
Multimed Tools Appl (2016) 75:6207–6235
DOI 10.1007/s11042-015-2567-8

Secret sharing approach for securing cloud-based
pre-classification volume ray-casting

Manoranjan Mohanty1 ·Wei Tsang Ooi2 ·
Pradeep K. Atrey3

Received: 25 September 2014 / Revised: 11 February 2015 / Accepted: 12 March 2015
Published online: 31 March 2015
© Springer Science+Business Media New York 2015

Abstract With the evolution in cloud computing, cloud-based volume rendering, which
outsources data rendering tasks to cloud datacenters, is attracting interest. Although this
new rendering technique has many advantages, allowing third-party access to potentially
sensitive volume data raises security and privacy concerns. In this paper, we address these
concerns for cloud-based pre-classification volume ray-casting by using Shamir’s (k, n)
secret sharing and its variant (l, k, n) ramp secret sharing, which are homomorphic to addi-
tion and scalar multiplication operations, to hide color information of volume data/images
in datacenters. To address the incompatibility issue of the modular prime operation used
in secret sharing technique with the floating point operations of ray-casting, we consider
excluding modular prime operation from secret sharing or converting the floating number
operations of ray-casting to fixed point operations – the earlier technique degrades security
and the later degrades image quality. Both these techniques, however, result in significant

� Manoranjan Mohanty
manoranjan.jnu@gmail.com

Wei Tsang Ooi
ooiwt@comp.nus.edu.sg

Pradeep K. Atrey
patrey@albany.edu

1 Security Lab, SICS Swedish ICT, Kista, Sweden

2 Department of Computer Science, National University of Singapore, Singapore, Singapore

3 Department of Computer Science, University at Albany - State University of New York, Albany,
NY, USA

/

mailto:manoranjan.jnu@gmail.com
mailto:ooiwt@comp.nus.edu.sg
mailto:patrey@albany.edu

6208 Multimed Tools Appl (2016) 75:6207–6235

data overhead. To lessen the overhead at the cost of high security, we propose a modi-
fied ramp secret sharing scheme that uses the three color components in one secret sharing
polynomial and replaces the shares in floating point with smaller integers.

Keywords Multimedia security · Shamir’s secret sharing · Cloud-based imaging · Volume
ray-casting

1 Introduction

With the advances in cloud computing, organizations are outsourcing 3D volumetric data
rendering tasks to third-party cloud datacenters [12, 21, 22, 25]. To this end, datacen-
ters are being used for extracting iso-surfaces and rendering the extracted iso-surfaces
in the case of indirect volume rendering [12, 25], and performing volume ray-casting in
the case of the direct volume rendering [21, 22]. Compared to conventional server-side
rendering, such cloud-based rendering is more scalable, more economical, offers better
computing resources, and can produce lower visualization latency by performing rendering
in a datacenter closer to the client location.

Security and privacy, however, becomemajor issues in cloud-based rendering. Disclosing
important data/image to a third-party cloud provider leads to the concerns of confiden-
tiality, integrity, and availability [15]. For example, an adversary can access a datacenter
that stores medical data/image of patients and misuse the information in several ways. The
adversary can: (i) sell the disease information to interested parties such as insurance com-
panies; (ii) modify a medical image to provide misleading information to doctors; (iii) leak
the medical information of a prominent person to the public and media. Due to these poten-
tial threats, laws, such as the HIPPA act in the USA, the PIPED act in Canada, and the
Data Protection Directive in European countries, are enacted to protect the information of
their citizens.

One can protect these personal volumetric data from datacenters by hiding them with a
cryptosystem. To render these hidden volumetric data, however, the cryptosystem must be
homomorphic to the rendering operations so that the rendered images can be recovered from
the hidden image(s). In other words, if the cryptosystem hides secret volume data V with an
operation H(·), a datacenter renders the data with an operation R(·), and a user recovers the
secret rendered image from the hidden rendered image R(H(V)) with an operation H−1(·),
then the condition

R(V) ≈ H−1(R(H(V)))

must hold. To our knowledge, there is no cryptosystem that can fulfill this requirement
with acceptable overhead [19]. Somewhat homomorphic cryptosystems, which can per-
form certain homomorphic operations such as addition and scalar multiplication with low
overhead, however, are available [2, 10]. Among the main two types of somewhat homomor-
phic cryptosystems: (i) secret sharing-based schemes, and (ii) public key encryption-based
schemes, secret sharing-based schemes can provide better data confidentiality [1]. There-
fore, secret sharing is often used to hide highly important information such as cryptographic
keys [9], military data [5] etc. Furthermore, secret sharing schemes, without using an addi-
tional cryptosystem, can simultaneously provide data confidentiality, data integrity, and data
availability. Among the secret sharing schemes, Shamir’s secret sharing is commonly used

Multimed Tools Appl (2016) 75:6207–6235 6209

since it is more efficient than other secret sharing schemes such as Blakley’s secret sharing
and Chinese Reminder Theorem-based secret sharing schemes [16].

