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Abstract This paper presents a novel base-points-driven shape correspondence (BSC) ap-
proach to extract skeletons of articulated objects from 3Dmesh shapes. The skeleton extraction
based on BSC approach is more accurate than the traditional direct skeleton extraction
methods. Since 3D shapes provide more geometric information, BSC offers the consistent
information between the source shape and the target shapes. In this paper, we first extract the
skeleton from a template shape such as the source shape automatically. Then, the skeletons of
the target shapes of different poses are generated based on the correspondence relationship
with source shape. The accuracy of the proposed method is demonstrated by presenting a
comprehensive performance evaluation on multiple benchmark datasets. The results of the
proposed approach can be applied to various applications such as skeleton-driven animation,
shape segmentation and human motion analysis.

Keywords Shape correspondence . Heat Kernel signature .Mesh contraction . Skeleton
extraction

1 Introduction

The 3D shape correspondence is to find a meaningful relation between pair of shapes and it has
a wide range of applications in a variety of domains, such as geometric modeling and
processing [17], shape recognition [29, 38], shape registration and shape retrieval [27, 41].
The representation of variations of human shapes has been an important topic in computer
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vision and graphics fields. Establishing a significant relationship between shape correspon-
dences of similar model with different poses is a challenging task for several reasons. Firstly,
among the different types of poses from the same person, there are many non-rigid deforma-
tions [15]. Secondly, the human motion capture system could capture 3D postures through
multiple cameras environment [5], but we need the meaningful relationship of shape points
among distinctive pose shapes.

The shape correspondence is also closely related to the extraction of the curve-skeleton of
shape. An articulated 3D model skeleton provides an intuitive abstraction for both geometrical
and topological shape of the objects. An extracted 1D curve-skeleton is an effective represen-
tation of the model, which facilitates manipulating and understanding the shape of model [18].
The skeletal representation of the model has become very popular and find wide range of
applications in shape analysis [26], surface reconstruction [40], character skinning through
skeletal rigging [25], skeleton-driven character animation [7], object matching and shape
retrieval [12, 22] and shape deformation through skeleton [45]. With the capability of creating
a three-dimensional representation of human models, the extraction of curve-skeletons for
these models has become a fundamental problem in many applications.

A number of methods can be found to extract a skeleton from 3D shape [4, 23]. Majority of
these methods are geometry-based, which have hybrid approach combining topology and
geometry-based techniques [44]. An approach which has the combination of capabilities such
as robust and high accuracy to extract a skeleton for different poses of same model is highly
required. The extracted skeletons by using these methods are often not satisfactory due to
undesirable redundant branches, complexity in joints hierarchy and manual approximations
during extraction. Technically, in skeleton extraction of the shape, an extracted skeleton is
well-centered, well-define joint hierarchy joints. The accurate joint identification that matches
the real position in every pose of the shape is a challenging task in computer graphics and
interactive applications. A number of commercial 3D packages (such as Maya™, Blender,
etc.) have been developed for creating automatic skeleton for the object. However, the
generation of skeleton by using these packages is time-consuming, labor-intensive and the
results depend on user’s skills.

In this paper, we propose and develop an integrated framework of consistent human
skeleton extraction based on the base-points-driven shape correspondence (BSC). The source
and target shapes are topologically consistent, with different postures and semantically similar
to each other. BSC establishes the corresponding relationship between two shapes using local
maximum Scale-invariant Heat Kernel signatures as base points to embed the original shapes
into a Euclidian space. In this space, we first compute the similarities between points on source
and target shapes, and then build the correspondence, based on which the skeleton can be
extracted.

To extract the skeleton of a source shape, at first, the source shape is contracted through
Laplacian-based mesh contraction method. A 1D curve-skeleton of the contracted shape is
then obtained through topological thinning. The final joint-based skeleton shape is produced
by applying geometric refinements on extracted 1D curve-skeleton of the source shape. The
consistent skeleton of the target shape which possesses different poses of the source shape is
then generated based on correspondence relationship between these shapes. The obtained
target shape skeleton has the similar topology of the source skeleton such as an equal number
of joints, approximately identical joints’ positions and hierarchy structure.

