
Multimed Tools Appl (2016) 75:13077–13091
DOI 10.1007/s11042-015-2594-5

Privacy-preserving public auditing for educational
multimedia data in cloud computing

Daeyeong Kim1 ·Hyunsoo Kwon1 ·
Changhee Hahn1 · Junbeom Hur2

Received: 20 December 2014 / Revised: 13 February 2015 / Accepted: 30 March 2015 /
Published online: 17 April 2015
© Springer Science+Business Media New York 2015

Abstract Nowadays, as distance learning is being widly used, multimedia data becomes an
effective way for delivering educational contents in online educational systems. To handle
the educational multimedia data efficiently, many distance learning systems adopt a cloud
storage service. Cloud computing and storage services provide a secure and reliable access
to the outsourced educational multimedia contents for users. However, it brings challeng-
ing security issues in terms of data confidentiality and integrity. The straightforward way
for the integrity check is to make the user download the entire data for verifying them. But,
it is inefficient due to the large size of educational multimedia data in the cloud. Recently
many integrity auditing protocols have been proposed, but most of them do not consider
the data privacy for the cloud service provider. Additionally, the previous schemes suffer
from dynamic management of outsourced data. In this paper, we propose a public auditing
protocol for educational multimedia data outsourced in the cloud storage. By using random
values and a homomorphic hash function, our proposed protocol ensures data privacy for
the cloud and the third party auditor (TPA). Also, it is secure against lose attack and tem-
per attack. Moreover, our protocol is able to support fully dynamic auditing. Security and

� Junbeom Hur
jbhur@korea.ac.kr

Daeyeong Kim
rlaeod@cau.ac.kr

Hyunsoo Kwon
khs910504@cau.ac.kr

Changhee Hahn
Mckinsey@cau.ac.kr

1 Department of Computer Science and Engineering, Chung-Ang University,
Seoul, Republic of Korea

2 Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea

mailto:jbhur@korea.ac.kr
mailto:rlaeod@cau.ac.kr
mailto:khs910504@cau.ac.kr
mailto:Mckinsey@cau.ac.kr

13078 Multimed Tools Appl (2016) 75:13077–13091

performance analysis results show that the proposed scheme is secure while guaranteeing
minimum extra computation costs.

Keywords Privacy preserving auditing · Fully dynamic auditing · Cloud computing ·
Homomorphic hash · Educational multimedia

1 Introduction

Nowadays, distance learning has become one of the rapidly growing trends for both the
students and educational institutions. It is an effective method of delivering educational
contents to remote users. As traditional distance learning provides a text or picture at the
designated time, students were only able to study during a fixed amount of time. Due to
rapid growth of the multimedia Web [17], distance learning has enabled students to study
without time and space constraints by using educational multimedia data. In addition, since
students can learn more effectively when the learning materials are presented in multimedia
data such as video, audio and text, utilization of multimedia data has become increasingly
common in learning systems. However, as the volume of educational multimedia data is
enriched, huge amounts of educational multimedia have been difficult to be handled in mul-
timedia Web. e,g., storing/editing/deleting the data. To handle the educational multimedia
data efficiently, distance learning systems are likely to use the cloud computing [10, 12].
Since, the cloud computing provides dynamically scalable infrastructure to support com-
puting power, storage and communication capabilities as services, it is suitable for distance
learning environments. Data users, that is educational contents owners, can easily access
and store educational multimedia data in the cloud storage. However, it also brings new and
challenging security issues in terms of confidentiality and integrity of the user’s outsourced
data. Since the cloud has full control of the stored educational multimedia data, a malicious
cloud may be able to perform attacks on the data so as to maintain reputation and financial
benefit. Therefore, the data user needs to check that educational multimedia data is correctly
stored in the cloud.

Since size of educational multimedia data in the cloud is very large, it is a very inefficient
in terms of the communication and computation overhead for a verifier, that is the data user
or owner, to retrieve entire data from the cloud and check the integrity of it. Therefore, to
save the computation and communication cost, a public auditing protocol, which enables
a third party auditor (TPA) to verify it on behalf of users is critically important. Recently,
many integrity public auditing schemes [1, 2, 5, 7, 8, 11, 13–16, 18–20] have been proposed
to check the integrity of the data without retrieving the whole data. These schemes perform
the partial integrity check by random sampling using challenge queries. Another issue is
supporting dynamic data operation for outsourced data in the cloud. Supporting dynamic
data is a one of the most challenging and practical requirements since the cloud data could
be dynamically updated during their lifetime, such as data insertion/deletion/modification.
Unfortunately, many schemes [1, 2, 8, 13] focus on static data and cannot support data
update. In addition, most of these schemes [1, 2, 5, 8, 11, 13–15] do not support the privacy
protection of data against the cloud. These schemes provide only the data privacy for the
TPA. If the data and index are encrypted to ensure data privacy for the cloud, they cannot
support fully dynamic data.

