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Abstract View-invariant human action recognition is a challenging research topic in com-
puter vision. HiddenMarkovModels(HMM) and their extensions have been widely used for
view-invariant action recognition. However those methods are usually according to a large
parameter space, requiring amounts of training data and with low classification accuracies
for real application. A novel graphical structure based on HMM with multi-view transi-
tion is proposed to model the human action with viewpoint changing. The model consists
of multiple sub action models, which correspond to the traditional HMM utilized to model
the human action in a particular rotation viewpoint space. In the training process, the novel
model can be built by connecting the sub action models between adjacent viewpoint spaces.
In the recognition process, action with unknown viewpoint is recognized by using improved
forward algorithm. The proposed model can not only simplify the model training process
by decomposing the parameter space into multiple sub-spaces, but also improve the perfor-
mance the algorithm by constraining the possible viewpoint changing. Experiment results
on IXMAS dataset demonstrated that the proposed model obtains better performance than
other recent view-invariant action recognition method.
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1 Introduction

Visual-based human action recognition has received considerable attention in computer
vision during past few years. The growing interest is due to the increasing number of real-
world applications such as visual surveillance, human-computer interaction, video indexing
and retrieval [9, 17]. However, the data with viewpoint changes are very common and basi-
cally inevitable in those real-world scenarios, it is desired that the recognition algorithm
exhibit view-invariance [4, 5]. The object of the view-invariant human action recogni-
tion is to recognize different actions performed by different actors under different camera
viewpoints, with different style regardless of large variation in manner and speed. It also
suffers from various factors such as clustered background, occlusion, camera movement
and illumination change. So it remains challenging to recognize actions from different
viewpoints.

Recent research on view-invariant human action recognition can be characterized by two
classes of methods: template matching methods and state-space approaches. Template
based approached focus on extracting low-level image features which are then compared it
to the prestored action prototypes during recognition. The view constraint is mostly removed
during feature extraction in these recognition methods. A kind of template-based methods
directly choose the view-independent motion features [21, 23, 25, 26]. For example, Wein-
land et al. [21] extracted the view-invariant features from Fourier space of Motion History
Volumes (MHVs) for action recognition. The advantages of this kind of method are low
computational cost and simple implementation. However, they are usually more sensitive
to noise and variance of the time interval of the movements. Another kind of template-
based methods estimates the parameters of camera viewpoint according to the human body
movement direction. Then the observation information from every frame is projected into
specific orthogonal space for regularizing so that the human action viewpoint can be nor-
malized. Rogez et al. [18] estimated the 3D principal directions of man-made environments
and the direction of motion, then transformed both 2D-Model and input images to a com-
mon frontal view before the fitting process. Though this kind of approaches can remove the
viewpoint effect directly, the recognition results completely depend on the robustness of the
body orientation estimation. Furthermore, the computational cost is significantly high.

The approach based on the state space models, e.g. Hidden Markov Model(HMM) and
their extensions have been widely used for view-invariant action recognition. There are
usually two kinds of state-space recognition methods to solve the viewpoint problem. The
former approach directly recover the 3D human model by using tracking technology or
pose estimation from the motion sequence. Then these 3D human model representations
are utiliazed as the state information of the graph model for action recognizing [11, 16,
19]. Lv and Nevatia [11] exploit a large number of HMMs to model 3D human joints. And
each HMM corresponds to the motion of a single joint or combination of related multiple
joints. Peursum et al. [16] propose a variant of the hierarchical HMMs to achieve human
action modeling and human body tracking simultaneously. These approaches exploit 3D
information to represent the human model pose, so the viewpoint effect on human model
is easily removed. However, inferring 3D poses from a single view usually is slow due to
the large number of parameters that need to be estimated and it is still a non-trivial task
to accurately detect and track the body ports in unrestricted scenarios. The latter approach
based on state-space usually builds a multi-view posture image dataset of the human actions
and exploits 2D contour information from different viewpoints to represent the same human
static posture. Then the constraints on transition of synthetic poses and different viewpoints
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are represented by a graphical model [12, 13, 15]. Lv et al. [12] introduced Action Net
where each node stores a 2D representation of a 3D pose from a specific viewpoint. In the
recognition phase, silhouette image from each frame is matched against all the nodes in the
model using some distance measure. This method adopts contour information to represent
silhouette image, so the accuracy of the recognition result strongly depends on the viewpoint
similarity between the input images and training set. So a large number of training data from
multiple cameras is needed to cover the possible camera viewpoint.