The rest of this paper is organized as follows. In Section II, we review previous works on
shape correspondence and human skeleton extraction. The details of our proposed BSC are
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given in Section III. Firstly, we describe the model downsampling method and how to find the
base points. Then this section focuses on how to select the base points and identify the similar
points on the source and target shapes. In the end of this section, some results of correspon-
dence are presented. Section IV describes the extraction of the source shape skeleton and
generation of target shape skeleton through our shape correspondence approach and compare it
with the direct skeleton extracting method. Our experimental results conducted on two
benchmark datasets are presented in Section V, followed by conclusion and future work in
Section VI.

2 Related work

The extraction of a model’s skeleton should give enough information for the overall structure,
while maintaining a certain level of details for the model. The pros and cons of various
skeleton extraction methods and skeleton properties have been well documented in [13].

In the literature, various methods have been intensively studied for extracting skeletons
from 3D shapes. Some methods concentrate on the pairwise skeleton correspondence [51].
Majority of the solutions focused only on the 1D curve-skeleton extraction from 3D objects
which describes the abstract structure of the model [20] although some techniques try to
compute a joint-based skeleton of the model [28]. Although, the partitioning of the 3D shape
can assist in the creation of skeleton and the skeleton of any shape may infer a segmentation of
the shape. Lior et al. [37] proposed an approach for decomposing mesh into meaningful parts
based on shape diameter function. In their work, Shape diameter function (SDF) was also
guided a curve-skeleton by using consistent partition of the given mesh. However, focus of
their method is to partition the mesh and its created skeletons are only curve-skeletons rather
than joint-based skeletons. Furthermore, skeleton generating by using segmentation algorithms
are often lead to expensive computation and resulting skeletons look star-shape skeletons due
to over-segmentation and jagged boundaries between segments. The skeleton extracted by
these methods generates satisfactory results for single input model. However, they suffer some
limitations such as mismatching the location of skeletal joints with the real position of the
model, failure to preserve the topology of the model, etc. For automatic extraction methods,
the extracted joints hierarchy increases the complexity and fewer unwanted branches could be
created. The generated skeletons through these methods also need to tune through skeleton
pruning algorithms for every model.

The use of silhouettes as input to recognize human actions [6, 10] is based on the
representation of the contour points from human silhouette. But the silhouette is obtained
previously by extraction techniques, e.g., background subtraction and mostly from image. And
many previous works use edges and silhouettes as pose descriptors [14, 49]. These methods
use only image features and are not suitable for a strong dynamic model of human motion. The
use of the same model for skeleton extraction and motion capture, depends on a one-to-one
correspondence between estimated and ground truth joints [36].

Base point means prominent feature point in this paper. We need them to be consistent on
shapes with isometric deformations. Reuter and Peinecke [31] have proved that the Laplace–
Beltrami eigenvalues as isometry-invariant shape descriptors could be used to recognize the
isospectral models dubbed as BShape-DNA^. By the decomposition of the Laplace–Beltrami
operator, Reuter got the isometry-invariant signature of a manifold from the eigenfunction
corresponding to the first few smallest non-zero eigenvalues. But the BShape-DNA^ is a global
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feature. The heat diffusion on a manifold is the diffusion process whose infinitesimal generator
is the Laplace–Beltrami operator[11]. Coifman and Lafon [11, 24] have introduced the
diffusion processes on manifold which formed a base for the recent studies about the diffusion
geometry in shape analysis. Sun and Ovsjanikov [39] proposed an intrinsic, multi-scale and
robust shape descriptor, Heat Kernel Signature (HKS). This descriptor is based on the physical
processes of heat propagation on a shape and also related to the diffusion geometry proposed
by Lafon. It was obtained through the heat kernel of different time interval. HKS is efficiently
computable and provides a multi-scale way to capture information about neighborhoods of a
given point [39]. In this approach, when time period is small, the HKS takes more information
from the close neighbors and catches the local features.

In shape correspondence, isometry is a very important clue for finding the final result.
Fortunately, with the development of 3D data acquisition technology, the acquisition of
parameterization-free shapes becomes popular and the data are almost in isometric. The
BSC method in this paper is based on the invariance of geodesic distance with isometric
deformations. To obtain the correspondence directly between two sets is an NP-hard problem.
Many researchers have proposed various methods to simplify it and construct some
models based on some descriptors [8, 46] and metric structure of shape [1, 19, 48].
H. Zhang et al. [50] proposed a deformation view of shape correspondence and
proposed a deformation-driven method. Yusuf Sahillioğlu et al. [32] proposed a
greedy optimization on the isometry cost model, and then took different algorithms
in [33–35] to detect the correspondence. This approach has solved the correspondence
problem with greedy optimization, but it needs a good initialization in order to avoid
getting stuck with local maxima. Instead, our approach is able to avoid this by
solving a minimum cost max flow problem.