Multimed Tools Appl (2016) 75:13077–13091 13079

In this paper, we focus on the way to provide the data privacy and integrity for the
educational multimedia data in the cloud. We propose a public auditing scheme that sup-
ports fully dynamic data as well as data privacy against both the untrusted cloud server
and the TPA under the loss and tamper attacks [11] by using the random values and
homomorphic hash function [6, 9]. Specifically, in the proposed scheme, we allow the
data user to combine data block with random value which is not known to the cloud,
thereby providing data privacy against the cloud. Similarly, we allow the cloud to combine
homomorphic authenticator with random value which is not known to the TPA, thereby
providing data privacy against the TPA. Since the TPA checks the integrity using homo-
morphic property, the TPA cannot learn any information about the cloud data during the
auditing process. On the basis of the security and efficiency analysis results, the pro-
posed scheme is secure against the attacks while guaranteeing minimum extra computation
costs.

The rest of this paper is organized as follows. We overview the related work in Section 2,
and we introduce the system and threat model, and our design goal in Section 3. Then
we provide the preliminaries and the detailed description of our scheme in Section 4. In
Section 5, we give security and performance analysis. Finally we conclude our work in
Section 6.

2 Related work

Ateniese et al.’s [1] proposed Provable Data Possession (PDP) that allows public auditing
without retrieving entire data. They utilize the RSA-based homomorphic linear authentica-
tor (HLA). However, this scheme does not consider dynamic data. To support dynamic data,
Ateniese et al.’s [2] designed an improved PDP scheme using symentric keys. However,
their scheme is limited number of verification challenge queries. And it does not support
fully dynamic data operation. i.e., block insertion cannot be supported. In addition, these
two schemes did not consider data privacy. Thus, these schemes may leak users’ data con-
tents to the cloud and the TPA. Juels and Kaliski [8] defined another scheme called proof of
retrievability (POR) that ensures both possession and retrievability of data file by using error
correcting. However, the number of challenge queries is fixed. In addition, public audit-
ing is not supported in their scheme. To support public auditing, Shacham and Waters [13]
proposed an improve POR scheme based on BLS (Boneh-Lynn-Shacham) signature [4]. It
provides proof of security for the POR scheme. However this scheme only consider static
data files. Erway et al.’s [5] designed a dynamic provable data possession (DPDP) scheme
based on rank-based authenticated skip list. Wang et al.’s [15] proposed a public auditing
scheme that combines HLA with Merkle hash tree to support fully dynamic data. However,
these schemes suffer from weak privacy against the cloud and the TPA. In other related
works, Wang et al.’s [14] proposed a public auditing scheme for data privacy against the
TPA using random mask technique. Liu et al.’s [11] proposed a secure and efficient public
auditing scheme using homomorphic hash function [6, 9]. However, their protocols did not
provide data privacy at the cloud. Thus, these schemes may leak users’ data contents to the
cloud. To provide the data privacy against the cloud, Zhu et al.’s [19] proposed a scheme
that supports data integrity auditing in hybrid cloud. This scheme is suitable for provid-
ing integrity of the data users’ important data. Govinda et al.’s [7] proposed a scheme that

13080 Multimed Tools Appl (2016) 75:13077–13091

guarantees both the data integrity and confidentiality using somewhat homomorphic encryp-
tion. Thus, this protocol considers the data privacy against both the cloud and the TPA.
However, this protocol did not support data dynamics including block insertion and deletion
because the index and data block are encrypted.