How to extract discriminative and robust features to describe actions and design new
effective learning methods to fuse different types of features have become two impor-
tant solutions for view-invariant action recognition. Because of the disadvantage of the
above methods, a kind of method combining ideas from the state space method and tem-
plate based threads was proposed to solve the viewpoint constrain issue. Ahmad and Lee
[1] extracted the Cartesian component of optical flow velocity and human body silhou-
ette feature vector information. Then they represented each action using a set of HMMs
and classified a given sequence in any viewing direction by employing a likelihood mea-
sure. This method provides a novel solution to view-invariant human action recognition.
However the method utilized the silhouette feature which is difficult to extract in the com-
plex background. Furthermore the method didn’t consider the probability fusion of the
HMMs in different viewpoints. In our previous work, a view-insensitive feature combin-
ing the BoW of interest point in shot length-based video and the grid-based amplitude
histogram of optical flow are used for representing the human motion information. The
view space is partitioned into multiple sub-view space according to the camera rotation
viewpoint. Human action models are trained by HMMs algorithm in each sub-view space.
Finally the action with unknown viewpoint is recognized via the probability weighted
combination [6]. This method obtained view-invariant human action reocgnition. How-
ever the method did not consider the viewpoint transition relationship, can not accurately
recognize the actions captured from the top cameras. On the basis this work, a novel
graphical representation i.e. multi-view transition HMMs by using combined feature [6]
is proposed in this paper for view-invariant human action recognition. In the training
phase, the view space is partitioned into finite sub-view spaces according to the rotation
viewpoint. Then the sub-HMMs corresponding to human action models in a particu-
lar sub-view space are trained by using combined features. The combined features are
view-insensitive, so the sub-HMMs can achieve better recognition performance to human
actions with a certain range viewpoint changing. Finally the multi-view transition HMMs
are built by connetcting the sub-view HMMs between adjacent viewpoint spaces. Dur-
ing the recognition process, the observation probability between the human action with
unknown viewpoint and each trained action model by using improved forward algorithm.
The action can be recognized corresponding to the maximum likelihood.The advantage
of the proposed method does not require human body joint detection and strict temporal
alignment.

2 The overview of the proposed method

The framework of the approach is sketched in Fig. 1, in which each human action is modeled
by a multi-view transition HMM. The proposed multi-view transition HMM is built by
connecting the sub models which are the action models in the particular viewpoint space.
The framework includes the following modules:
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Fig. 1 The action recognition framework of the proposed approach

(1) View Space Partitioning: In order to improve the accuracy of view-invariant action
recognition, the parameter space is decomposed into multiple sub spaces according
to viewpoint. The actor’s rotation viewpoint around the camera is equally partitioned
into V pieces. Each piece will be regarded as a sub-view space. The training data in
the same sub-view space can be collected by using viewpoint clustering. So it is not
necessary to synchronously collect the training data by using multiple cameras in the
proposed method.

(2) Feature Extraction: The robustness of the feature to viewpoint changes is helpful to
improve the performance of recognition method. The combined features of the BoW
of interest point in shot length-based video and the grid-based amplitude histogram of
optical flow are selected to represent the human motion. The combined features are
robust to the viewpoint change in the sub-view space.

(3) Model Training: The HMM is chosen as the sub-model to model the human action
in the particular sub-view space. Firstly the sub-model of human actions are built by
using the combined features which have been extracted from each sub-view space(each
sub-view space contains H action models). Then the multi-view transition HMM is
built by connecting the sub models with the viewpoint transition constraint, i.e. one
multi-view transition HMM is according to one human action model.