To address the security and privacy concerns, this paper proposes a framework for hiding
color information in cloud-based volume rendering. We focus on pre-classification volume
ray-casting (or its variant) as the data rendering technique (operation R) and based our cryp-
tosystem (H and H−1) on Shamir’s secret sharing [24]. Our framework hides the color
information of 3D volume data, typically used to annotate important information such as
disease information [7]. We do not hide opacities, which can disclose shape of the 3D object.
We assume that discloser of the shape divulge little confidential information in the absence
of colors.

The core idea of the proposed framework is to use Shamir’s secret sharing to create n
shares of the volume data at the server, and send each share volume (i.e., share of secret
volume) to a datacenter. The datacenter, upon receiving a rendering request, then renders
a share image (which colors are hidden) using pre-classification volume ray-casting, and
sends the rendered image to the client. The client then recovers the secret image from at
least k share images from k datacenters. The use of Shamir’s secret sharing in conjunc-
tion with volume ray-casting, however, introduces a new challenge as the modular prime
operation of secret sharing is incompatible with the floating point operation of volume
ray-casting.

We can address this incompatibility issue with two approaches: either (i) exclude
modular prime operation from Shamir’s secret sharing [8, 17], or (ii) convert the float-
ing point operation of pre-classification volume ray-casting to fixed point operations [3].
We have previously published the former approach, called Secure Rendering by Mod-
ification of Shamir’s Secret Sharing (SR-MSSS) [17]. SR-MSSS is less secure than
Shamir’s Secret Sharing, as excluding the modular prime operation means that it is
not operating in a finite field, and is therefore not perfectly secure (i.e., it can lose
some information about the secret color to datacenters). On the other hand, the latter
approach, called Secure Rendering by Modification of Pre-classification Volume Ray-
casting (SR-MPVR), can introduce rounding error that can lead to loss of information in the
rendered image.

Both these techniques create three different color shares for the red, green, and blue color
components of the 3D volumetric data. Further, representing the share of a color component
by either a float or by a large integer incurs high data overhead. For applications requiring
minimal overhead at the cost of security, we propose a third technique called Secure Ren-
dering by Ramp Secret Sharing (SR-RSS) that improves upon SR-MSSS by first replacing
modified Shamir’s secret sharing with a modified (3, 4, 5) ramp secret sharing to create only
one share for red, green, and blue color, and then restricting the value of a share (which is a
float) to a smaller number and representing it with an integer.

Experiments and analyses show that all of our three approaches hide important color
information in datacenters and incur insignificant computation overhead. The data over-
head, image quality, and the level of security of these techniques, however, differ with
the choice of the technique. SR-MPVR provide perfect secrecy, but incurs significant
data overhead and renders lossy image. SR-MSSS renders lossless image, but loses some
information about the secret to datacenters and incurs significant data overhead. Finally,
SR-RSS incurs the lowest overhead among the three, but is the least secure and renders
lossy image.

There are three major contributions of this paper.

6210 Multimed Tools Appl (2016) 75:6207–6235

1. First, we integrate Shamir’s secret sharing with the pre-classification volume ray-
casting such that the color information of data/image is hidden from the rendering site.
Pre-classification volume ray-casting consists of a set of primitive operations such as
addition, multiplication, scalar multiplication, division, exponentiation etc. Therefore,
integration of Shamir’s secret sharing, which is homomorphic to only addition and
scalar multiplication, to the rendering pipeline is challenging. We address this challenge
by pre-processing the non-homomorphic operations of the ray-casting algorithm, and
by adjusting the rendering such that color rendering can be realized only by additions
and scalar multiplications.

2. Second, we modify either the Shamir’s secret sharing or the pre-classification volume
ray-casting to make them compatible with each other. We analyze the loss in security
due to the modification of secret sharing and the loss in image quality due to
the modification of volume ray-casting, and show that both these losses can be
acceptable.

3. Finally, we optimize our schemes, and provide a solution for applications requiring low
overheads at the loss of some security.

The rest of this paper is organized as follows. In Section 2, we discuss the related work.
Section 3 presents the attacker model. Section 4 provides an overview of pre-classification
volume ray-casting and Shamir’s secret sharing. In Section 5, we modify pre-classification
volume ray-casting to make it compatible with Shamir’s secret sharing. In Section 6, we pro-
pose our secure cloud-based volume rendering framework. Section 7 provides experimental
results of the proposed framework, and analyzes its security and performance. Section 8
concludes.

2 Related work

In this section, we review existing cloud-based rendering techniques to highlight their grow-
ing importance, and then extend our discussion to the techniques addressing security and
privacy issues in cloud-based imaging.

Recently, cloud-based rendering has drawn the attention of both researchers and enter-
prises. For example, using Azure cloud, Dorn et al. [6] proposed an adaptive data rendering
framework that, according to the requirement, performs volume ray-casting either at a cloud
datacenter or at the client. By echoing the concerns of scalability in server-side rendering
and resource availability in client-side rendering, Vazhenin proposed yet another cloud-
based rendering framework [28]. Similarly, enterprises such as NVIDIA Inc. [21], Sinha
system [25], KDDI Inc. [12], NICE [20] etc. have started offering cloud-based 3D medical
data rendering frameworks to hospitals.

