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Abstract Recently, visual saliency detection has received great interest. As most video
saliency detection models are based on spatiotemporal mechanism, we firstly give a simple
introduction of it in this paper. After discussing issues to be addressed, we present a novel
framework for video saliency detection based on 3D discrete shearlet transform. Instead of
measuring saliency by fusing spatial and temporal saliency maps, the proposed model regards
video as three-dimensional data. By decomposing the video with 3D discrete shearlet trans-
form and reconstructing it on multi-scales, this multi-scale saliency detection model obtains a
number of feature blocks to describe the video. Based on each feature block, every a number of
successive feature maps are taken as a whole, and the global contrast is calculated to obtain the
saliency maps. By fusing all the saliency maps of different levels, the saliency map is
generated for each video frame. This novel framework is very simple, and experimental results
on ten videos show that the proposed model outperforms lots existing models.

Keywords Video saliency detection . 3D discrete shearlet transform . Feature blocks . Global
probability density

1 Introduction

When viewing a scene, humans usually focus on some salient regions. This is a very useful
mechanism working in our brain but hard to simulate with computer system. The area of
saliency detection on static images or dynamic videos has been receiving more and more
attention over the past few years (major achievements can be found in [2, 3]). Properly
generated saliency maps can be useful for many applications, such as object location,
detection, recognition, image or video compression. We will focus on video saliency detection
in this paper.
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The saliency information of video exists not only on each separated frame but also between
successive frames. In fact, the later one could be even more important in lots scenarios. Thus we
cannot simply take image saliency of each frame as the final video saliency. To solve this problem,
most existing video saliency detectionmodels are based on spatiotemporalmechanism. They detect
spatial saliency on single video frame and temporal saliency on inter-frame distinctiveness. The final
saliency map is generated by fusing the spatial and temporal saliency maps together. Kim et al. [14]
detected the spatial saliency with edge and color orientation information and the temporal saliency
with absolute inter-frame distinctiveness, both based on center-surround framework. The final
saliency is generated by linearly combining the spatial and temporal saliency with a fixed weight
for each other. Instead of detecting saliency for all frames, Tapu et al. [24] detected saliency only for
key frames extracted from tiny segments of the video. The spatial saliency is calculatedwith regional
color information, the temporal saliency is calculated by detecting corresponding interest
points between each key frame and its adjacent frames, and the final saliency is
measured by using motion contrast to combine the spatial and temporal saliency. Li
et al. [19] detected spatial saliency by computing color information of edge preserving
super-pixels, which are extracted with advanced Turbopixels [18]. For temporal
saliency, they used the same mechanism but on optical flow information of the video.
The spatial and temporal saliency are then transmitted into conditional random field
[17] to label each pixel. Li et al. [20] detected regional saliency for video frames. To
segment each frame properly, the fast mean-shift process is performed on the spatial
and temporal features computed from the color, texture and optical-flow information. The
regional saliency is calculated by measuring the dissimilarity of each region with its neighbor
regions. Afterward, these dynamic regions are matched in temporal domain to construct a
temporally coherent regional saliency map. Rudoy et al. [23] detected video saliency with not
only spatial and temporal information but also semantic information, and only computed
saliency for some selected candidate gaze locations because saliency in video is very sparse
according to their observation. Kim et al. [15] proposed an unified spatiotemporal saliency
detection framework for both image and video based on textural contrast andmotion stimuli. As
this model focus on the contrast visual stimuli which can greatly eliminate unwanted details, it
performs well even in complex scenes with highly textured backgrounds. Fang et al. [7]
measured spatial saliency by extracting intensity, color, and texture features from DCT coeffi-
cients, then detected temporal saliency using motion feature in compressed domain, and
designed a new fusion method to obtain the final saliency maps.

One main issue of spatiotemporal mechanism is computation redundancy. Most frames in a
video have great relevance with their neighbors, thus saliency in video is very sparse [20].
Independent computing on every pixel of each frame is redundant. To address this issue, some
researchers did not follow the above mentioned framework. Rapantzikos et al. [22] took video as a
spatiotemporal volume, and detected video saliency bymeasuring local contrast for each visual unit.
Duncan et al. [5, 6] built a model based on the theory of information entropy, that geometrically
organized regions have lower entropy than disorganized regions. With Weighted Parzen Windows,
they obtained the Renyi entropy of probabilistic relational distribution, based on distance and
gradient direction relationships between pixels. This model emphasized biological plausibility in
saliency detection process, while neglected the usefulness of color information.