3 Problem statement

3.1 System model

As illustrated in Fig. 1, the system model includes three entities: (1) Users who have educa-
tional multimedia data files to be stored in the cloud. (2) Cloud which provides data storage
services and computing resources for user data. (3) TPA that checks the integrity of data
stored in the cloud on behalf of users upon request. Our scheme consists of six algorithms.
(Setup, KeyGen, SigGen, Challenge, ProofGen, ProofVerify)

A user is given a public key and a secret key by executing KeyGen, and generates a
signature by using SigGen. The user divides original data into multiple blocks of data before
storing it in the cloud. And the user sends the blocks and the corresponding signatures to
the cloud. The user deletes data blocks and signatures from the local storage. When the
user wants to verify the stored data in the cloud, the user sends auditing request to the TPA.
After receiving the auditing request from the user, the TPA generates a challenge message
by executing Challenge. Then, the TPA sends a challenge message to the cloud server. The
cloud server will derive a proof from the stored data by executing ProofGen. The TPA
verifies the correctness of the proof by ProofVerify.

3.2 Threat model

In this paper, we assume that the cloud is not fully trusted in terms of the data confidentiality
and integrity, and the TPA is semi-trusted such that it is trusted for auditing process but
untrusted for data confidentiality.

Fig. 1 The system model of the cloud data storage service

Multimed Tools Appl (2016) 75:13077–13091 13081

Data integrity threats Malicious cloud may discard the data that have not been accessed
or rarely accessed, or tampered the data so as to maintain reputation. It is called loss attack
and tamper attack respectively [11].

Data privacy threat During the auditing process, the cloud and the TPA may try to reveal
the users information. We also assume that there is no collusion between the cloud and the
TPA.

3.3 Design goal

The proposed scheme should achieve the following properties: (1) Public auditing: The
TPA is able to check the integrity of data without retrieving the whole data. (2) Privacy
preserving: The cloud and the TPA cannot obtain users plain data during the auditing pro-
cess. (3) Fully dynamic data: The user is able to perform block-level operations on the
outsourced data including block insertion, deletion and modification.

4 Public auditing scheme

4.1 Preliminaries

4.1.1 Bilinear maps

Let G1 and G2 be two multiplicative cyclic groups of order p. g is the generator of G1. A
bilinear mapping e : G1 × G1 → G2 must satisfy the following properties:

– Bilinearity: e(ua, vb) = e(u, v)ab for all u, v ∈ G1 and a, b ∈ Zp.
– Non-degeneracy: There are u, v ∈ G1 such that e(u, v) �= 1.
– Computability: There is an efficient algorithm to compute e(u, v) for any u, v ∈ G1.

4.1.2 Homomorphic hash function

Homomorphic hash function [6, 9] is hash function satisfying:

Homomorphism For any two message m1, m2 and scalars α1, α2, it holds

H(α1m1 + α2m2) = H(m1)
α1 · H(m2)

α2 .

Collision resistance There is no probabilistic polynomial-time (PPT) adversary capable
of forging (m1, m2, m3, α1, α2) satisfying both

m3 �= α1m1 + α2m2, and H(m3) = H(m1)
α1 · H(m2)

α2 .

4.2 Proposed scheme

In the section, we present our proposed scheme that ensures data privacy against both the
cloud and the TPA. In our protocol, since the user and the cloud choose random values and
combine them with date file F and proof respectively, contents of data fila F and proof

cannot be exposed. To perform the operation of the homomorphic hash function, our scheme

13082 Multimed Tools Appl (2016) 75:13077–13091

uses the signature of Liu et al.’s scheme [11]. Homomorphic hash function can support
the operations that is required for the verification. Our scheme consists of six algorithms;
Setup, KeyGen, SigGen, Challenge, ProofGen, ProofVerify and are defined as follows:

Setup To store user data file F in the cloud, F is divided into n blocks as m1, . . . mn, mi ∈
Zp

∗

KeyGen(1λ) →{Sk,Pk} A user chooses a large prime p randomly. Define G1 and G2 to
be multiplicative cyclic groups with order p. Let g be a generator of G1. H : Zp

∗ → G1 is a
homomorphic hash function. The user chooses Zp

∗ → x randomly, and computes g ∈ G1.
Public key is Pk={g, v} and secret key is Sk = {x}.

SigGen(F, Sk) → {F ′
, σ } Define the identity of the file F to be id ∈ Zp

∗ for each
i ∈ {1, . . . , n}. Then, the user computes the signature as

σi ← (
H(id||i)H(mi))

x
) ∈ G1

To protect data privacy against the cloud, the user chooses a n random value rn ← Zp
∗.

Then, the user combines random r-values with each block as F
′ = {m1 + r1, . . . , mn + rn}.