3 Base-points-driven shape correspondence

In this section we first review the downsampling method, Farthest Points Sampling (FPS) [16].
How to represent these down sampled points and eliminate the effects of non-rigid deforma-
tions between them are major challenges for obtaining the plausible result of shape correspon-
dence. Thereafter, we introduce our improved correspondence method BSC.

3.1 Downsampling methods

In order to improve the efficiency of the algorithm, a limited number of points have been
required under a certain magnitude. A downsampling algorithm FPS has been used to
decimate the points. FPS provides almost evenly spaced sampling, the next sample is placed
in the center of the largest empty disk on surface, or circle on the plane for 2D cases [16]. In
other words, the next sample is placed at a point that is farthest from the previous samples. To
this effect, each sample point is as far as possible from other points and at the same time as
close as possible.

In the FPS procedure, the points at the anchors (e.g., the feet and the hands of human or
animal shapes) will be selected prior to other points on the shape. Various anchor points of
each isometric shape will be corresponded and selected firstly by FPS. It obtains a well-
separated covering net of the shape (Fig. 1). By taking the advantage of FPS, we have obtained
subsets of the shape for our shape correspondence method.
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3.2 New shape representation

For a 3D surface S(u,v), which is a 2D manifold surface, a geodesic metric dgeo(x,y)
is defined on it, where x, y are two points on the surface. There are three or more
points, which are not on a same geodesic path, are selected as the base points: p1, p2,
p3. Then arbitrary point p0 on the surface will have an exact location. The dgeo(p0,pi)
has been computed, where i=1,2,3. These three geodesic distance values have been
taken to be the new coordinates for all the points on the surface P0(dgeo(p0, p1),
dgeo(p0, p2),dgeo(p0, p3)) in a 3D Euclidian space.

After calculating a point p, we compute the geodesic distances from this point, which forms
a field on the surface, through the geodesic function f(q)=dgeo(q,p). Every point only has one
value. All the same value points are on a close curve, similar to the circular contour on the
plane in Euclid space.

In the Euclidean geometry, it has well known three points, which are not on the same curve,
can decide one and only one plane. This can be described by the intersection point of three
circles, which takes the base points as the centers and the distances from the base points as the
radius respectively as shown in Fig. 2. For each point of the surface, we can find the unique
group of circles as the coordinate system.

We extend this method to the manifold surface with the geodesic metric. The geodesic
distance is selected to replace the Euclid distance, and geodesic contour, which is a closed
curve, and used to replace the circle. It is illustrated in Fig. 3.

In Fig. 3a, the geodesic contour is some close curves and there is no intersection point
between any two geodesic contours because of a unique distance between any point and the
source point. If there are two geodesic contours intersect at one point M, all the points on the

Fig. 1 Results of the FPS downsampling on two different shapes with 200 points
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two contours have the same geodesic distance. In Fig. 3b, considering a point P on the outer
contour, the geodesic path from the source S to point P pass through the area, is between the
two contours. When it enters into this area, there will be a intersect point Q within the inner
contour. However, the points P and Q have the same distance. So there is no intersecting point
between any two geodesic contours.

Fig. 2 Any point can be represented by the intersect point of three circles centered by three base points

Fig. 3 Example of geodesic. a Geodesic contours from a source point on a human pose shape. b Illustration on
why these contours do not intersect when the two geodesic contour intersect at point M
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Three base points are selected, all the points on the surface can be defined by geodesic
distances between base points. Under this situation, if base points of two shapes are given in
order respectively, a sequence of distance values can be used to represent a point on the
surfaces. Because geodesic distances are unique, the sequence will also be unique for one
point. It’s very important to define these consistent base points on different pose shapes. The
following section presents our approach to find the same base points on the source and target
shapes using an intrinsic point feature Scale-invariant Heat Kernel Signature (SIHKS) [9].

3.3 Heat Kernel and Heat Kernel signature

3D shapes representations of human posture shapes are convenient in applications such as
rendering and visualization. But it is not suitable, at least in a direct way, for many other
situations including human motion comparison, motion correspondence, shape estimation, and
recognition. In these applications, the pose shapes are considered to be similar if there exist
rigid or isometric transformations between them.