Another even bigger issue of spatiotemporalmechanism is accuracy. As we know, human visual
system is more sensitive to motion information than others. When building spatiotemporal saliency
model, most researchers gave temporal saliency maps larger weight in the fusion process. But when
the scene is static or has no significant motion, visual attention will be attracted by spatial
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information, and spatial saliency should be given largerweight. The problem is that, nomatterwhich
saliency is more important, we actually have no idea what exactly the weight value should be. To
solve this problem, researchers should use some proper mechanism to evaluate how powerful the
motion contrast could be. Although it is a common sense that moving target draws people’s
attention, it could actually being wrong in some case. For example, leafs on a tree could be moving
really fast in awindy day, but people usually still paymore attention to the beautiful bird on the trunk
even if it is static. Or sometimes a static object draws more attention just because others are moving
faster, like a walking man in the middle of a busy road. Thus no matter a fixed weight or dynamic
weight is used to fuse the spatial and temporal saliency, themechanismwill still lose its accuracy due
to the complexity of motion.

To overcome the above issues, we firstly give another point of view in video saliency
detection – distinctiveness. Let’s assume that people pay attention to distinctiveness while
viewing a scene. This is also understandable as a common sense. When human visual system
is attracted by moving object, we actually are attracted by the distinctiveness between
frames, which is caused by the moving object. So does the distinctiveness in single
frame, which is caused by color, shape or other features. That is to say, we can use
distinctiveness to measure the saliency of each pixel. If the distinctiveness is larger,
the saliency value should be higher and vise verse, no matter the distinctiveness is
caused by spatial or temporal information.

In this paper, we propose a novel video saliency detection model, which regards the input video
as three-dimensional data. Instead of using the input video straightly like Duncan et al. did in [5, 6],
the video is firstly decomposed by 3D discrete shearlet transform to obtain multi-scale description.
The reason of using shearlet based decomposition is to provide multi-scale analysis for saliency
detection. The shearlet transform was originally introduced by Guo et al. [10]. It was derived within
composite wavelet, which makes shearlets a truly multivariate extension of the wavelet framework.
The use of shearing to control directional selectivity allows a single or finite set of generators to
define shearlet systems. Although directional multi-scale systems have emerged years ago, only
recently these representations have been extended beyond dimension 2. The extension of shearlet
from 2-D to 3-D makes it possible for shearlet transform to analysis and process 3-D data sets like
video. The 3-D shearlet representation is a multi-scale pyramid of well-localized wave-forms
defined at various locations and orientations. It is introduced to overcome the limitations of
traditional multi-scale systems while dealing with multi-dimension data. It has some good
properties like parabolic scaling, directional sensitivity and spatial localization property. These
are useful for saliency detection when describing the video frames in multi-scales and out-
standing regions from their surroundings.

Instead of combining information of two dimensional spatial domain and one dimensional
temporal domain, the proposed model is built on information of three-dimensional block. We
actually need to deal with each video frame only once while at least twice for spatiotemporal
mechanism. Most existing spatiotemporal saliency models make use of motion information
between two frames, this would cause loss of long-term motion information. When viewing a
scene, a number of successive frames would influence people’s visual system, which is
different from single images viewed independently. Taking this into consideration, we take
one more step by processing the video per segment. Every frame is detected according to the
feature maps of the segment it belongs to. As the proposed model could process more
information, the detecting result could be more accurate as the experiments will show you
later in this paper. What’s more, it is no longer necessary to calculate meaningful weights as in
fusing process of spatiotemporal mechanism.
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2 The proposed saliency detection model

The proposed saliency detection model detects video saliency based on 3D discrete shearlet
transform. Instead of using RGB color space for video saliency detection, all the video frames
are converted to the Lab color space. Then each color channel of the converted video is
decomposed with 3D discrete shearlet transform (3-D DShT) as presented in [21]. After de-
noising the obtained shearlet coefficients matrixes, feature blocks are generated by performing
inverse shearlet transform on each decomposition level. On each feature block, global contrast
is used to calculate saliency value. Then a saliency block is obtained for corresponding level.
By fusing all the saliency blocks together, the final saliency value is calculated for each pixel.
Thus we build the saliency map for each video frame. Figure 1 illustrates the overview of this
novel saliency detection framework.

As shown in Fig. 1, there are mainly three steps to generate saliency maps for an input
video. The first step is to convert all the video frames from RGB color space to Lab color
space. In Lab color space, L is the intensity channel, a and b are RG and BYopponent channels
respectively. The reason of this conversion is that Lab color space is more similar to human
visual system, which would benefit the saliency evaluation mechanism.