Research addressing security and privacy issues in cloud-based rendering is a demand-
ing yet little-explored area. To the best of our knowledge, we are the first to propose secure
cloud-based volume rendering frameworks using pre-classification volume ray-casting [17]
and post-classification volume ray-casting [18]. However, the security and privacy concerns
in certain cloud-based computation, such as low-pass filtering [13], image de-noising [23]
etc., have been addressed using Shamir’s secret sharing as the cryptosystem. The use of
Shamir’s secret sharing to securely execute a new algorithm (such as pre-classification vol-
ume ray-casting) presents a new set of challenges since the algorithm’s workflow must be
adjusted in such a way that even after hiding additions and scalar multiplications, important
information about the input and the output must be kept hidden. Similarly, the security and

Multimed Tools Appl (2016) 75:6207–6235 6211

privacy issues in cloud-based data/image storage, have been promptly addressed in two pos-
sible scenarios: when a single datacenter is used, and when multiple datacenters are used [1,
11, 27, 29]. In the case of the use of a single datacenter, public key encryption techniques or
watermarking have been applied to protect the data/image stored in a datacenter [11, 27, 29],
and in the case of the use of multiple datacenters, the secret sharing scheme has been used to
distribute the secrecy among more than one datacenters [1]. For a complete list of existing
cryptographic cloud storage systems, the reader can refer to AlZain et al.’s work [1], which
concludes that the secret sharing-based cloud-based secure systems are more secure than the
encryption-based systems. However, these cloud-based secure storage systems are designed
for cloud-based archiving, and therefore use non-homomorphic cryptosystem such as
watermarking, chaos-based encryption, AES, or a somewhat homomorphic cryptosystems
such as Shamir’s secret sharing to hide data. Thus, these systems cannot be seamlessly
extended to secure cloud-based rendering.

In this paper, we extend our earlier work on securing cloud-based pre-classification vol-
ume ray-casting framework [17]. Our previous work modified Shamir’s secret sharing to
make it compatible with pre-classification volume ray-casting. In this paper, we instead
modify pre-classification volume ray-casting, and use the modified ray-casting with unmod-
ified secret sharing. Therefore, unlike our previous scheme, we can now offer perfect
secrecy. Furthermore, we analyze the security and overheads of both these approaches, and
optimize the previous scheme for applications seeking low overheads at the cost of high
security.

3 Attacker model

We assume that both the server, which owns the secret volume data and outsources ren-
dering operation to n datacenters, and the client, are secured (i.e., no adversary can access
the server or the client). A datacenter, however, can be accessed by a malicious adver-
sary, who can be either a malicious employee of the third-party cloud provider (which
hosts the datacenter), or an outsider. Since the adversary is malicious, she can unlawfully
read the content of a share volume data and/or share rendered image from a datacen-
ter (confidentiality issue), tamper with the accessed share volume data or share rendered
image (integrity issue), deny the share rendered image to the client (availability issue),
or relate the identity of a patient to her data/image (privacy issue). We assume that the
adversary, however, cannot access k (where, k ≤ n) or more datacenters at any point
of time.

Our objective is to hide the volume data V from a datacenter using Shamir’s secret shar-
ing H(·), and allow rendering operation R(·) on the hidden volume data H(V) such that:
(i) an adversary cannot know the confidential color information from the share volume data
H(V) or the share rendered image R(H(V)), (ii) a client can recover the secret image
R(V) from at least k R(H(V))’s, (iii) a client can detect tampering on H(V) or R(H(V))

when n ≥ k, and (iv) a client will able to recover a R(V) even if n − k datacenters cannot
participate.

4 Background

In this section, we will provide an overview of pre-classification volume ray-casting and
Shamir’s secret sharing.

6212 Multimed Tools Appl (2016) 75:6207–6235

Fig. 1 Conventional
Pre-Classification Volume
Ray-Casting

4.1 Pre-classification volume ray-casting

Volume ray-casting is one of the preferred technique to directly render volume data [26].
The main idea behind this technique is to project rays from each pixel of the image space
on a given volume V, and find the color and opacity along each ray by mapping the physical
properties of the object to optical properties (i.e., color and opacity). Volume ray-casting
can be classified into pre-classification volume ray-casting and post-classification volume
ray-casting.

Pre-classification volume ray-casting (Fig. 1), which is the focus of this paper, consists of
the following rendering components: gradient and normal estimation, classification, shad-
ing, ray-projection, sampling, interpolation, and composition [14]. These components can
be categorized into two main steps: the pre ray-projection step and the post ray-projection
step. The pre ray-projection step consists of gradient estimation, classification, and shad-
ing, as they are performed before the projection of rays. This step finds the shaded color
and opacity of each data voxel of V, and can be pre-computed independent of the view. The
computed colors and opacity are typically stored in a look-up table. The post ray-projection
step, on the other hand, consists of the components: sampling, interpolation, and compo-
sition. This step finds the color and opacity along each projected ray, and is performed at

Multimed Tools Appl (2016) 75:6207–6235 6213

run time. In the following sections, we will discuss steps of post ray-projection rendering in
detail.

