analyze a typical anti-forensic method of video frame deletion,
and prove that the fingerprint of frame deletion still can be discovered after being anti-forensically
modified. We thus further propose a counter anti-forensics approach by estimating the true
prediction error and comparing it with the prediction error stored in videos. We show that the
detection algorithm is not only useful in detecting video frame deletion, but also useful for
detecting video frame insertion. Compared with the existing counter anti-forensics, our proposed
approach is robust when different motion estimation algorithms are used in the initial compres-
sion. Furthermore, the forensics and counter anti-forensics are combined to perform a two-phase
test to detect video inter-frame forgery. AVideo Inter-frame Forgery (VIF) game, which is zero-
sum, simultaneous-move, is defined to analyze the interplay between the forger and the inves-
tigator. Mixed strategy Nash equilibrium is introduced to solve the VIF game and we can obtain
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the optimal strategies for both players. Experimental results show that the proposed forensic and
counter anti-forensic methods not only outperform existing methods in detecting frame deletion
and anti-forensics, but also outperform them in the VIF game.

Keywords Video forensics . Inter-frame forgery . Counter anti-forensics .Mixed strategyNash
equilibrium

1 Introduction

In recent years, with the advances of multimedia devices (such as digital cameras, cell phones
and laptops), digital video contents have profoundly changed our daily life. Digital video is
widely used for security purposes, news report, as well as judicial evidences in court.
However, powerful digital editing software allows for easy copying, editing and distributing
digital video contents. Consequently, the authentication and validation of a given digital video
have become increasingly difficult, due to possible diverse sources and the potential manip-
ulations that could have been operated [15]. Integrity and authenticity of video contents have
been an active topic in digital multimedia forensics [18].

Due to the mass storage requirements of uncompressed digital videos, most digital videos
will be compressed before storage and transmission. Because existing video editing tools do not
work directly in the compressed domain, every time a video is to be manipulated, it has to be
decompressed first, manipulated and then recompressed. Several methods [2, 10, 13, 14, 22, 25]
have been proposed to detect video recompression. The work in [22] presented a method to
estimate the size of Group of Pictures (GOP) during the first compression based on theVariation
of Prediction Footprint (VPF), and [4] further increased the robustness of VPF so that it can be
exploited to detect inter-frame video tampering. Inter-frame forgery is one of the most common
manipulations. For example, in order to conceal the appearance of a suspicious object or human
in a surveillance video, the forger would delete frames from the video. Papers [3, 24] exposed
inter-frame forgery based on the consistency of the optical flow and the velocity field. However
these methods are limited to be applicable moving targets in videos. The work in [23] exposed
inter-frame forger with the P-frame prediction error sequence. Based on the P-frame prediction
error sequence, [12] proposed a time-domain feature of video frame deletion.

Although, these forensic techniques are quite effective in detecting digital manipulations,
many of them may fail if a forger uses anti-forensic techniques. Anti-forensic techniques are
designed to mislead forensic analysis by concealing or removing fingerprints left by tampering
operations. An anti-forensic technique can’t introduce obvious distortion into the tampered
multimedia content. Reference [21] proposed a frame deletion anti-forensic technique by
purposely increasing the prediction error, and [19] ameliorated the process of increasing the
prediction error. Nevertheless, the operation of modifying videos anti-forensically may leave
detectable fingerprints, so the forger must balance the anti-forensic strength. Meanwhile, the
forensic investigator attempts to detect the fingerprints left by tampering and anti-forensic
modification. Game theoretic frameworks [1, 19, 20, 26] had been explored to analyze the
interplay between a forensic investigator and a forger.

In this paper, we deal with the problem of video inter-frame forger. The main contributions
of this work can be summarized as follows. Firstly, we analyze the frame deletion detection
algorithm in [12], and propose an improved algorithm by addressing the potential weakness in
[12]. Secondly, a robust counter anti-forensic technique is proposed. Although papers [19, 21]
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modify the prediction errors stored in the video, the true prediction errors presented in the
video do not change. In the proposed counter anti-forensics, we estimate the true prediction
error and analyze the discrepancies between the true prediction error and the prediction error
stored in the video. Compared with the counter anti-forensic technique in [19], the proposed
technique is robust to different motion vector searching algorithms. Thirdly, forensics and
counter anti-forensics are combined into a two-phase test to determine whether a video has
been manipulated. A Video Inter-frame Forgery (VIF) game is formulated to analyze the
interplay between the forensic investigator and the forger. Different from the game in [19], the
proposedVIF game removes the assumption that the forensic investigator moves first and then
the forger responds. In our case, the investigator and the forger simultaneously move, which is
more suitable in practical scenarios. The game theoretic analysis is performed under Mixed
Strategy Nash Equilibrium.

The rest of this paper is structured as follows. In Section 2, we propose an improved frame
deletion detection algorithm based on [12]. In Section 3, a counter anti-forensic technique is
proposed. Section 4 evaluates the performance of both players under mixed strategy Nash
Equilibrium. Section 5 shows the experimental results of the proposed methods. Finally, the
conclusions are drawn in Section 6.

2 The improved frame deletion detection algorithm

We begin this section with a brief overview of the video frame deletion fingerprints left in the
P-frame prediction error sequence. Then a popular frame deletion detection algorithm [12] is
introduced and an improved version of [12] is proposed.