(4) Action Recognition:When the test action sequence with unknown viewpoint is given,
feature extraction is performed. Then the probabilities of the test sequence for the
multi-view transition HMMs are computed by using the improved forward algorithm.
The test action is recognized by using the maximum likelihood criterion.
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3 Action feature

Single feature is weak to recognize the complex human actions. Different human action fea-
tures have various discriminative abilities. In order to improve the robustness of the method
to viewpoint changes, a view-insensitive motion feature combined the BoW description of
interest point and the grid-based amplitude histogram of optical flow is utilized. The com-
bined feature has been verified to be insensitive for viewpoint changing in our previous
work [6]. The detail of the feature is shown as following.

3.1 Interest point feature extraction and description

Interest point feature do not require foreground segmentation or body tracking, so they are
more robust to camera movement and low resolution. Approaches based on interest point
have shown much success in action recognition [3, 14]. The conventional BoW description
of interest point is usually extracted throughout the whole video. So it usually lacks the
dynamic information in temporal domain. To address this issue, the BoW description in shot
length-based video is proposed to improve the temporal characteristic and the contextual
semantic. The BoW feature extraction and description process is shown as Fig. 2.

The detailed of extraction is outlined in the following:

(1) Interest point detection: The frames in the training dataset which contain rich motion
information are found by interest point detection algorithm [3]. The method firstly
detect the region of interest by the frame differencing algorithm, then filter the region
by using 2D Gabor filters from different orientation (0◦, 22◦, 45◦, 67◦ and 90◦ orien-
tations selected). The combination of different orientation filtering responses is used
for the final results of interest point detection.

(2) 3D SIFT description: The 3D SIFT feature is verified it can capture rich local motion
features and is robust to minor variations of viewpoint [6]. Then the interest points in
these frames are represented by using the 3D Scale-invariant Feature Transform (3D
SIFT) descriptor.

Kmeans 
clustering

Traning 
dataset

BoW generation from Training dataset

Interest point 
detection

3Dsift description
Vocabulary

Vote

Projection

3Dsift description

Interest point 
detection

Interest Points description
(the red area is the current frame)

BoW histogram descriptor of the current frame

Fig. 2 The BoW feature extraction and description of interest point in shot length-based video
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(3) Vocabulary construction: The 3D SIFT descriptors of the interest points captured
from the training dataset are clustered by using K-means algorithm, and the K
clustering centers are chosen as the words to construct the vocabulary.

(4) BoW feature description: When the new frame of test sequence is input, the interest
points are extracted in the F neighbor frames to represent the current frame feature.
The 3DSIFT descriptors of the extracted points are projected into the K-dimension
vocabulary by minimizing the Euclidean distance between the descriptors of current
neighbor frames and the words in vocabulary. Finally, the occurrence frequencies of
the words are counted as the BoW descriptor of interest point for the current frame.

In order to investigate the effect of the different values of K and F to the system perfor-
mance, the algorithm was tested with K = 30, 45, 75, 100, 144 and F = 2, 3, 4, 5. The
results have shown that the combined feature reached the best performance with K = 60
and F = 4. So each frame can be represented by a 60-dimension BoW histogram descriptor.

3.2 Optical flow feature extraction and description

The BoW description of interest point in shot length-based video can effectively describe
the local motion information, and the optical flow contains more motion information and is
more robust to the complex environments. So the optical flow feature is chosen to combine
with interest point feature. In order to reduce the computation complexity of optical flow
feature, the optical flow features are extracted from the frames with rich motion information
found by the interest point detection. The optical flow feature extraction and description
process is shown as Fig. 3.

The detail is outlined in the following:

(1) Optical flow calculation: Optical flow images for horizontal and vertical channels
are calculated in the regions of interest(ROI) of the adjacent gray frames by using
Lucas-Kanade algorithm.

(2) Normalization: The sizes of ROI in every frame is different, so the normalization is
utilized to scale the interest region into a fixed p × q (p = q = 120 in this paper)
dimension by employing the bilinear interpolation.