Then, the user sends F
′
and the corresponding signature {σ1, . . . , σn} to the cloud. Finally

the user deletes the data file F from local storage.

Challenge(request, index table)→ {F ′
, σ } To verify the integrity of outsourced data,

the user sends auditing request and the index table to the TPA which includes index, random
r-value and r-index the user selected. Subsequently, the TPA defines the subset of set [1,n]
to be I = {sj }(1 ≤ j ≤ c) and s1 ≤ . . . ≤ sc. For each i ∈ I , the TPA chooses a random
νi ← Zp

∗, and generates chal={i, νi}i∈I as a challenge message. Then, the TPA sends chal

to the cloud.

ProofGen({mi + ri}i∈I , {σi}i∈I , chal, Pk) → {proof } Upon receiving the chal, the
cloud computes as

μ =
sc∑

i=si

νi(mi + ri) + r
′
, σ =

sc∏

i=s1

σ
νi

i .

To prevent the TPA from learning the data content stored in the cloud during the
auditing process, the cloud chooses a random r

′ ← Zp
∗ the cloud combines homomor-

phic authenticator with random r
′
-value. Then, the cloud sends proof ={σ,μ,H(r

′
)} to

the TPA.

ProofVerify(proof , Pk, r) The TPA combines the challenge message with r-value
received from the user as H(

∑sc
i=s1

νiri)
−1. Upon receiving proof , the TPA can verify the

integrity as a follow:

e(σ, g)
?= e

⎛

⎜
⎝

sc∏

i=s1

H(id||i)νi · H(μ) · H

⎛

⎝
sc∑

i=s1

νiri

⎞

⎠

−1

· H
(
r ′)−1

, v

⎞

⎟
⎠ . (1)

Multimed Tools Appl (2016) 75:13077–13091 13083

by using the properties of the homomorphic hash properties, the correctness of above
equation can be shown as follows:

e(σ, g) = e

⎛

⎝
sc∏

i=s1

σ
νi

i , g

⎞

⎠

= e

⎛

⎝
sc∏

i=s1

(H(id||i)H(mi))
νi , gx

⎞

⎠

= e

⎛

⎝
sc∏

i=s1

H(id||i)νi ·
sc∏

i=s1

H(mi)
νi , v

⎞

⎠

= e

⎛

⎜
⎝

sc∏

i=s1

H(id||i)νi · H

⎛

⎝
sc∑

i=s1

νimi

⎞

⎠ · H

⎛

⎝
sc∑

i=s1

νiri

⎞

⎠ · H

⎛

⎝
sc∑

i=s1

νiri

⎞

⎠

−1

· H
(
r ′) · H

(
r ′)−1

, v)

= e

⎛

⎜
⎝

sc∏

i=s1

H(id||i)νi · H

⎛

⎝
sc∑

i=s1

νi(mi + ri)

⎞

⎠ · H

⎛

⎝
sc∑

i=s1

νiri

⎞

⎠

−1

· H
(
r ′) · H

(
r ′)−1

, v

⎞

⎟
⎠

= e

⎛

⎜
⎝

sc∏

i=s1

H(id||i)νi · H

⎛

⎝
sc∑

i=s1

νi(mi + ri) + r ′
⎞

⎠ · H

⎛

⎝
sc∑

i=s1

νiri

⎞

⎠

−1

· H
(
r ′)−1

, v

⎞

⎟
⎠

= e

⎛

⎜
⎝

sc∏

i=s1

H(id||i)νi · H(μ) · H

⎛

⎝
sc∑

i=s1

νiri

⎞

⎠

−1

· H
(
r ′)−1

, v

⎞

⎟
⎠ .

4.3 Dynamic update

We show how to design our proposed scheme to support fully dynamic data including block
level operations of insertion, modification and deletion. Figures 2 and 3 show some exam-
ples which demonstrate the changes using index table. Figure 2a describes that the cloud
stores the block m

′
2 + r

′
2 and signature σ

′
2. Figure 2b shows that the TPA inserts a new

Fig. 2 Block insertion process using index table

13084 Multimed Tools Appl (2016) 75:13077–13091

Fig. 3 Block modification and deletion process using index table

random r-value r
′
2 in the index table. Figure 3a describes that the cloud replaces m1+r1 and

deletes m3+r3. Figure 3b shows that the TPA deletes a random r-value r3 in the index table.