Sampling: In this step, a projected ray is sampled at c sample points s1, s2, ..., sc.
Interpolation: The color Cs and the opacity As of a sample point s are found by inter-

polating the colors (i.e., the shaded colors) and the opacities of eight neighboring voxels of
s by

Cs =
∑

v∈N(s)

CvDv, (1)

and

As =
∑

v∈N(s)

AvDv, (2)

respectively, where N(s) is the set of neighboring voxels of s, Cv ∈ N is the given
color of v, Av ∈ R is the given opacity of v, and Dv ∈ R, the interpolating fac-
tor of v, is obtained from the xyz-coordinate of s and the xyz-coordinates of each data
voxel v ∈ N(s). When Dv is constant, interpolation requires only additions and scalar
multiplications.

Composition: This step accumulates the colors and opacities of all the sample points to
find the composite color and the composite opacity along a projected ray. Mathematically,
the composite color C and the composite opacity A of the sample points s1, s2, ..., sc are
defined as

C =
c∑

i=1

Csi Oi (3)

and

A =
c∑

i=1

Oi (4)

respectively, where Oi is defined as

Oi = Asi

c∏
j=i+1

(
1 − Asj

)
. (5)

The composite color is then truncated to obtain the rendered color. Note that for constant
Oi , composition can be performed only with additions and scalar multiplications.

In Appendix A, we have provided a simple example of pre-classification volume ray-
casting.

4.2 Shamir’s secret sharing

Shamir’s (k, n) secret sharing is a cryptosystem that hides a secret by dividing it into n
shares and recovers the secret by reconstructing it from at least k shares (k ≤ n).

6214 Multimed Tools Appl (2016) 75:6207–6235

4.2.1 Share creation

Given a prime number q and a secret S ∈ Z, where, S < q, this step creates n shares of S
by first defining a (k − 1)-degree polynomial

F(x) = (S + αx) mod q,

where

αx =
k−1∑
i=1

aix
i (6)

and ai < q is a random number in GF(q), and then using this polynomial to find the pth

share of S by setting x = p.

4.2.2 Secret reconstruction

Given k distinct share numbers {x0, x1, . . .xk−1} and shares {y0, y1, . . . yk−1} such that
yi = F(xi), this step reconstructs the secret by first finding the (k − 1)-degree Lagrange
interpolated polynomial L(x) by

L(x) =
k−1∑
i=0

yi li (x) mod q,

where li (x) = ∏k−1
j=0,j �=i

x−xj

xi−xj
, and then solving L(x), which is equivalent to F(x) by the

Unisolvence theorem.
Shamir’s secret sharing is homomorphic to addition and scalar multiplication [2]. In other

words, if the participants hold shares of a set of secrets S = {S1, S2, ..., Sr }, then without
communicating amongst themselves, they can compute the shares of the secret

∑r
i=1IiSi ,

where Ii , for 1 ≤ i ≤ r , is an integer. This property, however, cannot be used to hide
operands of post ray-projection rendering operations of the pre-classification volume ray-
casting, as the modular prime operation of secret sharing is incompatible with the floating
point operation of ray-casting. We can address this issue either by omitting the modular
prime operation from secret sharing (as we have proposed earlier [17]), or by convert-
ing a floating point to a fixed point by first rounding it off to d decimal places and then
multiplying the rounded off value with Kd .

Note that even though Chor and Kushilevitz’s secret sharing [4] can share a floating point
number, their technique is not homomorphic to floating point number scalar multiplication
(it is, however, homomorphic to addition and multiplication by integer scalar). Therefore,
we cannot use this secret sharing for our framework.

5 Pre-classification volume ray-casting with fixed point operations

To make Shamir’s secret sharing compatible with pre-classification volume ray casting, we
perform the arithmetic operations involved over a finite field, in integer domain, instead of
floating point. In this section, we outline the steps that required this change and analyze the
numerical precision required to bound the error in the resulting rendered color to within one
(for a detail . Note that we only need to modify the floating point operations of post ray-
projection rendering of colors. As we do not hide opacities, their rendering operations will
not be modified.

Multimed Tools Appl (2016) 75:6207–6235 6215

5.1 Modifying interpolation

The interpolation of the colors (1) involves multiplying an integer Cv with a floating point
Dv . We convert this multiplication to a fixed point operation as follows. Let x(d) be an
integer obtained by first rounding off x to d decimal places and then multiplying the rounded
value by 10d . We have

D(d)
v = (

Dv + εDv,d

) × 10d , (7)

where |εDv,d | ≤ 0.5 × 10−d is the round-off error.
By replacing Dv with D

(d)
v in (1), we obtain the scaled interpolated color as

C′
s =

∑
v∈N(s)

CvD
(d)
v (8)

= (Cs + εs) × 10d , (9)

where
εs =

∑
v∈N(s)

CvεDv,d

is the total round-off error resulted in the interpolation step.
Since Cv ≤ 255, |εDv,d | ≤ 0.5 × 10−d , and N(s) = 8, the total error at this step is

bounded:
|εs | ≤ 1020 × 10−d .