Considering the non-rigid deformations of these posture models, this makes it difficult to
find their correspondence. Therefore we need a method to eliminate the influence of the
deformations. So the HKS as the intrinsic features is chosen to find the base points.

Let M be a compact Riemannian manifold without boundary, the amount of heat at a point
p∈M at time t is defined by u(p,t):M×ℜ+→ℜ+. So at time 0, the heat at every point could be
represented as the function f:M→ℜ+. Moreover the diffusion of heat onM is governed by the
heat equation as follows:

ðΔM þ ∂
∂t
Þu p; tð Þ ¼ 0 ð1Þ

Here ΔM is a Laplace-Beltrami operator of M. If the heat distribution fat time t is given by
the heat operator Ht, then the following equations are satisfied:

limt→0Ht f ¼ f ; and u p; tð Þ ¼ Ht f pð Þ

And these two operators have the relation Ht ¼ e−tΔM .
The heat kernel is a function as described in the following equation:

kt p; qð Þ : ℜþ �M �M→ℜþ ð2Þ

It satisfies Htf(p)=∫M kt( p,q) f (q)dq for all p∈M and measures the amount of heat trans-
ferred from p to point q in time t. According to the eigen-decompositon of Laplace-Beltrami
operator and the relation of ΔM and Ht, the spectral expansion of heat kernel on any compact
manifold M has the following form:

kt p; qð Þ ¼
X∞
i¼0

e−tλiϕi pð Þϕi qð Þ ð3Þ

Here λi and φi are i-th eigenvalue and its corresponding eigenfunction of Laplace-Beltrami
operator respectively. From Eq. (3), we can see that, the heat kernel is symmetric kt(p,q)=kt(q,
p). The HKS is also isometry-invariant for the shapes with isometric transformations. Inversely
if two shapes have the same HKS, then they are isometric.
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HKS(p):ℜ+→ℜ,HKS(p,t)=kt(p,p) is exactly the Heat Kernel Signature defined on the
point p of the manifold M. It could be represented as:

kt p; pð Þ ¼
X∞
i¼0

e−tλiϕi pð Þ2 ð4Þ

As a local shape descriptor HKS has also many properties such as multi-scale property
especially sampled at a finite set of time t1,⋯,tn:

HKS pð Þ ¼ kt1 p; pð Þ; kt2 p; pð Þ;⋯ktn p; pð Þð Þ ð5Þ
In order to deal with global and local scaling transformations, we need a scale-invariant

method which could be achieved by [9, 30, 43]. In this paper, the Scale-invariant Heat Kernel
Signature has been employed for defining the base points. According to Bronstein [9], shape
scaling factors could be removed by the logarithmically sampling, discrete derivative and
discrete-time Fourier transforms. This approach created scale-invariant feature descriptors, and
the SIHKS extend the heat kernel signature to deal with global and local scaling transforma-
tions. By means of the scale and pose invariant properties of SIHKS, we could find the
consistent base points on two shapes with isometric deformations by the local extreme of the
SIHKS. Figure 4 shows some results of the base points (marked with pink balls) on the same
person with different poses. These points are taken from the local maximum SIHKS in the
range of a fixed geodesic distance on shapes.

3.4 Identification of similar points

In this subsection, we describe the method to compute the correspondence of points on the
source and target shape. The base points are selected, and they have been matched to each

Fig. 4 Example of base points on different shape poses. a Base points (pink balls) on a standing pose. b Base
points on the squatting pose. c Base points on the dancing pose
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other. Now that the geodesics from these base points are computed, we take the order
of the base points to be the order of new coordinate in Euclidian embedding space.
The geodesic distances matrix M1 and M2 have been computed by using the Fast
marching algorithm [21].

After embedding the shape into Euclidean space through setting the matched and ordered
points of original shapes as base points, two new shapes are achieved, which have the same
location and the same surface, as seen in Fig. 5. The correspondence problem then becomes to
find the closest pairs of points between two point sets.