2.1 Video frame deletion fingerprint

Nowadays, though a variety of different video compression techniques exist, such as MPEG-2
[7], MPEG-4 [8], H.264 [9] and HEVC [11], they share the same basic idea. In each Group of
Pictures (GOP), frames are assigned to one of the three types according to the manner in which
they are predicted and compressed. These frame types are: intra-frames (I-frame), predicted-
frames (P-frame) and bidirectional-frames (B-frame).

When frames are deleted from a digital video, each GOP in the recompressed video will
correspondingly contain frames belonging to different GOPs defined in the initial compression,
which can be declared as the offset of frame phases. It was demonstrated in [23] that, because
these P-frames and their anchor frames are not correlated, the prediction errors become
relatively larger. The P-frame prediction error sequence can be measured as follows [19]:

e nð Þ ¼ 1

Nxy

X
x

X
y

Px;y nð Þ�� �� ð1Þ

whereNxy is the number of pixels in each frame, Px,y(n) is the prediction error of the n
th P-frame,

at pixel location (x, y), n∈[1,N] and N is the total number of P-frames in a video.
The variation in the P-frame prediction error sequence is periodic, which leads to peaks in

the Discrete Fourier Transform (DFT) {E(k)} of the sequence {e(n)}. Figure 1 shows an
example of frame deletion. The video ‘Akiyo’ is compressed using a fixed GOP structure
IBBPBBPBBPBP, QP (Quantization Parameter) is 8 for I-frames and QP is 10 for P-frames
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and B-frames. Figure 1a is the P-frame prediction error sequence of 250 frames of a
compressed version of the video ‘Akiyo’, and Fig. 1b shows the corresponding DFT of this
P-frame prediction error sequence. Figure 1c is the P-frame prediction error sequence of the
same video after the first frame is deleted, and we can see two peaks in the DFT of this
sequence as shown in the Fig. 1d.

2.2 An existing detection algorithm

As mentioned above, the P-frame prediction error sequence e(n) increases periodically after
frame deletion. The period T of e(n) is equal to the total number of P-frames within a GOP
[19]. In this paper, we limit to the scenario that the forger delete or insert frames from a video
and then recompress it with the same GOP, so T is known for both the investigator and the
forger. Reference [12] proposed a frame deletion detection algorithm by measuring the
periodicity of the P-frame prediction error sequence.

Denote NG to be the number of GOPs within a video, and partition e(n) into NG

portions with the period T. Consequently, each portion contains T elements. Then the
index positions of the maximum element in each portion are stored in a vector v (vi ∈
v, i∈{1, 2, …, NG}). The vector s (sj ∈ s, j∈{1, 2, …, T}) is the occurrence frequency
of vi=j in the vector v. μ is the mean value of s and σ2 is the variance of s. The relationship
among them is:

XT

j¼1

s j ¼ NG ð2Þ

(a)

(b)

(c)

(d) (f)

(e)

Fig. 1 (a) P-frame prediction error sequence of the unaltered compressed video ‘Akiyo’. (b) The corresponding
DFTof the error sequence in (a). (c) P-frame prediction error sequence of the same video after the first frame was
deleted followed by recompression. (d) The corresponding DFTof the sequence in (c). (e) P-frame prediction error
sequence of the unaltered compressed video ‘Bridge-close’. (f) The corresponding DFT of the sequence in (e)
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μ ¼

XT

j¼1

s j

T
¼ NG

T
ð3Þ

σ2 ¼

XT

j¼1

s j−μ
� �2
T−1

ð4Þ

If frames are deleted from a video, the index positions of the maximum element in each
portion are relatively consistent, so a certain element in s will be obviously larger than other
elements in s. If and only if one element in s is equal to NG and all other elements in s are equal
to zero, σ2 reaches its maximum:

σ2
max ¼

NG−NG=Tð Þ2 þ T−1ð Þ NG=Tð Þ2
T−1

ð5Þ

Equation (5) can be easily derived from (2) - (4). Finally, the time-domain feature is defined as:

Qt ¼
σ2

σ2
max

ð6Þ

It is easy to demonstrate that Qt∈[0,1]. The time-domain feature Qt of a video with frame
deletion is much larger than that of the video without frame deletion [12].

2.3 The improved detection algorithm

Although the aforementioned frame deletion detection can effectively measure the periodic
increase in the P-frame prediction error sequence, it does not examine the magnitude of the
increase. Figure 1e presents the prediction error of the unaltered video ‘Bridge-close’ which is
compressed with the same setting as in the video ‘Akiyo’, and Fig. 1f shows the corresponding
DFT. For this example, accidentally, the largest prediction errors have the same index in each
GOP (e.g., the first prediction error is the largest one within every GOP in this video) . As a
result, Qt=1 for this video, meaning that this video will be misclassified as a tampered video.