4.3.1 Block insertion

When a user inserts data, the user must choose a new random r-value rx , add it to the
corresponding block mx for 1 ≤ x ≤ n, and computes the signature σx . Then, the user
sends an index information i, σx and mx + rx to the cloud. Upon receiving these, the cloud
stores σx and mx + rx on the index i, and moves all the subsequent blocks of index, say
from j to j + 1. Also, the user sends an update message which includes i, r-value and r-
index, to the TPA so as to update the r-value and r-index in the index table stored in the
TPA.

4.3.2 Block modification

When a user wants to modify a specific block of index i in the cloud, the user modifies the
block mi for 1 ≤ i ≤ n to mi

∗ and and adds existing ri-value to m∗
i , and generates the

signature σ ∗
i for mi

∗. Then, the user sends an index information i, σ ∗
i and mi

∗ + ri to the
cloud. Upon receiving these, the cloud replaces mi + ri , σi with mi

∗ + ri , σ ∗
i .

4.3.3 Block deletion

Block deletion is the opposite operation of block insertion. When a user wants to delete data
block of index i from the cloud, the user sends the index information i to the cloud. Then,
the cloud deletes the corresponding block and signature, and moves all the blocks of index
j into j − 1, for j > i. Also, the user sends update message to the TPA so as to update the
the r-value and r-index in the index table stored in the TPA.

5 Security and performance analysis

5.1 Security analysis

In this section, we provide a security analysis for our scheme into two parts. The first
part deals with data integrity guarantee. The second part deals with data privacy guarantee.
Security of the proposed scheme is based on the computational Diffie-Hellman assumption
(CDH) [3]. The following definition recalls CDH.

Multimed Tools Appl (2016) 75:13077–13091 13085

Definition 1 CDH problem states that, given g, ga, gb ∈ G, it is computationally
intractable to compute the value as gab.

Data integrity guarantee We need to prove that the untrusted cloud cannot loss and
tamper the users’ data. This is equivalent to prove the Theorem 1.

Theorem 1 The untrusted cloud cannot generate a forgery of an auditing proof.

Proof Our proof is based on Liu et al.’s scheme [11].
Suppose A malicious cloud losses the user’s data mj + rj , and tries to pass an auditing

from the TPA.
The malicious cloud outputs Proof ={σ ∗, μ∗, H(r∗)} as

σ ∗ =
sc∏

i=s1,i �=j

σ
νi

i , μ∗ =
sc∑

i=s1,i �=j

νi(mi + ri) + r∗.

Since, the proof of malicious cloud can also satisfy the (1), the following equation
holds.

e
(
σ ∗, g

) = e

⎛

⎜
⎝

sc∏

i=s1

H(id||i)νi · H
(
μ∗) · H

(
r∗)−1 · H

⎛

⎝
sc∑

i=s1

νiri

⎞

⎠

−1

, v

⎞

⎟
⎠ . (2)

If we multiply (2) by the expected signature σ
νj

j which is derived from (1), the following
equation holds.

e
(
σ ∗σνj

j , g
)

= e

⎛

⎝
sc∏

i=s1

H(id||i)νi · H
(
μ∗) · H

(
r∗)−1 · H

(
νj

(
mj + rj

))

· H

⎛

⎝
sc∑

i=s1

νiri

⎞

⎠

−1

, v

⎞

⎟
⎠ . (3)

Then, we divide (3) by (2), we obtain:

e
(
σ

νj

j , g
)

= e
(
H

(
νj (mj + rj)

)
, v

)
. (4)

If (4) is succeeds, we can compute H(id||i)x in forged signature σ ∗, it is a violation of the
assumption the assumption that the CDH assumption is hard.

Likewise, suppose A malicious cloud tampers the users data mj + rj to
(
mj + rj

)∗, the
user’s signature σj to σ ∗

j , and tries to pass an auditing from the TPA.
The malicious cloud outputs Proof ={σ ∗, μ∗, H (r∗)} as

σ ∗ =
sc∏

i=s1,i �=j

σ
νi

i ·
(
σ ∗

j

)νj

, μ∗ =
sc∑

i=s1,i �=j

νi (mi + ri) + r∗ + νj

(
mj + rj

)∗
.