Let’s denote the M1(V1,F1) and M2(V2,F2) as the source shape and the target shape
respectively, where Vi(i=1,2) is the set of new points, which can be written as v(v1,v2,v3,⋯,
vk), k is the number of the base points. Fi is the face from the original shape, i.e., the topology
of the original and the new shape are same. Now we just find the nearest points between the
two sets. The greedy strategy can be taken to find the nearest point from M2 for each point in
M1. However, it just meets the local optima. Our aim is to find a map Ψ(v1):v1∈M1→v2∈M2,
which is given below:

Ψ vð Þ ¼ argmin
vi∈M1;Ψ við Þ∈M2

XN
i¼1

L2 vi;Ψ við Þð Þ ð6Þ

Here L2(vi,Ψ(vi)) is the L2 distance and N is the number of M1. Now this problem changes
to an optimization problem, which could be solved by the following minimum-cost maximum
flow problem. The minimum-cost flow [2] is an important and typical problem in the field of
graph theory, and is the core of network optimization problems.

This problem can be described as follows. Giving a flow network, that is, a directed graph
G=(V,E), with source point s∈V and a target point t∈V, each edge e(i,j)∈E has an associated
cost aij that denotes the cost per unit flow on that edge. A flow fij≥0 and a capacity cij>0 are
associated with every edge. We can send a flow f from s to t.

Fig. 5 Embed two new shapes into the same Euclidean space. a Standing pose and its representation. b Crane
pose and its representation
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The minimum-cost flow problem is an optimization model formulated as follows:

Minimize
X
i; jð Þ∈E

ai j f i j ð7Þ

Subject to f i j≤ci j; f ij− f ji; ∑
j∈V

f i j ¼ 0 for all i≠s,i≠t and ∑
j∈V

f s j ¼ ∑
i∈V

f it ¼ d.

Based on this, if the point set, except s and t, can be separated into two sets with
the edges, we call this graph is a bipartite graph. Then with a weight to every edge,
we get the minimum weight graph, which will be used in our method to solve the
correspondence problem.

3.5 Correspondence results

Some of our correspondence results are illustrated in Fig. 6. We represent the correspondence
between each pair of shapes by the lines. The distances are computed between each corre-
spondence points in k (in our experiment k=5) dimensional Euclidian space. If k is larger the
process is more robust. But it will be more complicate for the base points to be corresponded.
With enough base points, nevertheless we will reduce the correspondence error and the
symmetry ambiguity. After that we take the average of these distances as the measure standard
to test the quality of the result.

Figure 6 also shows the sparse and dense correspondence results. Sometimes the
coarse correspondence may lead to less computation time, but this will result in
reduced accuracy for skeleton extraction. So the dense correspondence is more
suitable for our case.

4 Skeleton extraction through shape correspondence

After the establishment of the correspondence between target and source shapes, we
want to extract the target shape skeleton by using the source one. The process of
extracting target shape skeleton consists of two steps. At first, a skeleton has been
extracted from one of the correspondence shape (source shape). Then a similar
plausible skeleton is generated of target shape based on the source shape skeleton.
The obtained target skeleton maintains equal number of joints and preserves similar
hierarchy of the source skeleton joints.

Fig. 6 Result of the correspondence. a Sparse result for correspondence. b Dense result for correspondence
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4.1 Source shape skeleton extraction

The suitable source shape skeleton has been extracted using the method in [40] and
then converted curve-skeleton into joint-based skeleton by applying geometric refine-
ments. In source shape skeleton generation, at first the source shape is contracted
through Laplacian-based mesh contraction which converts the geometric model into
the skeletal shape of the input model. The contracted mesh consists of approximate
zero-volume that is visually skeletal representation of that shape. This contraction
process preserves the original topology and maintains the real shape of the model.
The linear system of vertex positions is iteratively solved during the mesh contraction
by using Eq. (8) below:

WCL
WA

� �
V 0 ¼ 0

WA

� �
ð8Þ

where Wc and WA are the constraints of contraction and attraction respectively. The
contraction and attraction constraints have been minimizing through quadratic energy
function by using Eq. (9).

WCLV
0k k2 þ

X
i

W 2
A;i v

0
t−vi

�� ��2 ð9Þ

In this equation the first part relates to contraction constraints and the second part describes
the attraction constraints.WA,i is the attraction weight for every point i after each iteration. L is
the n×n Laplace operator with elements, V′represents the contracted vertex of the source shape.
In order to get more accurate results of the skeleton extraction, we may apply minimum user
intervention.