Actually, the maximum prediction error caused by frame deletion will be obviously larger than
other prediction errors within aGOP. In order to avoid the abovemisclassification, wemeasure the
maximum prediction error in each portion. If the maximum prediction is not big enough, the
position of the maximum element in that portion is replaced by a random value, so the accidental
periodicity is destroyed. Denote that e1 is the maximum prediction error in one portion, and e2 is
the minimum prediction error in the same portion. The vector v' is obtained as follows.

v
0
i ¼ vi ; if e1 > αe2

Rand Tð Þ; otherwise

�
ð7Þ

where i ∈{1, 2,…,NG}.Rand(T) is a stochastic function, which randomly chooses one value from
the uniform distributed set {1, 2,…, T}. α>0 is an empirical constant, and we set α=1.5 in our
experiments.

Then, we use v' instead of v and repeat the above procedure in 2.2. An improved time-

domain decision statistic It is calculated via (6), i.e., I t ¼ σ2

σ2max
. A threshold τd is used to classify
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the video in question. If It<τd, the video is classified as unaltered. Otherwise, the video is
classified as tampered with frame deletion. Additionally, frame insertion can be regarded as
deleting a negative number of frames, so this detection algorithm is also applicable for video
frame insertion. We define this improved frame deletion detection algorithm as δd.

3 Counter anti-forensics of frame deletion

Anti-forensics is designed to remove the fingerprint of tampering operation; meanwhile, anti-
forensic operations may inadvertently leave behind their own fingerprints. In this section, we
first introduce a typical anti-forensics [19, 21] for video frame deletion, and then a counter anti-
forensic method is proposed to detect this anti-forensics.

3.1 Frame deletion anti-forensics

In order to make the manipulation of frame deletion undetectable, the forger must remove the
footprint that can be revealed by the P-frame prediction error sequence. Generally, video
encoders attempt to minimize the total prediction error, so that they would create a highly
accurate prediction for each frame. When a less accurate prediction technique is used, the total
prediction error for a certain frame would increase. In other words, the prediction error for a
frame can be increased by purposefully choosing motion vectors that yield a poor predicted
frame. Reference [19, 21] proposed an anti-forensic method by modifying the encoding
process so that the P-frame prediction error sequence stored in the video would conceal the
fingerprint of frame deletion. The procedure is as follows:

Firstly, a target P-frame prediction error sequence ẽ(n) that is independent of the fingerprint
of frame deletion is constructed. An example of ẽ(n) is illustrated in Fig. 2a, where the
fingerprint of frame deletion has been removed. Secondly, the motion vectors of certain
macro-blocks are selectively set to zero and then the prediction error associated with those
macro-blocks is recalculated so that the actual prediction error matches the target one. If the
target prediction error for a particular P-frame is larger than the error incurred by setting all of
the frame’s motion vectors to zero, the corresponding set of motion vectors that maximize the
prediction error associated with each macro-block are searched first. The work in [19]
modified the method of increasing the prediction error. Rather than setting several of its
motion vectors to zero, [19] instead fix a search radius with an initial value of one pixel
around the true motion vector. If the target prediction error is not achievable using current
motion vector search radius, the search radius is increased by one pixel and the search
procedure is repeated.

Figure 2a shows the P-frame prediction error sequence of ‘Akiyo’ that has been anti-
forensically modified after the first frame is deleted, and Fig. 2b shows its corresponding DFT.
It is observed that DFT peaks disappear after using the anti-forensic technique, meaning that
the aforementioned technique can effectively conceal the fingerprint left by frame deletion.

3.2 Counter anti-forensics of video frame deletion

Though the anti-forensics in [19, 21] work effectively in concealing the periodic fingerprint in
the P-frame prediction error sequence, it does not change the true prediction error presented in
the tampered video, indicating that the frame deletion fingerprint still can be extracted. We
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propose a counter anti-forensics of frame deletion by estimating the true prediction error and
measuring the discrepancies between the estimated prediction error and the stored prediction
error.

The true P-frame prediction error sequence estimated from the anti-forensically modified
video will have similar properties as the one without using anti-forensics. This observation is
justified as follows.

Let Pj be a frame to be predicted. Fi is an anchor frame, and Ej is the prediction error of Pj.
The relation among them is:

E j ¼ P j−M Fið Þ ð8Þ
where M(.) denotes the process of standard motion estimation and motion compensation. Ref.
[19, 21] used a low accurate motion estimation to increase the prediction errors, and this
process is denoted as M'(). So we have:

E
0
j ¼ P

0
j−M

0
F

0
i

� �
ð9Þ

where P'j and F'i denote the frame to be predicted and the anchor frame in the anti-forensically
modified video respectively. E'j is the prediction error. E'j can be converted into a single
indicator for the P-frame prediction error sequence e'(n) with (1). By compressing the whole

(a) (c) 

(b) (d) 

Fig. 2 (a) The P-frame prediction error sequence of the anti-forensically modified video ‘Akiyo’. (b) The
corresponding DFT of the sequence from (a). (c) The estimated P-frame prediction error sequence of the anti-
forensically modified video ‘Akiyo’. (d) The corresponding DFT of the sequence from (c)
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video in this way, e'(n) will not present the periodic fingerprint of frame deletion, and the effect
can be seen in Fig. 2(a) and (b).