Since, the proof of malicious cloud can also satisfy the (1), the following equation holds.

e
(
σ ∗, g

) = e

⎛

⎜
⎝

sc∏

i=s1

H(id||i)νi · H(μ∗) · H
(
r∗)−1 · H

⎛

⎝
sc∑

i=s1

νiri

⎞

⎠

−1

, v

⎞

⎟
⎠ . (5)

13086 Multimed Tools Appl (2016) 75:13077–13091

When we multiply (5) by the signature
(
σjσ

∗−1
j

)νj

, we obtain:

e
(
σ ∗ (

σjσ
∗−1
j

)νj

, g
)

= e

⎛

⎝
sc∏

i=s1

H(id||i)νi · H
(
μ∗) · H

(
r∗)−1 · H

(
νj

(
mj + rj

))

·H (
νj

(
mj + rj

)∗)−1 · H

⎛

⎝
sc∑

i=s1

νiri

⎞

⎠

−1

, v

⎞

⎟
⎠ . (6)

When we divide (6) by (5), we obtain:

e
(
σjσ

∗−1
j , g

)
= e

(
H

(
mj + rj

) · H
((

mj + rj
)∗)−1

, v
)νj

. (7)

If (7) is succeeds, we can compute H(id||i)x in forged signature σ ∗, it is a violation
of the assumption that the CDH assumption is hard. In short, if success probability of
the loss and tamper attacker in our scheme is non-negligible, it solves the CDH problem.
This implies that the attacker cannot forge signature σi in the proposed scheme. In addi-
tion, The TPA combines the challenge message with r-value received from the user as

H
(∑sc

i=s1
νiri

)−1
to verify the proof in ProofVerify. Accordingly, when the r-value of

data file F
′
in the cloud is equal to r-value in the TPA, the TPA can verify the proof . Thus,

if the cloud forges the data, r-value of data file F
′
in the cloud is changed. Therefore, the

TPA cannot calculate the correct verification result for the proof .

Data privacy guarantee We want to make sure that the cloud and the TPA cannot derive
user’s data information during auditing process. This is equivalent to Theorem 2.

Theorem 2 During auditing process, no information of μ will be leaked to the TPA and no
information of data file F will be leaked to the cloud

Proof We show that the TPA and the cloud cannot derive information from μ. Since the
data is hashed in proof and obfuscated by random r

′
as μ = ∑sc

i=si
νi(mi + ri) + r

′
,

where r
′
is chosen randomly by the cloud. In addition, r

′
is unknown to the TPA. There-

fore, the TPA cannot learn user data. Likewise, Since user data is obfuscated as F
′ =

{m1 + r1, . . . , mn + rn}, where r is random value chosen by the user. In addition, r is
unknown to the cloud. Thus, the cloud cannot learn user data.

5.2 Performance analysis

Communication cost As shown in Table 1, we analyze the communication cost at data
auditing process. The size of the challenge message chal={i, νi}i∈I is c · (|s| + |p|) bits,
where c is the number of select blocks, |s| is the size of set {s1, . . . , sc} and |p| is the size
of an element of Zp. The size of an auditing proof is 2|p| + c · (|id|) bits, where |id| is
the size of a block identifier. Communication costs of between the cloud and the TPA are
the same as the previous scheme (Wang et al.’s scheme [14] and Liu et al.’s scheme [11]).
However, the additional communication cost occurs between the user and the TPA as n(|p|)
which is necessary to ensure the security.

Multimed Tools Appl (2016) 75:13077–13091 13087

Table 1 Communication costs

Wang et al. [10] Liu et al. [11] Proposed protocol

TPA ↔ Cloud c · (|s| + |p|) c · (|s| + |p|) c · (|s| + |p|)
+2|p| + c · (|id|) +2|p| + c · (|id|) +2|p| + c · (|id|)

User ↔ TPA - - n(|p|)
Total c · (|id| + |s| + |p|) c · (|id| + |s| + |p|) c · (|id| + |s| + |p|)

+2|p| +2|p| +(n + 2)|p|

Computation cost We will focus on the additional computation overhead as compared to
Wang et al.’s scheme [14] and Liu et al.’s scheme [11]. The experiment is conducted using
JAVA in windows 7 with an Intel Core i7 processor running at 3.4 GHz, 8GB of RAM.
Computation costs compared to the previous scheme [11, 14] are summarized in Table 2.
Let Hash is hash value, Add is additions, Mult is multiplications, Exp is exponentiations,
MultExp is

∏
exponentiation and Pair is paring. Then, suppose there are c random blocks

specified in the chal during auditing process. The size of block can be set 20 byte, and c

is set to be 300 or 460 for high assurance of auditing process. According to Wang et al.’s
scheme [14], if the server is missing 1 % of the data file F , the TPA only needs to audit for
c = 300 or 460 randomly chosen blocks of data file F in order to detect misbehavior with
probability lager than 95 % or 99 %, respectively.