The contracted mesh is then converted into hierarchical joint-based skeleton
through topological thinning and geometry refinements. In topological thinning we
have applied edge-contraction operation on the contracted mesh to collapse the
unnecessary edges until to create the 1D curve-skeleton of the shape. The edge-
collapse process is applied repeatedly until all triangles in the contracted mesh are
removed and the final curve-skeleton is obtained. The obtained 1D curve-skeleton is
then refined into hierarchical joint-based skeleton through geometric refinements.
The refinements include: computation of skeleton joints, identification of the root
node, establishment of the hierarchy between skeleton joints and creation of the
graph of skeleton joints. The extracted joint-based skeleton by implementing topo-
logical and geometric refinements on the contracted shape of the source model is
given in Fig. 7b.

4.2 Consistent skeleton generation for target shape

The computed skeleton of the source shape is then used to extract the consistent 1D
curve-skeleton of the target shape through computed surface correspondence of source
to target shape. The joints of the source skeleton are used to calculate the skeleton-
vertex correspondence of source shape through the matrix D. D is the shortest
distance between every joint of the source skeleton and its shape point described in
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Eq. (10). Let the source model P and size of the model points is m and the extracted
skeleton S consists of n joints. The skeleton to shape surface relations is calculated as:

Di j ¼ PiS j

�� ��; i ¼ 1; 2;⋯;m; j ¼ 1; 2;⋯; n ð10Þ

PiS j

�� �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi1−S j1

� �2 þ Pi2−S j2

� �2 þ Pi3−Sj3
� 	2

r
ð11Þ

The closest shape vertex E of source skeleton joints is determined by distance matrix D, Ei
= DIi, where Ii is minimum distance of the every skeleton joint from its associated shape
vertex.

The projected nodes of the target shape skeleton have been estimated using BSC shape
correspondence and skeleton-surface relationship E of the source shape. Our BSC approach
computes one to one correspondence between source and target shapes points. Thereafter, the
similar points of the target shape are grouped into one group (cluster) based on E. Let the target
shape points are V composed of k group corresponding such that v1∪v2∪…∪vk=V. Let the size
of j-th group in target mesh points is nj(j=1,2…,k). We calculate the center of each group
v j; j ¼ 1; 2…; kð Þ of the target mesh vertex using Eq. (12) as:

v j ¼

X
i¼1

n j

vi j

n j
; j ¼ 1; 2;…; k ð12Þ

The prototype (center) of each group is computed of target shape that represents the

extracted nodes of the target shape skeleton T ¼ vi; v j⋯; vk

 �

as shown in Fig. 8. To connect

the target shape nodes, a cyclic connection between nodes has been constructed based on
shape correspondence and using rings of share vertices in target shape. To compute the
connection between target shape nodes, at first, we compute the connected rings of the shape
vertices.

Fig. 7 Extraction of the source shape skeleton. a Source shape. b Skeleton of the source shape
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Nearest neighbor search (NNS) algorithm has used to find the closest points in the shape for
computing one-rings of mesh point neighbors. Numerous solutions in computational geometry
have been proposed for NNS problems such as linear search which calculates the distance
from a query to every data point, local sensitive hashing (make buckets of data based on a
distance metric), greedy search (construct graph of the points from query to its neighborhood).
We use the space-partitioning algorithm for NNS based on K-d tree data structure [47]. K-d
tree algorithm is based on iteratively division of the search space into two regions. The K-
nearest neighbor of mesh points is computed by using k-d nearest neighbors search. At first,
we compute an approximate neighborhood of target shape Vi by calculating its k nearest
neighbors Nk(Vi). The approximate neighbors are projected on a tangent plane defined by their
principal components analysis. A planar Delaunay triangulation is constructed and defines
one-ring neighbors of mesh points which are used to build the connection between target mesh
nodes. The parameter required to define the number of nearest neighbors is k=0.012. We use
this parameter to estimate the tangential plane and bounding minimum and maximum values
(neighbors) in the range of [8:30]. A similar value of k has been used throughout experiments
in all shapes for computing the rings of approximate neighbors of the mesh points. In cyclic
connection, the value of connected nodes with its neighbor nodes is equal to 1. The
generated joint-skeleton of the target shape that is approximately similar to source
shape skeleton present in Fig. 9b. In addition, the obtained skeleton from the target
shape also generates skeleton joints to surface points mapping that can be directly
applicable to mesh skinning deformation.