However, as mentioned in Section 1, an anti-forensic technique must not introduce an
unacceptable amount of distortion into the anti-forensically modified video. It means that the
anti-forensically modified frame should be almost the same as the standard com-
pressed frame. As a result, we get Pj

′≈Pj, Fj
′≈Fj. To estimate the true P-frame

prediction error, we recompress the questionable video with a standard motion esti-
mation and motion compensation:

E″
j ¼ P

0
j−M F

0
i

� �
ð10Þ

where E"j is the estimated prediction error. Comparing (8) with (10), we get E"j≈Ej.
In another word, the true P-frame prediction error sequence is almost the same as that
of the tampered video without anti-forensic modification. Therefore, it still exhibits a
periodic pattern induced by frame deletion.

An example is presented in Fig. 2, where we estimate the true prediction error sequence from the
anti-forensically modified video ‘Akiyo’ and calculate the DFT of this sequence. In Fig. 2d, in
addition to the DC component, twomore peaks occur again. Therefore, we can use this to detect the
anti-forensic technique. The procedure of our counter anti-forensics is presented as follows:

Firstly, the estimated true prediction error sequence is obtained by recompressing the video
in question with a standard motion estimation and motion compensation approach. Secondly,
the improved time-domain statistic of the prediction error stored in the video and
estimated error recalculated from the questioned video are computed using the algo-
rithm in Section 2. Let e'(n) denote the stored P-frame prediction error sequence and
e"(n) denote the recalculated estimated sequence. I't and I"t are the improved time-
domain statistic computed with e'(n) and e''(n) respectively. Finally, we measure the
Absolute Deviation of these two statistics as:

dt ¼ I
0
t−I

″
t

�� �� ð11Þ
The value of I't is relatively small for both unaltered video and anti-forensically modified

video. If the video in question has not been anti-forensically modified, e''(n) will not present
the periodic pattern, so I''t should be close to I't. Hence, dt will be close to zero. However, if the
video in question has been anti-forensically modified, dt will be relatively large. A threshold τc
is used to classify the video in question. If dt<τc, the video is classified as without being anti-
forensically modified. Otherwise, the video is classified as being anti-forensically modified.
We define this counter anti-forensics as δc for further discussion.

4 Game theoretic evaluation of video forensics and anti-forensics

By integrating forensics and counter forensics, a two-phase test is established, which is
illustrated in Fig. 3. The forensic investigator will balance the false alarm rate for both
detecting frame deletion and detecting the use of anti-forensics that maximizes the probability
of detecting a forgery under a given total false alarm rate. On the other side, the forger must
choose a proper anti-forensic attack strength to minimize the probability that either the frame
deletion or the use of anti-forensics will be detected. In this section, we use Game theory [6,
16] to analyze the interplay between the forensic investigator and the forger.
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4.1 The two-phase test

1) The first phase. The forensic investigator firstly determines whether a digital video V has
undergone frame deletion using the detection algorithm δd in Section 2. The problem can
be expressed as a hypothesis test.

δd(V)=H0
d The compressed video V has not undergone frame deletion. The

subscript ‘0’ denotes the null hypothesis and the superscript ‘d’ denotes
detecting the manipulation of frame deletion.

δd(V)=H1
d The compressed video V has undergone frame deletion, and recompressed

with the same GOP as the previous compression.

Let It(V) be the improved time-domain statistic of the videoV. The acceptance region ofH1
d is:

V : I t Vð Þ > τd ð12Þ

where the threshold τd is chosen according to the false alarm rate Pfa
d , which is defined as:

Pd
f a ¼ P δd Vð Þ ¼ Hd

1 V has not undergone frame deletionj� � ð13Þ

2) Second phase. If the videos are accepted in H0
d, the investigator will further adopt the

counter anti-forensics δc in Section 3 to test if the video had been anti-forensically
modified. Just like the previous stage, this problem can also be modeled as a hypothesis
test.

δc(V)=H0
c The compressed video V is unaltered, i.e., V has neither undergone frame

deletion nor anti-forensically modified. The superscript ‘c’ denotes the
counter anti-forensics.

δc(V)=H1
c The compressed video V has undergone frame deletion and anti-

forensically modified and recompressed with the same GOP as
the initial compression.

For the proposed counter anti-forensics in Section 3, the acceptance region of H1
c is:

V : dt Vð Þ > τ c ð14Þ

Fig. 3 The diagram of the proposed two-phase test
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where the decision threshold τc is chosen based on the false alarm rate Pfa
c , which is defined as:

Pc
f a ¼ δc Vð Þ ¼ Hc

1 V is unalteredj� � ð15Þ

The total decision rate of the complete forensics can be denoted as:

Pd ¼ P δd Vð Þ ¼ Hd
1∪δc Vð Þ ¼ Hc

1 V has been manipulatedj� � ð16Þ

It is the probability that we detect the compressed V has undergone frame
deletion or anti-forensically modified under the condition that V has been modified.
Obviously, the forger wants to minimize the detection rate Pd, while the investigator
wants to maximize the detection rate Pd. The total probability of false alarm rate is
defined as:

P f a ¼ P δd Vð Þ ¼ Hd
1∪δc ¼ Hc

1 Vj is unaltered
� � ð17Þ

For a given total false alarm rate Pfa=ξ, the investigator’ s strategy is to allocate the false

alarm rate for Pd
f a ¼

⌢
ξ;

⌢
ξ∈ 0; ξ½ �� �

to detect video frame deletion. The corresponding false

alarm rate Pc
f a ¼ξ

^
allocated to detect anti-forensics is the maximum false alarm rate such that

P ξð Þ
f a ¼ P δ

⌢
ξ

� �
d ¼ Hd

1∪δ
︶
ξ

� �
c ¼ Hc

1 V is unalteredj
0
@

1
A≤ξ ð18Þ

4.2 Game model

Game theory [6, 16] is a mathematical tool for analyzing the interactions between
rational decision-makers. A thorough review of game theory would be overwhelming here, so
we limit our discussion to a two-player zero-sum game [6], which is related to our work.