Under this setting, we provide the quantify of additional computation cost into the user
side and the TPA side. On the user side, additional computation costs of user are nAdd

in SigGen. As shown in Fig. 4, we implemented the additional computation cost on the
user side. The time of addition reaches 8.1 sec for data file with size 1GB, and it increases
linearly. It is a small additional computation cost for ensuring the security. Similarly, on the
TPA side, additional computation costs of the TPA are 1Hash, (c+1)Mult in ProofVerify.
According to previous work [9], we conducted a benchmarking for hash generation time.
As a result, when c is 300 and 460, homomorphic hash generation time is 0.509ms and
0.780ms respectively. It require computationally negligible overhead. Thus, our scheme
preserves data privacy against both the cloud and the TPA while requiring a small amount
of additional computation overhead.

Table 2 Computataion costs

Wang et al.’s scheme Liu et al.’s scheme Proposed protocol

SigGen 2Hash 2Hash 2Hash + n Add

ProofGen 1Hash + c Add 1Hash + c Add 1Hash + c Add

+(c + 1) Mult + 1Exp +c Mult + 1Exp +c Mult + 1Exp

+c MultExp +c MultExp +c MultExp

ProofVerify (c + 1) Hash + 2Mult (c + 1) Hash + 2Mult (c + 2) Hash

+2Exp + c MultExp +1Exp + c MultExp +(c + 3) Mult + 2Exp

+2pair +2pair +c MultExp + 2pair

13088 Multimed Tools Appl (2016) 75:13077–13091

Fig. 4 Additional computation cost on the user side

6 Conclusion

In this paper, we propose a privacy preserving public auditing scheme for educational mul-
timedia data without retrieving the whole data. The proposed scheme is secure against the
loss attack and tamper attack. Also, both the cloud and the TPA could not learn user data
content by utilizing the random value and homomorphic hash function. Furthermore, our
proposed scheme is able to support fully dynamic data. Our scheme ensures data privacy
with a small amount of additional computation costs.

Acknowledgments This work was supported by the National Research Foundation of Korea(NRF) grant
funded by the Korea government(MSIP) (No. 2013R1A2A2A01005559). This research was supported by
the Chung-Ang University Research Scholarship Grants in 2014.

References

1. Ateniese G, Burns R, Curtmola R, Herring J, Kissner L, Peterson Z, Song D (2007) Provable data
possession at untrusted stores. In: Proceedings of ACM CCS, pp 598–610

2. Ateniese G, Pietro RD, Mancini LV, Tsudik G (2008) Scalable and efficient provable data possession.
In: Proceedings of SecureComm, pp 1–10

3. Bao F, Deng R, Zhu H (2003) Variations of Diffie-Hellman problem. Inf Commun SecurityICICS:301–
312

4. Boneh D, Lynn B, Shacham H (2001) Short signatures from the weil pairing, ASIACRYPT 2001. LNCS
2248:514–532

5. Erway C, Kupcu A, Papamanthou C, Tamassia R (2009) Dynamic provable data possession. In:
Proceedings of CCS, pp 213–222

6. Gennaro R, Katz J, Krawczyk H, Rabin T (2010) Secure network coding over the integers. Public key
cryptography pkc, Springer LNCS, 6056, pp 142–160

7. Govinda Y, Vijaya G (2013) Complete privacy preserving auditing for data integrity in cloud comput-
ing. IEEE international conference on trust, security and privacy in computing and communications
(TrustCom), pp 1559–1566

Multimed Tools Appl (2016) 75:13077–13091 13089

8. Juels A, Kaliski BS (2007) PORs: proofs pf retrievability for large files. In: Proceedings of ACM CCS,
pp 584–597

9. Krohn M, Freeman M, Mazieres D (2004) On-the-fly verification of rateless erase codes for efficient
content distribution. In: Proc. IEEE symposium on security and privacy

10. Li J Study on the development of mobile learning promoted by cloud computing (2010) information
engineering and computer science (ICIECS). Second international conference, pp 1–4