Fig. 3 Grid-based amplitude histogram of optical flow feature extraction
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(3) Optical flow feature description: In order to increase the anti-disturbance ability,
the grid-based method [20] is adopted to divide each normalized optical flow image
into 2 × 2 sub-windows. Then a M-dimension radial histogram of the optical flow
amplitude is computed by calculating optical flow amplitude in M pie slices (M = 18
in this paper). Finally, each frame can be represented by a 144-dimension (2×2×2×
18) optical flow feature.

To make the proposed approach more robust to complex environments and viewpoint
changing, the BoW descriptor of interest point in shot length-based video are combined with
the grid-based amplitude histogram of optical flow. So each frame will be represented by a
204-dimension (144 + 60) mixed feature. The combined features can not only capture the
global motion information, but also achieve robustness to occlusions and viewpoint changes.

4 Multi-view transition hidden Markov model training and inference

In order to obtain the view-invariant human action recognition, the view space according
to the rotation viewpoint is partitioned into V (V = 8, in this paper) sub-view spaces, as
shown in Fig. 4. Only the actor’s rotation viewpoint relative to the camera is considered.
The variation range in a sub-view space is fixed(45◦ in this paper). For example, the view-
point space 1 covers rotation viewpoint from −22.5◦ to 22.5◦. A novel action model based
on multi-view transition HMM is proposed to represent the human action. The model can
not only recognize the human action with viewpoint changes, but also simplify the model
training process by decomposing the parameter space into multiple sub-space.

Fig. 4 Graphical representation of multiple viewpoint partition
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4.1 Multi-view transition hidden Markov model

An example of the proposed action model is shown in Fig. 5, which corresponds to
one human action model with different viewpoint transition. v and S respectively rep-
resent the current sub-view space and hidden state in the model. The sub model in the
red box corresponds to a standard action HMM in a particular viewpoint space. There
are three hidden states in the figure, however the number of the hidden states N maybe
more than three in the experiment. Considering the change of actor’s orientation should be
smooth, i.e. the camera viewpoint should remain constant or change between adjacent view-
points. So the viewpoint transitions in the graphical model only exist between the adjacent
viewpoints.

4.2 Multi-view transition hidden Markov model training

The proposed action model is composed of 8 sub models, which is corresponds to a stan-
dard action HMM in a particular viewpoint space. So the proposed model decomposes the
parameter space into 8 sub spaces which correspond to 8 sub-view spaces. So the parameter
training in multi-view transition HMM can be divided into two parts: one is the parameter
training of sub model in particular viewpoint, the other part is the state transition probability
between adjacent viewpoints.

4.2.1 Sub-view space HMM training

Supposing that λ(1,v), λ(2,v), · · · , λ(H,v)are the trained HMMs of action1, action2,. . .,
actionH in the current v sub-view space. The sub-view space HMM can be characterized by
the following parameters:

1. N :The number of states in HMM (the number of hidden states). N states are denote as
S = {s1, s2, . . . , sN }and the hidden state at time t as qt ∈ S = {s1, s2, . . . , sT }.

2. T : The number of observation symbol in the sequence. The observation symbol
sequence is denoted as O = {o1, o2, . . . , oN } .

3. A : State transition matrix A = (aij )N∗N , where aij = p(qt+1 = sj |qt = si)(1 ≤
i, j ≤ N) ?? aij is the probability of reaching state sj at time t + 1 from state si at time
t .

4. B : Observation symbol probability distribution, B = {bi(ot )} , where bi(ot ) =
p(ot |si)(1 ≤ i ≤ N), bi(ot ) is the probability of generating observation symbol ot

from state si at time t .
5. π : The initial state distribution π = {π1, π2, . . . , πN }, where πi is the probability of

initial state si .

Fig. 5 Graphical structure example of the proposed HMM with multi-view transition
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We denote a HMM as λ = {A,B, π} using the above parameters. In doubly embedded
stochastic process, parameter π, A describe the Markov chain and B describes the relation
between state and observation symbol respectively.