In a practical scenario of video inter-frame forgery, the forger has to determine his strategy
without knowing the strategy of the investigator. In order to simulate a more practical scenario,
we relax the assumption in [19] that the forensic investigator (who is denoted as player 1)
moves first, then the forger (who is denoted as player 2) responds. Instead, our game model is a
simultaneous-move game in which player 1 and player 2 can simultaneously choose
their strategies. Furthermore, it is assumed that both player 1 and player 2 have
complete information about the game. They know the payoff matrix of the other, and
they know their opponent knows the payoff matrix [6]. For a given total false alarm rate Pfa,
Pfa
d , Pfa

c ∈[0,Pfa], player 1 chooses a Pfad to achieve the maximum Pd (outcome), while player 2
seeks a k, k∈[0, 1], the strength of anti-forensics, to achieve the minimum Pd. Here k=1 means
that using anti-forensics at full strength and k=0 corresponds to the scenario that no anti-
forensics is adopted [19]. The objectives of the two players are strictly competitive, therefore
the interplay between the forensic investigator and the forger can be modeled as a zero-sum
game.

The utility (outcome) of player 1 is denoted as:

U1 Pd
f a; k

� �
¼ Pd Pd

f a; k
� �

ð19Þ
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On the other hand, for player 2, his utility is denoted as:

U2 Pd
f a; k

� �
¼ −Pd Pd

f a; k
� �

ð20Þ

We denote the simultaneous-move, zero-sum game between player 1 and player 2 as the
Video Inter-frame Forgery (VIF) game. The VIF game can be summarized as follows: Player
1 and player 2 simultaneously choose their strategies. One player’s gain of utility is exactly
balanced by the loss of his opponent’s utility. The strategies and payoff matrix are defined as:

S1 The strategy of player 1 is the false alarm rate Pfa
d that can be allocated to δd, the forensics

of video inter-frame forgery.
S2 The strategy of player 2 is k, the strength of anti-forensics.
u The payoff matrix is defined in terms of the total detection rate:

U Pd
f a; k

� �
¼ Pd Pd

f a; k
� �

ð21Þ

4.3 Mixed strategy Nash equilibrium

Nash Equilibrium (NE) is a profile of strategies such that each player’s strategy is an optimal
response to the other players’ strategies. The game between the forensic investigator and the
forger is a finite strategic, zero-sum and simultaneous-move game, which may not
have pure strategy NE, therefore we resort to Mixed Strategy Nash Equilibrium that
well resolves a finite strategy-form game [16]. The mixed strategy of player 1
Pfa
d =[x1, x2, …, xm] is a probability distribution over different false alarm rates Pfa

d ,
and the mixed strategy of player 2 k=[y1, y2, …, yn] is a probability distribution over
different anti-forensic strength values.

To solve the VIF game, we formulate it as a linear optimization problem [6, 27]. The
strategy for player 1 is to find the maximum v which is subject to

xi≥0; i ¼ 1; 2;⋯; mX
i

xi ¼ 1

X
i

ui jxi−v≥0; j ¼ 1; 2;⋯; n

ð22Þ

where uij=Pd(Pfa i
d , kj) is the total detection rate when player 1 adopts Pfai

d and player 2 adopts kj.
v is the objective function. By solving the optimization problem overm+1 parameters (v, x1, x2,
⋯, xm), we can obtain the solution v* to the VIF game and the strategy Pfa

d * for player 1.
The strategy for player 2 can be obtained by solving a dual problem of (22), i.e., to find the

minimum v which is subject to

y j≥0; j ¼ 1; 2;⋯; nX
j

y j ¼ 1

X
j

ui jy j−v≤0; i ¼ 1; 2;⋯; m

ð23Þ

The optimization can be solved with using the linear programming method [5].
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For a given total false alarm rate Pfa, the Nash Equilibrium of the VIF game can be derived,
and the corresponding outcome U(Pfa

d∗,k∗), i.e., the total detection rate, is Pd. A ROC curve as
a function of Pfa can be obtained to show the detection rates under the NE. It is called NE ROC
curve in short form [20].

5 Experimental results

We conduct several experiments to evaluate the performances of the improved forensic and the
proposed counter anti-forensic techniques. The dataset in our experiments includes 32 QCIF
video sequences in YUV-uncompressed format. The complete list of the names of these video
sequences is shown in the Appendix. The motion compensated video compression and
decompression are simulated in Matlab. Without loss of generality, we use a fixed GOP
structure IBBPBBPBBPBP with G=12 and the standard MPEG DCT coefficient quantization
tables in our experiments. We set QP=8 for I-frames, QP=10 for P-frames and B-frames. All
parameters for compression are the same in our experiments. We compress the first 250 frames
of the 32 video sequences with the aforementioned parameters, thus creating the singly
compressed videos as the unaltered video dataset.