11. Liu H, Zhang P, Liu J (2013) Public data integrity verification for secure cloud storage. J Netw:373–380
12. Masud M, Huang X (2012) A novel approach for adopting cloud-based e-learning system. In:

IEEE/ACIS 11th international conference on computer and information science (ICIS), pp 37–42
13. Shacham H, Waters B (2008) Compact proofs of retrievability. In: Proc. ASIACRYPT. Springer-Verlag,

pp 90–107
14. Wang C, Wang Q, Ren K, Lou W (2010) Privacy preserving public auditing for data storage security in

cloud computing. IEEE InfoCom:1–9
15. Wang Q, Wang C, Ren K, Lou W (2011) Enabling public auditability and data dynamics for storage

security in cloud computing. IEEE Trans Parallel Distrib Syst:847–859
16. Yang K, Jia X (2013) An efficient and secure dynamic auditing protocol for data storage in cloud

computing. IEEE Trans Parallel Distrib Syst 24(9):1717–1726
17. Yu H, Pedrinaci C, Dietze S, Domingue J (2012) Using linked data to annotate search educational video

resources for supporting distance learning. IEEE Trans Learn Technologies:130–142
18. Zeng K (2008) Publicly verifiable remote data integrity. In: Proceedings of the international conference

on information and communications security, ICICS, pp 419–434
19. Zhu Y, Wang H, Hu Z, Ahn GJ, Hu H, Yau SS (2010) Efficient provable data possession for hybrid

clouds. In: Proceedings of the 17th ACM conference on computer and communications security, pp 756–
758

20. Zhu Y, Wang H, Hu Z, Ahn GJ, Hu H, Yau SS (2011) Dynamic audit services for integrity verification
of outsourced storage in clouds. In: the proceedings of ACM SAC, pp 1550–1557

Daeyoung Kim received the B.S. degree of computer science and engineering from Daejeon University,
Daejeon, Korea, in 2014. He is currently pursuing the M.S. degree in the School of Computer Science
and Engineering, Chung-Ang University, Korea. His research interests include information security, mobile
computing security, cyber security, and applied cryptography.

13090 Multimed Tools Appl (2016) 75:13077–13091

Hyunsoo Kwon received the B.S. degree of computer science and engineering from Chung-Ang Univer-
sity, Seoul, Korea, in 2014. He is currently pursuing the M.S. degree in the School of Computer Science
and Engineering, Chung-Ang University, Korea. His research interests include information security, mobile
computing security, cyber security, and applied cryptography.

Changhee Hahn received the B.S. degree of computer science and engineering from Chung-Ang Univer-
sity, Seoul, Korea, in 2014. He is currently pursuing the M.S. degree in the School of Computer Science
and Engineering, Chung-Ang University, Korea. His research interests include information security, mobile
computing security, cyber security, and applied cryptography.

Multimed Tools Appl (2016) 75:13077–13091 13091

Junbeom Hur received the B.S. degree from Korea University, Seoul, South Korea, in 2001, and the M.S.
and Ph.D. degrees from the Korea Advanced Institute of Science and Technology (KAIST) in 2005 and
2009, respectively, all in Computer Science. He was with the University of Illinois at Urbana-Champaign as
a postdoctoral researcher from 2009 to 2011. He was with the School of Computer Science and Engineering
at the Chung-Ang University, South Korea as an Assistant Professor from 2011 to 2015. He is currently
an Assistant Professor with the Department of Computer Science and Engineering at the Korea University,
South Korea. His research interests include information security, cloud computing security, mobile security,
and applied cryptography.

	Privacy-preserving public auditing for educational multimedia data in cloud computing
	Abstract
	Introduction
	Related work
	Problem statement
	System model
	Threat model
	Data integrity threats
	Data privacy threat

	Design goal

	Public auditing scheme
	Preliminaries
	Bilinear maps
	Homomorphic hash function
	Homomorphism
	Collision resistance

	Proposed scheme
	Setup
	KeyGen(1) {Sk,Pk}
	SigGen(F, Sk) {F',}
	Challenge(request, index table){F', }
	ProofGen({mi+ri}i I, {i}i I, chal, Pk) {proof}
	ProofVerify(proof, Pk, r)

	Dynamic update
	Block insertion
	Block modification
	Block deletion

	Security and performance analysis
	Security analysis
	Data integrity guarantee
	Data privacy guarantee

	Performance analysis
	Communication cost
	Computation cost

	Conclusion
	Acknowledgments
	References