The second step is to generate feature maps. First of all, all the converted video frames are
resized to m*m. The target video is then segmented into a number of n-frames blocks. The last

Video frames

L channel a channel b channel

Resize

Combination

Saliency maps of

level 1

Saliency maps of

level 2

Saliency maps of

level 3

Feature blocks Feature blocksFeature blocks

Final saliency maps

RGB to Lab

3-D DShT

Feature blocks generation

Multi-scale saliency

detection

Fig. 1 Overview of the proposed saliency detection framework
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frame of the last block will be copied to round up if needed. After that, by performing 3-D
DShT on the resized video block v0, the coefficients are obtained:

Hc
1;H

c
2;…;Hc

M ; L
c

� � ¼ SH v0
cð Þ ð1Þ

where c represents the channel of input video block v0 as c∈{L,a,b}, Hi
c represents the shearlet

coefficient matrix of the i-th level on channel c,M represents the maximum decomposition level, Lc

represents the scaling coefficients matrix on channel c, SH represents the 3-D DShT process. The
coefficientmatrixes of different levels have different sizes. For example, whenm=192, n=96,M=3,
the size of H1

c is 192*192*96, H2
c is 128*128*64, H3

c is 64*64*32, L
c is 32*32*16.

The shearlet coefficients corresponding to salient regions are larger than others. For de-noising,
we remove non-salient coefficients by setting all shearlet coefficients less than a proper threshold to
be 0. And enlarge saliency by setting other coefficients to be w times larger. The formula is:

H
0
i; j ¼

wHi; j Hi; j

�� ��≥δ
0 Hi; j

�� �� < δ

�
ð2Þ

where δ is the threshold obtained by Visu Shrink Threshold Function [4].
The shearlet coefficients matrix on each level represents the detailed information of the

video at the corresponding level. And the scaling coefficients matrix represents the approxi-
mation information at the coarsest resolution. To create the l-th feature block, we perform
inverse shearlet transform on all the shearlet coefficients of lower levels (H1’, H2’,…,Hl’) and
the scaling coefficients L, as to be shown in (3).

f cl ¼ ISH H
0 c
1;H

0 c
1;…;H

0 c
l ; L

c
� �

ð3Þ

where ISH represents the inverse discrete shearlet transform process, l represents the decom-
position level. Equation (3) creates M feature blocks, each for a decomposition level. And the
l-th feature block fl

c is the same size as Hl
c′.

The third step is to calculate saliency value on each decomposition level, and generate saliency
map for each video frame. In this paper, we detect video saliency bymeasuring the rarity of different
regions with global contrast. When we detect image saliency in our former paper [1], the saliency is
measured in two aspects: global and local. In this paper, we regards the input video as three-
dimensional data. If we use local contrast to measure video saliency, all the distinctiveness would be
magnified including the distinctiveness exist in single frame’s background or caused by background
movements, thus the non-salient backgroundwould be labeledwith large saliency values. That is the
reason why we only use global contrast to detect the video saliency in this paper.

As we know, video saliency is evaluated by measuring contrast based on features like color,
luminance, texture and motion. Figure 2 shows some examples. It can be seen that Fig. 2a can use
color information to outstand region P, Fig. 2b can use luminance information to outstand region P,
Fig. 2c can use direction information to outstand region P, Fig. 2d can use shape information to
outstand regionP. Nomatter which featureworks, it can be concluded that the rarity draws attention.
Taking Fig. 2a as an example, the reason of P outstanding from its surroundings is that the average
color of region P is green, while other regions is red. That is to say, in this example, the smaller area
covered by green color draws more attention than larger area covered by red color. Of course, this
conclusion is valid if and only if there is no personal reference. Different from the former four
examples, Fig. 2e is more complicated. Neither the left darker regions nor the right brighter regions,
but the light and dark alternate regions are salient. That is to say, we can’t simply use luminance to
outstand regionP. Using rarity to explain, as only the alternate region covers both light and dark area
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(see region labeled by red box), the region P is salient. That is to say, the rarity of the alternate region
attracts our attention.

The mainly difference of video from image is inter-frame motion information. In temporal,
whether a region is outstanding from its surroundings depends on whether it shows different
motion. If there exist only one salient object in the input video, there are mainly two kinds of
motion styles. One is the global motion caused by the background (no matter the background
is moving or not), the other is the motion caused by the salient object. In general, the region
covered by moving salient object is usually much smaller than the remainder. This conclusion
is still valid if there exist more salient objects.