The unaltered videos are regarded as negative samples, and the altered videos are regarded
as positive samples. A threshold is chosen to maximize the classification accuracy (Acc):

Acc ¼ TPRþ TNR
2

ð24Þ

where TPR denotes the true positive rate and TNR denotes the true negative rate.

5.1 Forensics of video inter-frame forgery

To simulate the process of forgery, we decompress the 32 unaltered videos and delete 1 toG - 1
frames from the beginning of each unaltered video, and then recompress the tampered videos
with the same GOP. Totally, we get 32×11=352 videos which have undergone frame deletion.

We compare the performances of the frame deletion detection algorithm in [12] and our
improved detection algorithm in distinguishing 352 forged videos which have undergone
frame deletion from the 32 unaltered videos. The Area Under the ROC Curve (AUC) along
with the Acc are used to evaluate the performance of the forensic techniques. In Fig. 4, the
ROC curve in blue is for the detection algorithm in [12], yielding Acc=93.8 %, and AUC=
96.9 %. The ROC curve in red is for our improved algorithm in detecting video frame deletion,
yielding Acc=96.9 % and AUC=99.3 %. We also compare results in Table 1. Our improved
algorithm yields better performance in detecting video frame deletion, where an improvement
of 3.1 % and 2.4 % is obtained for Acc and AUC respectively. The improvement is due to our
modification to the algorithm in [12], e.g., we take the magnitude of the predicted error caused
by frame deletion into consideration. By integrating the magnitude of and the periodicity of the
predicted errors, the improved algorithm can better detect the manipulation of video frame
deletion.

Furthermore, we test the ability of our improved algorithm on detecting video frame
insertion. We decompress the 32 unaltered videos and insert six frames at the beginning of
each video, and then recompress these tampered videos. Our improved detection algorithm is
also utilized to distinguish the 32 unaltered videos from 32 altered videos that have undergone
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frame insertion. The pink ROC curve in Fig. 4 shows the corresponding performance of our
improved algorithm. As frame insertion can be seen as deleting negative number frames, the
performance of detecting this type of forgery is similar to that of detecting frame deletion. We
have Acc=96.9 % and AUC=99.5 %.

5.2 Counter anti-forensics of video frame deletion

To evaluate the performance of the proposed counter anti-forensics of video frame deletion, we
use the anti-forensics in [19] to modify the 352 tampered videos that have undergone frame
deletion. The ROC curves of video anti-forensics and counter anti-forensics are shown in
Fig. 5, where the yellow line indicates the performance by a random classifier. The green ROC
curve shows the performance of our improved video frame deletion algorithm when used to
detect the anti-forensically modified videos. Compared with the performance of that without
being anti-forensically modified, the accuracy decreases to 63.1 % and AUC decreases to
64.4 %,.

Then our proposed counter anti-forensics and the counter anti-forensics in [19] are used to
reclassify the anti-forensically modified videos and the unaltered videos. We compare the
performances in Table 2. When unaltered videos and anti-forensically modified videos are
obtained using exhaustive search in the initial compression, both our method and the method
in [19] achieve perfect detection (i.e., Acc=100 %, AUC=100 %). If exhaustive search is used
in motion estimation, motion vectors can reach a global optimum. The difference between an
unaltered video’s stored and recalculated prediction errors is very small. By contrast, if a video

Fig. 4 ROC curves for detecting video frame deletion and video frame insertion

Table 1 Detection accuracy and AUC results of the algorithm in [12] and our improved algorithm

Items Detecting frame
deletion [12]

Improved algorithm in
frame deletion

Improved algorithm in
frame insertion

Acc 93.8 % 96.9 % 96.9 %

AUC 96.9 % 99.3 % 99.5 %
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has been anti-forensically modified, the difference will be relatively large, so it is easy to
distinguish unaltered and anti-forensically modified videos.

In practice, if time-efficient motion searching algorithms [17] are adopted, motion vectors
may not always reach the global optimum. This will increase the difficulty of distinguishing an
unaltered video from anti-forensically a modified video. We employ a popular diamond
searching algorithm in motion estimation, instead of exhaustive search, to evaluate the
performance of the counter anti-forensics under less favorable conditions. In Fig. 5, the
ROC curve in red shows the performance of the proposed method in distinguishing anti-
forensically modified videos from unaltered videos. We note that our method can
achieve perfect detection when diamond search is used. While we note the perfor-
mance Acc=90.1 % and AUC=96.3 % for the method in [19], as shown by the blue
ROC curve in Fig. 5.

The reason of the performance degradation of the counter anti-forensics in [19] when
diamond search is used is explained as follows. As discussed above, the result of motion
estimation depends on different searching algorithm. The method in [19] directly analyzes the
difference in motion vectors, so its detection rate drops under less favorable condition (e.g.,
when diamond search is adopted). By contrast, our counter anti-forensics is based on the time-
domain statistic. Though different algorithms of motion estimation also introduce variation in
the P-frame prediction error sequence, this variation is too little to change the position of the
maximum prediction error in each GOP. Therefore, our countering anti-forensics is stable even
when diamond search is used. The experimental results support that our counter anti-forensic
method is more robust than the method in [19].