5.2 Modifying composition

The composition of colors of c sample points, which is given in (3), adds cmultiplied values,
where a multiplication is between two floating point operands Csi and Oi . Thus, to ensure
that composition performs fixed point operations, we replace the interpolated color Csi by
the scaled interpolated color C′

si
from the pervious step and Oi by an integer

O
(f)
i = (

Oi + εOi,f

) × 10f , (10)

where εOi,f is the round-off error, and |εOi,f | ≤ 0.5 × 10−f .

By replacing Cs with C′
s and Oi with O

(f)
i in (3), we obtain the scaled composite color

C′ as

C′ =
c∑

i=1

C′
si
O

(f)
i (11)

= (C + ε) × 10d+f , (12)

where

ε =
c∑

i=1

(
εsi Oi + Csi εOi ,f + εsi εOi ,f

)
is the total round-off error resulted in the composition step. Since C ≤ 255, C′ satisfies

C′ ≤ (255 + εmax) × 10d+f (13)

where εmax is the upper bound of ε.
We know that Csi ≤ 255, |εsi | ≤ 1020 × 10−d , 0 ≤ Oi ≤ 1,

∑c
i=1Oi ≤ 1, and

|εOi,f | ≤ 0.5 × 10−f . Therefore the error in scaled composition ε satisfies

ε ≥ 510c × 10−(f +d) − 127.5c × 10−f − 1020 × 10−d (14)

6216 Multimed Tools Appl (2016) 75:6207–6235

and
ε ≤ 510c × 10−(f +d) + 127.5c × 10−f + 1020 × 10−d . (15)

We, however, know that the color of a pixel is a natural number, and is obtained by
truncating the fractional part of the composite color C. Hence, if a part of error ε cannot
change the truncated value, then it is not effective, i.e., the effective error εeff due to ε can
be obtained by

εeff = �C + ε	 − �C	.
The lowest possible value of εeff is ±1, since the smallest possible value of |ε| (say, |ε|

approaches to zero) can also change the value of the rendered color. The following theorem
provides the conditions to bound εeff by ±1.

Theorem 1 If the number of sample points along a ray, c, satisfies c ≤ 7 × 10t , for any
integer t, then for d ≥ 4 and f ≥ t + 3, the effective rounding error in rendering εeff is
bounded by ±1.

The proof is by substitution and is straightforward.
The above analysis shows that with fixed point operation, we can limit the error when

computing the composite color to less then one. Consider the case where c < 700, then it
suffices to round off Dv to 4 decimal places and the opacity Oi to 5 decimal places.

6 Cloud-based secure rendering

Using the above modified ray-casting operations, we now describe how secret sharing
is done. We first present our secure cloud-based rendering framework using standard
Sharmir’s secret sharing and the modified ray-casting operations (SR-MPVR). For com-
pleteness, we followed this with our previous scheme, SR-MSSS, which uses a weaken
Shamir’s secret sharing and standard ray-casting operations (SR-MSSS). Finally, a more
efficient version that uses ramp secret sharing (SR-RSS) is presented.

6.1 Architecture

The architecture of our framework consists of three components: the server that hosts the
secret volume V, n cloud datacenters, and the client who is authorized to access the secret
rendered image (Fig. 2). This architecture is designed with the assumption that an adversary
neither can access the server or the client nor can access more than k − 1 datacenters.

The framework aims to provide both a secure and practical solution. I.e, we not only aim
to address data confidentiality, data integrity, and data availability issues but also wish to
lessen the computation overhead, data overhead, and loss in image quality.

6.2 SR-MPVR

As shown in Fig. 3, the work flow of our framework can be divided into four steps: (i) data
preparation, (ii) ray-projection, (iii) post ray-projection rendering, and (iv) image recovery.

6.2.1 Data preparation

The data preparation step creates n shares of the secret volume V. As we only hide the color
information, the hidden volumes, V1, V2, ... maintains the shape and order of the voxels of

Multimed Tools Appl (2016) 75:6207–6235 6217

Datacenter
1

Datacenter
2

Datacenter
n

Image
Recovery

Image
Display

Client

Post Ray-projec�on
Rendering

Data
Capturing

Data
Prepara�on

Share 1

Share 2

Share n

Server

Secret

Fig. 2 Our secure cloud-based data visualization framework

V – only the color information is modified. To achieve this, the server first finds the color
and the opacity of each data voxel v of a given volume V by performing gradient estimation,
classification, and shading operations; and then creates n shares of V by secret sharing the
color Cv of v to n shares and copying the opacity Av of v into n times.

To create shares of Cv , we first choose a prime number q that is greater than the value
of the maximum reconstructed secret (255 + εmax) × 10d+f (which is derived in (13)). By
using Cv as the secret in (6) and by setting x = p, we find pth share of Cv as

Cv,p = (Cv + αp) mod q. (16)

Note that we use the same q for all shares. Since we need to fix the value of q, which
depends on εmax , we also determine the rounding precisions d and f in this step.