Fig. 8 The extracted nodes of the target shape
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5 Results and discussions

Although, the extraction of a 1D curve-skeleton through mesh contraction gives a satisfactory
skeleton for single shape, but it does not always generate a robust skeleton for every pose of
the same shape. In Fig. 10 we compare the extracted skeleton of the target shape skeleton from
two approaches: one is the mesh contraction by applying topological and geometric refine-
ments and the other is BSC. In Fig. 10a it can be seen that the target shape skeleton in some
extent is off center and has the sharp bend of the bones. A post processing is needed to correct
the position of the skeletal joints. On the contrary, our result shown in Fig. 10b is much better.
The resulting skeleton remains consistent over the poses change of the source shape and
generates analogue skeletons of the target shape as shown in Fig. 9.

Fig. 9 Consistent skeleton extraction based on source shape skeleton. a Source shape, b Consistent skeleton of
target shape

Fig. 10 Comparison of our method and mesh contraction. a The result of mesh contraction. b Result of our
method
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Figure 11 gives more results of the skeleton extraction and comparisons of our approach to
the direct skeleton extraction of the target shape. We test our approach on two different
datasets: Vlasic et al. [42] and SCAPE: Shape Completion and Animation of People [3]. In
both datasets each single person performs multiple motions. The shapes in first column of
Fig. 11 are the source shapes with their extracted skeleton. The source shape skeletons are
extracted through geometric contraction, topological and geometric refinements. Automatic
generated skeletons of the target shapes by using BSC are present in second and fourth
columns of Fig. 11. The obtained skeleton of the target shape is consistent with the source
shape skeleton. The skeletons of the target shapes have an equal number of joints as the source
shape. They are well-centered and have similar hierarchy of the source shape skeleton joints.

Majority of the skeletonization methods may generate different skeletons for different
postures of the same shape. As shown in Fig. 11, the direct skeletons extraction approach
obtains different skeletons of the target shape with different poses. Those skeletons have
unequal number of joints, different joints hierarchy and do not match satisfactory position of
joints with its original shape. Based on BSC, our approach is able to extract consistent
skeletons of target shapes which are different poses of the source shape. And our approach
does not require any topological, geometrical and embedding refinement for every poses of
same shape.

Source shapes’ 
skeleton

Target shapes’ 
skeleton

Direct skeleton 
extraction result 

Target shapes’ 
skeleton

Direct skeleton 
extraction result

Fig. 11 Comparisons with other results
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There is no need to set approximation parameters for extracting a skeleton of same
shape with different poses. The results in Fig. 12 demonstrate the robustness of our
approach. The source skeleton joints Fig. 12a and our result Fig. 12c are consistent
despite of the position of the model’s pants. However, the result Fig. 12b obtained
through the direct skeleton extraction is not accurate due to the pants’ position in the
target pose is lower than that in the source shape. In the implementation, our
extraction of skeleton approach is performed in MATLAB. Therefore, it is not yet
optimized for speed. The resolution of the mesh in [42] and SCAPE [3] have 20 and
125 K polygons respectively. The extraction result will be more precise for meshes
with high resolution, but it will take slightly more time to establish the
correspondence.

6 Conclusion and future work

In this paper, we have proposed an automatic and pose-invariant approach to extract the
skeleton of an articulated human model based on BSC. We apply BSC to find the consistency
of geometric information between shapes. Based on the corresponding relationship between
the source and target shapes, the plausible skeleton of the target shape is extracted. Our
approach supports the reusability of the source skeleton from the same model. It does not
require any pre-processing to shapes, such as downsampling, mesh contraction, simplification
and etc. In the proposed solution, the skeletons of different poses of the target shapes are
computed instead of single shape.

The robustness of our proposed method is demonstrated through our tests on two well-
known datasets. Experiments have shown that our algorithm produces both effective and
accurate skeletons of the target shapes. Compared with the directly extracting method, our
approach performs better in term of consistency such as equal number of skeleton joints and
similar hierarchy between skeleton joints for a variety of target shapes. Furthermore, the
skeleton generated by our approach is efficient because it does not require post-processing
such as topological and geometric refinements. In the future we will investigate and study
more efficient and robust correspondence method so that the accuracy and consistency of the
skeleton extraction can be improved further.

Acknowledgments The research is partially supported by National Natural Science Foundation of China
(No.61170170 and 61170203) and the National Key Technology Research and Development Program of China
(2012BAH33F04).

Fig. 12 Consistency of skeleton point position. a Source skeleton, b the result of direct skeleton extraction
method, c the result of our method
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