The probability of generating observation symbol from each state can be computed by
Gaussian probability-density function (1):

bi(ot ) = b(ui ,�i )(ot ) = 1√
2π

d√| ∑i |
e− 1

2 (ot−ui)
T

∑−1
i (ot−ui ) (1)

Where ui,
∑

i is respectively the mean and covariance matrix of observations in cluster
i; d is the dimension of observation symbol ot ; (ot − ui)

T is the transpose of matrix (ot −
ui);∑−1

i is the inverse of matrix
∑

i .
The essence of HMMs training problem with the given structure (5 states and full-

connected HMMs in this paper) is to maximize the observation probability by adjusting
the model parameter for the observation sequence. Baum-Welch algorithm is commonly
used to obtain the optimal model parameters. However, it’s performance is depended on the
choice of initial parameter. If the improper initial parameters are chosen, it can lead proce-
dure to the local minimum. So the action model can’t be optimal. In this paper the result of
kmeans algorithm is taken as initial input of the Baum-Welch algorithm. Then the Gaussian
probability density function is used for computing the probability of generating observation
symbol from each state.

4.2.2 State transition probability calculation between adjacent viewpoints

The viewpoint constrains should be considered before calculating the transition probability.
The state transition probability only exists between adjacent viewpoints. We assume a uni-
form transition probability between adjacent viewpoints, i.e., the state in viewpoint space
v has the uniform transition probability to viewpoint space v + 1, viewpoint space v and
viewpoint space v − 1. Considering there are N states in each HMM, the current state can
be transformed to 3∗N state nodes. So the transition probability a

m,n
i,j = p(qt+1 = Sn

j |qt =
Sm

i ), 1 ≤ i, j ≤ N can be calculated by (2).

a
m,n
i,j = 1

3N
,m �= n, 1 ≤ i, j ≤ N (2)

There m, n is the number of the sub-view space.
Then the multi-view transition HMM can be built by combining the parameters of sub-

view space action HMM and the state transition probability between sub-view space. The
state transition matrix can be described by (3).

A = (a
m,n
i,j )V N×V N , a

m,n
i,j =

⎧
⎨

⎩

1
3a

m
i,j , m = n

1
3N , m �= n

0, others

(3)

In the current viewpoint space, the probability of generating observation symbol ot from
state sv

i at time t , bv
i (ot ) = p(ot |sv

i ) can be calculated by using (1).
The initial state distribution, π = {π1

1 , π1
2 , . . . , π1

N . . . πv
1 , πv

2 , . . . , πv
N }, where πv

i =
1
V

× π(v) is the probability of initial state sv
i .
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4.3 Multi-view transition hidden Markov model inference

Supposing that λ(1), λ(2), · · · , λ(H)are the trained multi-view transition HMMs of action1,
action2,. . ., actionH.When a test observation sequenceO = {

otest
1 , otest

2 , · · · otest
T

}
is given,

the probability of the test sequence (i.e. observation probability) for the given multi-view
transition HMMs can not be computed by using traditional Forward-Backward algorithm.
So the forward algorithm is improved to calculate the observation probability, as shown in
Fig. 6

The forward probability is redefined as: αt (v, i) = p(o1, o2, . . . , ot , qt = Sv
i |λ), it is

the probability of being in the state Sv
i at time t and having observed the sequence O ={

otest
1 , otest

2 , · · · otest
T

}
under the given action model.

Then the observation probability of the test sequence for the given multi-view transition
HMMs can be calculated by following iterative formula.

1. Initialization: αt (v, i) = πv
i bv

i (ot )

2. Loop: αt+1(v, j) =
v+1∑

m=v−1

|Sm|∑

i=1
α

m,v
i,j bv

j (ot )

3. End: p(O|λ) =
V∑

m=1

|Sm|∑

i=1
αT (m, i)

The observation probability p(O|λ(1)), p(O|λ(2)), . . . , p(O|λ(H)) between the test
sequence and each trained action model are computed by using above improved forward

Fig. 6 The iterative process of Forward algorithm with multi-view transition
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algorithm. Then the action corresponding to the maximum likelihood is chosen as the best
recognition action:

test number = argmax
∑

1≤h≤H

(p(O|λ(h))) (4)