Before calculating the saliency values, we need to define every location. By using all the feature
blocks, every location (x,y,t) on the l-th level can be represented by a feature vector fl(x,y,t) as:

f l x; y; tð Þ ¼ f Ll x; y; tð Þ; f al x; y; tð Þ; f bl x; y; tð Þ� 	T ð4Þ
Then global contrast is used to generate saliency maps for video frames on each decom-

position level. As mentioned above, the saliency of the t-th video frame vft is not only affected
by itself, but also a number of neighbor frames. To be simple, every h successive frames are
processed as a whole (h=4 in this work), and we set ε=(vft,vft+1,…,vft+h−1). For every
location (x,y,t)∈ε, the likelihood of the features can be defined as the probability density
handled by a normal distribution as:

pl x; y; tð Þ ¼ 1

2πð ÞN=2 Σj j1=2
� e−

1
2 f l x;y;tð Þ−μð ÞTΣ−1 f l x;y;tð Þ−μð Þ ð5Þ

where Σ=Ε[(fl(x,y,t)−μ)(fl(x,y,t)−μ)T] is the covariance matrix, μ represents the expectation
vector, fl,t represents the feature map on the l-th level for the t-th video frame. The saliency
value of location (x,y,t) on the l-th level is defined as:

Sl x; y; tð Þ ¼ G −log10pl x; y; tð Þð Þ*Ik*k ð6Þ
where Ik∗k represents a 2-D Gaussian low-pass filter (k=5 in this work), which is employed to
get a smoother result. G(⋅) represents used to convert (·) to a grayscale image. It is worth to
mention that some of the feature blocks may equal to zero matrix and the determinant of their
covariance matrix is zero. This would cause the probability density defined in (5) to be invalid.
Thus only the non-zero feature blocks are used to generate feature vectors.

As the size of Sl obtained by (6) vary between different levels, the size of saliency maps is
interpolated to be the same as first level, so does the quantity of saliency maps. For the t-th
video frame, by fusing all levels’ saliency maps together, we obtain:

S tð Þ ¼
XM

l¼1

N Sl tð Þð Þ ð7Þ

(e)

1

(a) (b) (c) (d)

Fig. 2 Examples of visual saliency
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where N(⋅) represents the normalization operator [13], Sl(t) represents the saliency map on the
l-th level for the t-th video frame.

Goferman et al. [9] pointed out that the location around the focus of attention point should
be given larger saliency value than those far away from it. Here, the locations with saliency
value larger than 0.8 as in [9] are signed as focus of attention points. The final saliency map is
calculated as

S0 x; y; tð Þ ¼ S x; y; tð Þ � 1−d x; y; tð Þð Þ ð8Þ

where d x; y; tð Þ ¼ d0 x;y;tð Þ= ffiffiffiffiffiffiffiffiffiffiffiffi
a02þb0

2
p , d0(x,y) represents the distance between location (x,y) and

the nearest focus of attention point (x0,y0), a0∗b0 is the size of S(t).
In order to understand how the proposed model can be applied in practice as well as for the

reconstruction of the experiments for validation purposes, follows are the overall flowchart and
detailed pseudo-code (Fig. 3).
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3 Experiments and evaluations

In this section, we evaluate the performance of the proposed model with database from the website
of Akisato [8]. This database includes ten videos, named AN119T, BR128T, BR130T, DO01_013,
DO01_014, DO01_030,DO01_055, DO02_001,M07_058 andVWC102T. To be simple, V1-V10
are used to represent these ten videos respectively. V1-V10 cover situations with different com-
plexities. For example, V4 and V9 have very pure backgrounds, both are clear blue sky. The
background of V5, V7 and V10 are less pure but the global movement can be easily compensated.
Part of V8’s background moves violently. It may confuse the detection process when detecting
temporal saliency in spatiotemporal framework. V2 and V3 have the most complex moving
background, which is difficult for saliency detection [20, 25]. Each video includes about 100 frames
and its corresponding ground-truths (see Fig. 4b). Instead of using the original ground-truths, they
are firstly converted to binary maps (see Fig. 4c). In the ground-truths, we set pixels of salient
regions to be 1, pixels of non-salient regions to be 0, and then the binary maps are built. Fig. 4d
shows some saliency detection result of [20]. By comparing with the results of the proposed model
(see Fig. 4e), we can find that although the proposed model detects lower saliency on most of the
videos, but it gives a cleaner saliency maps since it is more robust to noise. In another word, much
less non-salient regions are signed to be salient comparing with the model of [20].