Fig. 5 ROC curves for video anti-forensics and different counter anti-forensics

Table 2 Accuracy and AUC results of counter anti-forensics in different motion search algorithms

Items Exhaustive search With diamond search,
method in [19]

With diamond search,
proposed method

Acc 100 % 90.1 % 100 %

AUC 100 % 96.3 % 100 %
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5.3 Game theoretic evaluation

Now the aforementioned game theoretic model is used to find out the optimal strategies of
both the investigator and the forger. The control of the anti-forensic strength is accomplished
as follows [19]:

~ek nð Þ ¼ k � ~e nð Þ þ 1−kð Þ � e nð Þ ð25Þ
where ẽ(n) denotes the fingerprint-free target prediction error sequence as mentioned in
Section 2. Typically, k is set from 0 to 1 with step 0.1, and as a result the video forger has
11 different anti-forensic strengths. We use these 11 strengths to anti-forensically modify the
352 videos that suffered from frame deletion. The diamond search is adopted for motion
estimation in the initial compression.

For the forensic investigator, we consider two sets of forensic and counter anti-forensic
methods, which are defined as follows.

M1 Our improved frame deletion detection algorithm is adopted for detecting video frame
deletion and our proposed counter anti-forensics is adopted for detecting anti-forensics.

M2 The frame deletion detection algorithm in [12] is used for detecting video frame deletion
and the counter anti-forensics in [19] is used for detecting anti-forensics.

For each set of forensic methods and each anti-forensic strength, the two-phase test is
performed and the payoff matrix is generated. Figure 6 shows an example of the payoff matrix
under the total false alarm rate constraint Pfa=12.5%. The x-axis represents the strategy for
player 1, i.e., the investigator’s chosen false alarm rate Pfa

d for detecting video frame deletion.
The y-axis represents the strategy for player 2, i.e., the forger’s anti-forensic strength. The z-
axis represents the total detection rate Pd given both players’ strategies. In Fig. 6, the matrix in
red is the total detection rate ofM1 and the matrix in blue is the total detection rate ofM2. For
all the combinations of Pfa

d and k, the red matrix is always above the blue matrix, and for some
points, the red matrix is much higher than the blue matrix, which demonstrates that the
performance of M1 is better than the performance of M2 in the two-phase test. Because we

Fig. 6 The detection performances of M1 and M2 when Pfa=12.5 %
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improve the frame deletion detection algorithm and propose a more robust counter anti-
forensics, the total detection rate is improved.

Then we show the outcomes and optimal strategies for both players under the VIF
game. The combination of our improved frame deletion algorithm and proposed
counter anti-forensics. When Pfa=12.5 %, for any strategies adopted by player 2,
player 1 can reach 100 % detection rate with M1 under Mixed Strategy Nash
Equilibrium. The optimal strategy for player 1 is Pfa

d *=[1/16, 3/32, 1/8] with any
probability combination. That is, the VIF game has both pure strategy NE and mixed
strategy NE. If player 1 adopts M2, no pure strategy NE exists in this case. The
mixed strategy NE is that player 1 chooses Pfa

d *=[1/32, 1/8] with the probability
combination of [0.663, 0.337] and that player 2 chooses k*=[0.2, 0.9, 1.0] with the
probability combination of [0.620, 0.190, 0.190]. The total detection rate under NE is
87.5 %.

We determine the total detection rates under NE and the optimal strategies for both
players under a set of total probability of false alarm rate between 0 and 50 %. The
investigator and the forger can choose their optimal strategies depend on their
requirements. For each total false alarm rate, both M1 and M2 are adopted as the
forensic methods for player 1. The NE ROC curves are shown in Fig. 7, where the x-
axis is the total false alarm rate, and the y-axis is the payoff(total detection rate under
Mix Strategy Nash Equilibrium). The blue NE ROC curve shows the performance
when player 1 use M2 as his forensic methods, yielding Acc=87.9 % and AUC=95.8 %.
The red NE ROC curve shows the performance when player adoptM1, giving Acc=96.8 %
and AUC=99.6 %.

The optimal strategies for the forger with M1 at different total false alarm rate are
shown in Table 3. Each row in Table 3 is the optimal strategy for the forger under a
given total false alarm rate, and each column is probability distribution for a certain
anti-forensic strength. For example, when the total false alarm rate is 0.0 %, the
optimal strategy for the forger is k*=0.4 with 100 % probability. Table 3 suggests that
medium anti-forensic strength should be optimized for a forger. We just show the
strategies for the forger at a total false alarm rate (≤3.1 %) for the reason that the

Fig. 7 Nash equilibrium ROC curves when the investigator uses M1 or M2 as the forensic method
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total detection rate will reach 100 % when the false alarm rate is larger than 6.3 %.
The optimal strategies for the investigator with M1 and the total detection rate
under NE at different total false alarm rate are shown in Table 4. Each row in
Table 4 is the optimal strategy for the investigator and total detection rate under a
given total false alarm rate, and each column is the probability distribution for a
certain false alarm rate which is allocated in detecting video inter-frame forgery.
For example, when the total false alarm rate is 9.4 %, the optimal strategy for the
investigator is Pfa

d *=[6.3%, 9.4%] with a probability combination of [0.5, 0.5],
and the total detection rate is 100 %. With the increase of the total false alarm
rate, the investigator should allot a larger false alarm rate for the first phase
detector.