Next, we create the pth share volume of V, Vp. For each voxel v in V, we create a share
voxel vp with the same xyz-coordinate and opacity, but set the color of vp to Cv,p.

6.2.2 Ray-projection

The shared volume Vp is stored on datacenter p. When a client requests that the volume V be
rendered from a particular viewpoint by projecting a ray, the request is sent to n datacenters.
The ray is projected on each of the share volume in these datacenter.

Fig. 3 Proposed secured volume ray-casting

6218 Multimed Tools Appl (2016) 75:6207–6235

6.2.3 Post ray-projection rendering

Sampling: Consider the projected ray on a share volume Vp. The ray is sampled at c sample
points s1,p, s2,p, . . . , sc,p. Note that the xyz-coordinate si,p and xyz-coordinate si (a sample
point on the ray when it is projected on V) are the same.

Interpolation: This step finds the opacity and color of a sample point sp ∈ Vp by inter-
polating the opacities and the colors of all eight neighboring voxels of s, and is the same as
the operation on the secret volume V.

Since we did not change the opacity, the interpolated opacity is the same whether it is
done of a share volume Vp or the secret volume V. The voxels’ color, on the other hand, has
changed. By putting the color of vp as Cv,p in (8), we get scaled interpolated color C′

s,p by

C′
s,p ≡ (

C′
s + αpDsp

)
mod q, (17)

where Dsp = ∑
v∈N(sp)D

(d)
v . The value for Dsp = Ds is the same for all p.

Composition: This next step composites the opacities and the colors of all the sample
points s1,p, s2,p, . . . , sc,p along the projected ray. As we do not share the opacities, they
can be composited by conventional composition formula given in (4). The composition of
colors, however, need to be performed by the scaled composition technique that is derived
in (11).

Using C′
si ,p

as the color of si,p in (11), the scaled composite color is calculated as

C′
p ≡ (

C′ + Kαp

)
mod q, (18)

where K = ∑c
i=1Dsi O

(f)
i has the same value for all share volume.

Using As as the opacity and C′
p as the color of a pixel, the pth datacenter now creates

the pth share image, and sends it to the client.

6.2.4 Image recovery

Finally, an authorized user recovers the secret image from k share images obtained from k
datacenters. As we do not hide opacities, the opacity of a pixel of a share image become
the opacity of the corresponding pixel of the secret image. The color of a pixel of the secret
image is recovered from k shared colors (as given in (18) by first using Lagrange interpola-
tion to reconstruct the scaled secret color C′ from k shared colors C′

p for some p in {1, ..n},
and then dividing C′ by 10d+f . Therefore, by (12), the recovered secret color is

C′′ = C + ε,

which is close to C (the color obtained by conventional ray-casting) as by Algorithm 1, the
error ε can be bounded by ±1 for sufficiently large value of d and f.

In Appendix A, we have provided a simple example of SR-MPVR.

6.3 SR-MSSS

We now describe the SR-MSSS method, an alternative to SR-MPVR. SR-MSSS uses float-
ing point operations, but uses a variation of Shamir’s secret sharing with a weaken security
guarantee. The main work flow of SR-MSSS is similar to SR-MPVR, so we only highlight
the differences below.

In the data preparation step, the server defines a polynomial

F ′(x) = Cv + αx

Multimed Tools Appl (2016) 75:6207–6235 6219

for secret sharing, and uses this polynomial to find the pth share of Cv as

Cv,p = Cv + αp,

without the module prime operation.
As no modular prime operation is used in secret sharing, in the post ray-projection

rendering step, a datacenter uses the conventional pre-classification volume ray-casting to
render its share volume, and finds the composite color of a share pixel as

Cp = C + Kαp

(where K is a constant) and the composite opacity as A along a ray projected on Vp (the pth

share volume).
As no scaling up by 10d+f operation is required for color rendering, at the image recov-

ery step, the user does not divide the reconstructed color C by 10d+f . The user recovers
the secret image using the Lagrange interpolation as per normal Shamir’s secret sharing
scheme. As evident from this discussion, the recovered secret color is equal to the secret
color rendered by conventional ray-casting.

6.4 SR-RSS

We now present another alternative, SR-RSS, that uses ramp secret sharing to reduce the
size of the share images.

6.4.1 Data preparation

The objective of this step is to optimize the modified Shamir’s secret sharing to create
smaller share volumes.

We know that the three color components of a pixel, i.e., the red color R, the green color
G, and the blue color B, are rendered by identical rendering operation, and by rendering a
share, a datacenter renders all the coefficients used in the secret sharing polynomial. There-
fore, we use the color component Rv , Gv , and Bv of a voxel v as three secrets in the secret
sharing polynomial. Although used (3, k, n) ramp secret sharing can reduce the data over-
head by three times (as instead of creating three shares, ramp secret sharing creates only one
share for all three color components), resulted data overhead is sill a concern as a shared
color is represented by a floating point number, requiring 4 bytes on a typical systems.