Itti et al. proposed a bottom-up model in 1998 [14]. It is the first model who completely
implement and verify Koch and Ullman model [16], and the most classical one who has great
influence on the whole visual saliency detection area. By merging motion and flicker feature

Fig. 3 Flowchart of the proposed video saliency detection model
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channels in Itti’s model, Harel further presented an implementation of video saliency detection
[12]. We will compare the proposed model with Harel’s work referred as HAREL.
Furthermore, Duncan et al.’s model RE in [6], Zhou et al.’s model TM in [26], Hadizadeh
et al.’s model SAVC in [11] are also taken in comparison. These models cover several
categories of video saliency detection mechanism. RE regards video as three-dimensional
data, and introduces information entropy theory. TM and SAVC are state-of-the-art models.
Both of them are based on spatiotemporal framework, while SAVC estimates saliency in the
DCT domain based on Itti-Koch-Niebur saliency model [8]. Some of the saliency detection
results are shown in Figs. 5 and 6, while (a) represents original video frames, (b) represents
results of HAREL, (c) represents results of TM, (d) represents results of SAVC, (e) represents
results of RE, (f) represents results of the proposed model. For HAREL, TM, SAVC and the
proposed model, we show the 10th, 20th, 30th, 40th, 50th, 60th frames’ saliency maps. As
each saliency map generated by [6] corresponds to m successive frames (m=5 in [6]), we take
the 2th, 4th, 6th, 8th, 10th, and 12th saliency map for comparing. Take the 4th saliency map as
an example, this saliency map is generated on 16th to 20th video frames, thus the 4th saliency
map can be taken as these 5 frames’ saliency map when comparing with other models.

By comparing the saliency results of different models stated in Figs. 5 and 6, it is obvious
that the proposed model outperforms other four models, especially with complex background
(see BR128T and BR130T). From Figs. 5 and 6, we can find that HAREL is more sensitive to
noise, and would cause more irrelevant salient regions than the proposed model (see
DO01_055 and VWC102T). Besides, HAREL detects saliency based on center-surround
mechanism. It would lose the regions inside salient objects, or give lower saliency value for
these inside pixels (see AN119T and DO01_014). SAVC and TM perform better on detecting
saliency inside salient objects. But these two models are even more sensitive to noise than
HAREL, also much more non-salient regions are signed to be salient than the proposed model.
For example, the background of DO01_055, DO01_030 and M07_058 is clean sky, which is
obvious non-salient. But SAVC and TM still signed lots massive salient regions in these areas.
RE is more robust to noise than other three models. But RE is built on local information

(a)

(b)

(c)

(d)

(e)

Fig. 4 Examples of different approaches
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entropy, which would lose salient regions inside salient objects as HAREL. Besides, RE is
inclined to sign non-salient regions around salient objects salient. It would generate more
irrelevant salient regions than the proposed model.

Beside comparing different models directly on saliency maps, we further evaluate the
performance of the proposed model based on Precision (P for short), Recall (R for short)
and Fa measure (Fa for short) values by using the ground-truths. The definitions of P, R and Fa
are as follows:

P ¼

XN

i¼1

Pi

N
as Pi ¼ sum gt*sð Þ

sum sð Þ
ð9Þ

R ¼

XN

i¼1

Ri

N
as Ri ¼ sum gt*sð Þ

sum gtð Þ
ð10Þ

Fa ¼ 1þ að Þ � P � R

a� P þ R
ð11Þ

10th 20th 30th 40th 50th 60th 10th 20th 30th 40th 50th 60th

DO01_055 DO02_001

(a)

(b)

(c)

(d)

(e)

(f)

M07_058 VWC102T

(a)

(b)

(d)

(e)

(c)

(f)

Fig. 5 Examples of different approaches
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where gt represents the binary map, s represents saliency map, N is the quantity of images, a is
chosen to be 0.3 as most saliency detection models do. Since some of the video frames have
not been given ground-truths in the database, we only use the video frames with ground-truths
to obtain P, R and Fa values (starting from the 16th video frame).