Our improved detector and the proposed counter anti-forensic methods not only
outperform the existing methods in detecting frame deletion and anti-forensics, but
also perform better in the VIF game. In the VIF game, the forger can vary the anti-
forensic strength, which increases the detection difficulty. The total detection rate with
the existing forensic methods (M2) drops in this case. In contrast, our methods (M1)
can yield a high detection rate, where the total detection rate under NE reaches 100 %
at a total false alarm rate 6.3 %. The superiority is attributed to the following reasons.
Firstly, we take the magnitude of the prediction error caused by frame deletion into
consideration, which improves the performance of the frame deletion detection algo-
rithm in [12]. Secondly, our proposed counter anti-forensics is based on the analysis
of the variation of the P-frame prediction error sequence and is more robust than the
counter anti-forensics in [19]. Thirdly, the combination of our video frame deletion
forensics and counter anti-forensics can effectively capture the fingerprints left by
frame deletion or anti-forensics. The effectiveness of frame deletion detection algo-
rithm degrades when strong anti-forensics is adopted, as indicated by the decrease of
I't. However, strong anti-forensics will introduce obvious changes in I''t and I't, which
can be detected by our counter anti-forensics. Therefore our forensics and counter
anti-forensics of video frame deletion yield a desired complementary effect.

Table 3 Nash equilibrium strategies k* obtained for the forger at different total false alarm rates

k Pfa 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 100 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

3.1 % 0.0 % 20.8 % 0.0 % 0.0 % 53.2 % 26.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

Table 4 Nash equilibrium strategies Pfa
d∗ obtained for the investigator and total detection rate at different total

false alarm rates

Pfa
d Pfa 0.0 % 3.1 % 6.3 % 9.4 % Total detection rate

0.0 % 100 % – – – 90.0 %

3.1 % 0.0 % 100 % – – 90.1 %

6.3 % 0.0 % 0.0 % 100 % – 100 %

9.4 % 0.0 % 0.0 % 50.0 % 50.0 % 100 %

… … … … … …
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6 Conclusions

In this paper, we focus on video inter-frame forgery. Firstly, the frame deletion
detection algorithm in [12] is improved. We analyze the shortcoming of the algorithm
[12] and combine the magnitude together with the periodicity of the predicted error
resulted from video frame deletion to improve the algorithm. Secondly, we propose a
counter anti-forensic method to defeat a typical anti-forensics. By analyzing the anti-
forensics in [19], we demonstrate that the periodic characteristics introduced by frame
deletion still remain in the anti-forensically modified videos. By estimating the true
prediction error and comparing it with the prediction error stored in the video, we can
detect the anti-forensics. Thirdly, we define a VIF (Video Inter-frame Forgery) game
to analyze the interplay between the forensic investigator and the forger. Compared
with the game in [19], we do not assume that the investigator moves first to reflect
the practical scenarios. . The VIF game is a zero-sum, simultaneous-move game, and
the Mixed Strategy Nash Equilibrium is adopted to solve this game.

Video experiments are implemented to evaluate the performances of our improved
detection algorithm and the proposed counter anti-forensics. Additionally, we also
show that this improved detection algorithm is also useful for detecting video frame
insertion. We test the performance of the proposed counter anti-forensics under
different motion search algorithms. Experimental results demonstrate that our counter
anti-forensics can successfully detect the typical anti-forensics and is more robust to
different motion search algorithms.

In the VIF game, for the investigator, our improved frame deletion algorithm and
the proposed counter anti-forensics are used as forensic methods (M1). The existing
frame deletion algorithm [12] and the counter anti-forensics [19] are set as the
compared set (M2). We analyze the optimal strategies for both the investigator and
the forger under the VIF game. For the forger, he/she should adopt a medium anti-
forensic strength. While for the investigator, he/she should allot a larger false alarm
rate for detecting video frame deletion as the total false alarm rate increases. Our
methods not only outperform the existing methods in detecting frame deletion and
anti-forensics, but also perform better in the VIF game. Since the combination of our
deletion algorithm and the proposed counter anti-forensics operates effectively, in our
experiments, the total detection rate can reach 100 % at the 6.3 % total false alarm
rate regardless of the strategies adopted by the forger.
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Appendix

The complete list of the video sequences investigated in our experiments is listed here: Akiyo,
Bowing, Bridge-Close, Bridge-Far, Carphone, Claire, Coastguard, Contianer, Deadline,
Football, Foreman, Galleon, Grandma, Hall, Highway (The longest sequence is divided into
six portions), Husky, Mobile, Mother-Daughter, News, Pamphlet, Paris, Salesman, Sign-Irene,
Silent, Stefan, Table, Tempete.
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These video sequences can be downloaded from [http://trace.eas.asu.edu/yuv/, http://media.
xiph.org/video/derf/].
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