If we limit the value of k and n, however, it is possible to limit the share color to 216, thus
requiring only two bytes.

To use this trick to reduce the value of a color share, we choose a smaller share number
at the time of secret sharing by setting the condition k = 4 and n = 5 for our ramp secret
sharing. Thus the secret sharing polynomial becomes

F ′(x) = a0 + Rvx + Gvx
2 + Bvx

3, (19)

where a0 is a random number. Using this polynomial and choosing the value of x smaller
than five, the server creates share volumes that contains only one share for all three color
components of a voxel, and then sends the shared volume to the corresponding datacenter.
As the value of color is less than 255 and the value x is less than equal to five, for a0 ≤
26011, the value of F ′(x) cannot exceed 65536.

Note that although we can choose n = k = 3 to restrict the value of a color share to
3315, we do not recommend this optimization as such a scheme, by not using a random
number in secret sharing polynomial, can result in complete breakdown of our framework.

6220 Multimed Tools Appl (2016) 75:6207–6235

Firstly, such (3, 3, 3) ramp secret sharing do not work for a gray image as it cannot hide
black color (when all color components are 0) and white color (when all color components
are 255) of a voxel/pixel. Secondly, due to spatial coherence in an image, it is easier for
an adversary to guess color of a voxel/pixel from the known share value of the voxel/pixel
and the share values of neighboring voxels/pixels of the target voxel/pixel. Similarly, we
also do not recommend n = k as this optimization cannot guarantee data integrity and data
availability (will be discussed in Section 7.1).

6.4.2 Post ray-projection rendering

Using the post ray-projection rendering operations of SR-MSSS on the pth share of colors
(i.e., F ′(p)’s that are obtained from (19)), we find the pth shared composite color (for all
the three color components) by

Cp = K + Rp + Gp2 + Bp3,

where R, G, and B are the red color, green color, and blue color composited by the conven-
tional ray-casting, and K ≤ a0 is a constant for all the shares. As the value of each F ′(p) is
less than 65536, the value of Cp is also less than 65536. We convert Cp to an integer with

precision g and send C
(g)
p to the client.

6.4.3 Image Recovery

This step finds the secret color components from k given color shares, C(g)
p , by first using

Lagrange interpolation to find the polynomial

L′(x) = K + Rx + Gx2 + Bx3 + ε,

where ε is the rendering error due to rounding off Cp , and then solving L′(x). As the
introduced error ε satisfies

|ε| ≤ 0.5 × 10−g ×
5∑

i=2

(
5

i

)
,

we can choose g ≥ 1 to obtain |ε| < 1.
These optimizations, however, degrades security as both the use of ramp secret sharing

scheme, and the exclusion of modular prime operation from secret sharing can dis-
close information about the secret. Furthermore, due to rounding error, there is a loss in
information in the rendered image.

Note that we choose to optimize SR-MSSS as all of the proposed optimization tricks
can be applied to SR-MSSS simultaneously. One can, however, extend the trick of using
multiple secrets in a secret sharing polynomial to SR-MPVR. The trick of limiting the value
of a color share by choosing a suitable share number, however, is not applicable to SR-
MPVR as in the case of Shamir’s secret sharing, size of a share is independent of the share
number.

7 Results and analysis

We simulated the server, datacenters, and the client of our framework in a PC powered by
an Intel Core 2 Quad 2.83 GHz processor and with 4GB of RAM. We implemented our

Multimed Tools Appl (2016) 75:6207–6235 6221

Table 1 Data sets
Name Dimension Bits per Voxel Size

Head 256 × 256 × 124 8 7.8 MB

Foot 256 × 256 × 256 8 16 MB

Bucky 32 × 32 × 32 8 32.2 KB

IronProt 68 × 68 × 68 8 307.3 KB

framework by first modifying the volume ray-casting module of the open source visualiza-
tion package VTK to facilitate pre-classification volume raycasting, and then integrating
secret sharing into the rendering pipeline. In the case of SR-MPVR, we used (3, 5) Shamir’s
secret sharing in conjunction with modified pre-classification volume ray-casting; in the
case of SR-MSSS, we used modified (3, 5) Shamir’s secret sharing in conjunction with pre-
classification volume ray-casting; and in the case of SR-RSS we used (3, 4, 5) modified
ramp secret sharing in conjunction with pre-classification volume ray-casting. To validate
our schemes, we used four sets of test volume data: Head, Foot, Bucky, and IronProt, which
details are given in Table 1. As the number of sampling points along a ray on any of these
test volume does not exceed 700, for SR-MPVR, we fixed d = 4 and f = 6 to obtain
|ε| ≤ 1. For SR-RSS, we rounded off the floating point numbers by one decimal place (i.e.,
chosen g = 1) to keep the error below one.