The overall P, R and Fa results are shown in Fig. 7, while (a) represents P, R and Fa values
obtained by using mean value as threshold to generate binary maps, (b) represents P, R and Fa

10th 20th 30th 40th 50th 60th 10th 20th 30th 40th 50th 60th

AN119T BR128T

(a)

(b)

(c)

(d)

(e)

(f)

BR130T DO01_013

(a)

(b)

(c)

(d)

(e)

(f)

DO01_014 DO01_030

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6 Examples of different approaches

Multimed Tools Appl (2016) 75:7761–7778 7771



values obtained by using Otsu function to generate binary maps. From Fig. 7, we can
find that the overall performance of the proposed model is better than HAREL, SAVC
and RE. By comparing the proposed model with TM, when we use mean value as
threshold, the proposed model performs better than TM. When we use the Otsu
function to obtain threshold, the proposed model has higher P and Fa values, but
lower R values than TM. One of the main reasons is that TM generates more
irrelevant salient regions than the proposed model, which would cause higher R values
with lower P values. Another reason is that when using Otsu function to generate
threshold, the binary maps of the propose model would lose some salient regions,
which would cause higher P values with lower R values.

Figure 8 shows binary maps obtained by different thresholds on saliency maps of
the proposed model, while (a) represents input video frames, (b) represents saliency
maps of the proposed model, (c) represents ground-truths, (d)-(k) represent binary
maps of different thresholds T=8∗k(k={1,2,…,8}). From Figure 8, we can find that
the regions covered by positive value become smaller when the threshold becomes
larger. That is to say, the method of setting threshold would influence performance
evaluation results, if the evaluation method is built on binary maps. And this is why
Fig. 7a and b obtain different comparison results.

To have a better comparison, we use different thresholds (0–255) to obtain binary
maps. After calculating the P, R and Fa values, we draw the PR curve, which can be
seen in Fig. 10a. Figure 10b shows the average P, R and Fa values. From Fig. 10a,
we can see that the PR curve of the proposed model is closer to the (1,1) point,
which means the proposed model outperforms other four models. From Fig. 10b, we
can see that the proposed model performs better than HAREL, SAVC and TM. Comparing with
RE, the proposedmodel has obvious higherP andFa values, while R values is a little lower than
RE. The reason is that RE generates more irrelevant salient regions (see Fig. 9), which can
obtain higher R values with lower P values. It can be concluded that the proposed model
outperforms RE (Fig. 10).

Fig. 7 Performance comparison with P, R and Fa values
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As the ten videos cover situations on different complexities, we further present the PR
curves and average P, R, Fa values for different saliency detection models on each video,
which can be seen in Fig. 11. From PR curves, we can see that the proposed model
performs better on most of the videos, especially on BR128T, BR130T and
DO01_014. From the average P, R and Fa values, we can see that the proposed
model has higher P, R and Fa values than the other models on AN119T, BR128T,
BR130T, DO01_014 and DO02_001, but lower P, R and Fa values on DO01_013.
Besides, the proposed model has higher P and Fa values, lower R value than other
models on DO01_030, DO01_055 and VWC102T; lower P values, higher R and Fa

values than HAREL, higher P and Fa values, lower R values than RE on M01_058.
According to Fig. 11, on one hand, the PR curves of the proposed model is closer to
(1,1) point on DO01_030, DO01_055, VWC102T and M07_058. On the other hand,
the proposed model has higher Fa values on these four videos. It can be concluded
that the proposed model performs better on DO01_030, DO01_055, VWC102T and
M07_058.

From Fig. 11, we can see that the proposed model performs worse on DO01_013. The
reason is that the salient objects in DO01_013 cannot be well distinguished from the
background in L, a and b channels. But the proposed model is built on color information of
L, a and b channels. Improving the proposed model to perform better on videos like
DO01_013 would be one of our further works.

Fig. 8 Binary maps obtained by using different thresholds of the proposed model
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4 Conclusions

In this paper, a novel video saliency detection framework using 3-D DShT is
proposed. It begins with generating feature blocks in multi-scales by performing
inverse shearlet transform. Saliency blocks are then calculated accordingly. The final
detecting result is a combination of saliencies on different levels. Comparing with the
popular spatiotemporal mechanism, our framework takes video as 3D information and

Fig. 9 Binary maps obtained by using different thresholds of RE
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Fig. 10 PR curves and average P, R and Fa values for different saliency detection models
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stands on one exclusive detecting base - distinctiveness. To the best of our knowl-
edge, the work in this paper is the first try to detect video saliency regions on shearlet
domain, and the experimental results demonstrate the performance of the new pro-
posed model.

The proposed framework is extendable. In the future, we will further explore how to
improve the performance by combining texture, direction and other features. Also, the employ
of 3-D DShT requires to load every a number of successive video frames in memory for
processing. This would limit the use of the proposed framework in some real-time
applications.
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