5 Experiment

The proposed method is tested on the Inria Xmas Motion Acquisition Sequences (IXMAS)
multi-view action dataset, which contains twelve daily-live actions. Each action is per-
formed three times by twelve actors and recorded simultaneously from five different
cameras: four side cameras and one top camera. During the action performing, the view-
point of human body relative to each camera is not restricted. The examplar frames are
shown as Fig. 7. Whether under the same camera or different cameras there are large view-
point variation of the human body relative to the camera. Therefore, it is widely used to test
the performance of view-invariant action recognition algorithms. Eleven actions are cho-
sen for verifying our approach during the experiment, namely, check-watch, cross-arms,
scratch-head, sit-down, get-up, turn-around, walk, wave, punch, kick and pick-up. So there
are 5 ∗ 11 ∗ 3 ∗ 12 action samples for the experiments. The test method of leave one actor
out (LOAO) is used in every experiment.

5.1 View clustering

The multi-view IXMAS dataset was captured by using five cameras placed different posi-
tions around the actors. In this dataset, actor orientations are arbitrary since no specific
instruction is given during the acquisition. That is to say, although the actions are captured
by the same camera, the camera viewpoints are different when the actions are performed by
different actors.

In order to train the sub action models under a particular camera viewpoint, the action
sequences were clustered into 8 different viewpoint spaces depending on the rotation view-
point, as shown in Fig. 4. Since there are not enough samples captured from viewpoint 5

Fig. 7 Exemplar frames from IXMAS multi-view dataset
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and 6, the action samples from those two viewpoint spaces are not included to train the sub
action models. That is to say, only 6 viewpoint spaces is considered in this paper.

5.2 The view-invariant action recognition test under particular camera

The viewpoint variation of the human body relative to the camera can be divided into two
types: rotation variation and pitch variation. In the dataset, the pitch viewpoint variation of
the human body is relatively small. In this experiment, the performance of the multi-view
transition HMMs for view-invariant action recognition under particular camera is tested.
The experimental data respectively used for model training and testing are taken from the
same camera data(the testing actor sequences are not included in the training data). Firstly
6×11 sub-action models are trained according to 6 viewpoint spaces and 11 class of human
action under the same camera. Then the multi-view transition HMMs are built by connect-
ing the sub-action models between the adjacent viewpoint spaces. The performance of the
proposed method to the rotation viewpoint changing can be verified in this experiment. The
recognition rates of every action are listed in Table 1.

The results show that the proposed method is extraordinary effective to discriminating the
human actions with viewpoint changing and achieve a satisfying recognition rate. Especially
the algorithm for the top camera can obtain 86.6 % recognition rate. The results is very
inspiring, since it is very difficult to recognize the human actions from the top camera.

5.3 The view-invariant action recognition test under different cameras

On the basis of the above experiment, the performance of the proposed method for the
real view-invariant recognition (rotation-invariant and pitch-invariant) is considered in this
experiment. The data from different cameras (four side cameras, one top camera) are used
to train the multi-view transition HMMs. There exists large patch-variation between differ-
ent cameras. The view space is partitioned as usual according to the rotation viewpoint of
human body to the camera. That is to say the data with the same rotation viewpoint will be
clustered into the same sub-view space, no matter which camera the data belong to. At each
test iteration, the action samples performed by one actors from one camera are chosen as

Table 1 The recognition results (%) of multi-view transition HMM under particular camera

parameter cam0 cam1 cam2 cam3 cam4

check-watch 80 96 88 92 88

cross-arms 88 96 84 84 80

scratch-head 72 76 88 68 92

sit-down 96 100 100 96 92

get up 96 100 100 96 80

turn-around 88 80 80 88 92

walk 100 100 100 100 100

wave 80 68 88 92 84

punch 100 92 92 88 76

kick 100 96 88 80 80

pick-up 100 100 100 96 88

average 91.3 91.3 91.6 89.1 86.6
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Table 2 The recognition results (%) of multi-view transition HMM under particular camera

parameter cam0 cam1 cam2 cam3 cam4 average

Recognition Rate 91.6 92.7 86.9 84.8 76.0 86.4

testing sample, then multi-view transition HMMs are learned by using the remaining train-
ing samples performed by other actors from the same camera and all other samples from
other cameras. Totally only 11 multi-view transition HMMs are trained to achieve the view
invariant human action recognition under different cameras. The iteration process will be
terminated until all the samples are tested. The recognition rates of every camera are calcu-
lated and listed in Table 2. The confusion matrix of whole testing is provided in Fig. 8 to
show the effectiveness of the proposed method.

Observed recognition results from Table 2, the proposed multi-view transition HMMs
based action recognition method can achieve better recognition performance for the action
data captured from different cameras. It is verified that the proposed method has better
robustness to viewpoint changing (no matter rotation viewpoint and pitch viewpoint) with
less training model. Only one multi-view transition HMMs is trained to model one class of
human action in the whole viewpoint spaces.It is worth noting that the proposed method
achieve better recognition results by using action data from camera 4, although there exists
large pitch viewpoint variation according to other cameras.

Furthermore, we can find the proposed method can successfully recognize most of the
test data. The wrong recognition results are mainly focus on the similar actions of “scratch
head” and “wave”. The main reason is the recognition of those two class of actions depend-
ing on the information captured from the arm of the actors. However there occur overlapping
phenomenon in the most of the duration of action performing, as shown in Fig. 9. So there
are not enough discriminative information obtained from the image sequence, which leads
to false recognition between “scratch head” and “wave”.

Fig. 8 Confusion matrixes (in %) for the IXMAS dataset
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Fig. 9 Confusion matrixes (in %) for the IXMAS dataset

5.4 Performance comparison

The proposed approach is compared with the state-of-the-art view-invariant methods. To
make the comparison, our experiment is performed under the same test conditions with
them. All of the videos in the dataset are used as experimental data. The leave one actor out
(LOAO) is used as standard testing method. And the performance for different recognition
methods is illustrated as Table 3.

As can be seen from Table 3, the work by Liu et al. [10] greatly outperforms than our
method. However this result is obtained by fusing five cameras inputs. The average recog-
nition rate achieved by using one camera data is 82.38 %. It is lower than our method.
Furthermore, the recognition rate of our previous work [6] is slightly better than our current
work. However this result is the average recognition rate of four cameras, and top cameras
is not included. So under the same testing condition, it is worth noting that our method out-
performs all of other methods. During feature extraction process, neither the key poses [12]
are extracted from motion capture sequences nor the camera information [10] are required
in advance. By effectively introducing the viewpoint transition, the recognition accuracy
and the robustness for viewpoint changing are improved. The experimental results show that
the proposed approach is easy to implement and the performance for view-invariant action
recognition is satisfactory.

Table 3 Comparison with related work in recent years

Literature Method Accuracy

Wu et al. [23] ST context + appearance + AFMKL 78.02 %

Lv et al. [12] Shape context of silhouettes +PMK-NUP 80.6 %

Junejo et al. [7] SSM desciptor +SVM 72.7 %

Weiland et al. [22] 3D HOG descriptor +Local SVM 83.4 %

Liu et al. [10] Silhouette -optical flow -interest point + LWE 82.8 %

Wu et al. [24] Correlogram of body poses + Multi-Max-Margin SVM 95.54 %

Our previous work [6] Optical flow+interest point SIFT + multi-HMMs probability fusion 88.4 %

Our approach Optical flow+interest point SIFT + multi-view transition HMM 86.4 %
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6 Conclusion

A novel view-invariant human action method based on multi-view transition HMMs is pro-
posed in this paper. The interest point feature based on local information and the optical
flow feature based on global motion information are effectively combined. The combined
feature is view-insensitive in the sub-view space. The multi-view transition HMMs are built
in the training process by introducing the transition probability matrix to achieve the transi-
tion of sub-action models in multi-view space. The sub-action models can be independently
trained, which can greatly reduce the computational complexity. Finally the action with
unknown viewpoint is recognized by using improved forward algorithm. The experiments
validated the performance of recognition algorithms is greatly improved and it is superior to
the existing view-invariant action recognition algorithms. With the use of the RGBD cam-
eras, it is our future work to solve the viewpoint constrain issue by fusing depth information
[2, 8].
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