For Head, Fig. 4 shows the result of SR-MPVR, Fig. 5 shows the result of SR-MSSS,
and Fig. 6 shows the result of SR-RSS from single view point. As SR-RSS represents three
color components of a pixel by a single value, it creates a grey share image, hiding the color
information. For SR-MPVR, Fig. 7 demonstrates the secret image and first share image
of Foot, Bucky, and IronProt from single view point, and Fig. 8 shows the share images
of Head for multiple view points (we have provided more results as supplementary mate-
rial in the file MoreResult.pdf). As illustrated by these figures, the color information of
the secret image is hidden in the respective share images. Therefore, an adversary having
access to a share image cannot perceptually infer the color coded information of the secret
image.

7.1 Security analysis

In addition to perceptual security, our schemes also provide data confidentiality, data
integrity, and data availability.

Fig. 4 Secure pre-classification volume ray-casting on Head for SR-MPVR

6222 Multimed Tools Appl (2016) 75:6207–6235

Fig. 5 Secure pre-classification volume ray-casting on Head for SR-MSSS

Fig. 6 Secure pre-classification volume ray-casting on Head for SR-RSS

Fig. 7 Secure pre-classification volume ray-casting of Foot ((a), (b)), Bucky ((c), (d)), and IronProt ((e), (f))
for SR-MPVR

Fig. 8 Secure pre-classification volume ray-casting of Head in SR-MPVR from different viewpoints

Multimed Tools Appl (2016) 75:6207–6235 6223

7.1.1 Confidentiality

As SR-MPVR uses Shamir’s secret sharing, it is perfectly secure. Thus, an adversary, irre-
spective of its computation power, cannot get any information about the secret color of a
voxel/pixel by accessing at most k − 1 datacenters.

In principle, the color of an object is independent of the shape of the object since a user
can modify color from a color look-up table. Therefore, theoretically, the probability of
guessing the secret color of a voxel/pixel is 1

256 : due to which, the probability of guessing
a 512 × 512 secret image is 1

256512×512 . However, practically, the range of color of an object
can be less than 256. In this case, the knowledge of color adds little information unless there
is some color-coded abnormality in the image (such as detection of diseases in a MRI scan).
Our work hides such confidential color-coded information.

By excluding modular prime operation from secret sharing, SR-MSSS looses some infor-
mation about the secret color in a group of less than k datacenters. The probability of
knowing a secret from a group of less than k shares increases with an increase in the number
of known shares, and this probability depends on the share number x (as there is a one-
to-one mapping between the share and the share number). For example, for known share
number xi and the knowledge of one F ′(xi), if we let the probability of knowing the secret
pixel color C be 1

T
, then for k = 2,

T =
⌊

F ′(xi)

xi

⌋
+ 1,

For k = 3,

T =

⌊
F ′(xi)

x2
i

⌋
∑
a=0

(⌊
F ′(xi) − ax2

i

xi

⌋
+ 1

)
. (20)

When k increases, T increases, as the combination of k − 1 coefficients that satisfy a k − 2
degree polynomial F ′,k−2(x, S) is also part of the combination of k coefficients that satisfy
the k − 1 degree polynomial F ′,k−2(x, S) + ak−1x

k−1.
To minimize the effect of loss of information, we can choose higher valued random

numbers (i.e., ai’s) as coefficients in the secret sharing polynomial to obtain higher share
value for lower share number. For example, even for the (2, n) modified secret sharing, if
ai > 256 and x < 5, then T > 256. In other words, we can provide more than 256 choices
to an adversary for guessing the secret – already more than the number of color values
possible.

By using (3, 4, 5) modified ramp secret sharing, SR-RSS, in addition to losing informa-
tion due to the exclusion of modular prime operation, also loses information due to the use
of multiple secrets in a secret sharing polynomial. Due to this information loss, an adver-
sary, by accessing more than one datacenters, can easily guess some of the secret color by
converting the (3, 4, 5) modified ramp secret sharing to (3, 3, 5) modified ramp secret shar-
ing. Therefore, SR-RSS is insecure when an adversary can access more than one datacenter.
To counter such scenario, one can easily adjust SR-RSS by introducing (3, k + 3, n) ramp
secret sharing, where k is the maximum number of datacenters that an adversary cannot
access simultaneously.

6224 Multimed Tools Appl (2016) 75:6207–6235

7.1.2 Integrity

By inheriting the property of (k, n) secret sharing, SR-MPVR, SR-MSSS, and SR-RSS
ensures integrity of data/image. The k < n condition provides

(
n
k

)
different ways of recon-

structing the secret image. Suppose an adversary changes the color values of the share
images (either directly tampering with the rendered image or tampering the share volume)
of at most n − 1 datacenters, then the reconstructed images will differ to each other (as
shown in Fig. 9). As a result, by comparing at most

(
n

n−1

) + 1 reconstructed images (the
worst case happens when an adversary tampers only one share image and the client uses
the tampered share image in image reconstruction after exploring all other possibilities), the
client can detect tampering.

However, if the adversary is able to temper with the share images of all n datacenters by
obeying the homomorphic property of secret sharing, then all the tampered reconstructed
image at the client site will be the same (as shown in Fig. 9d and e). In this case, the client
will not be able to detect the tampering. Furthermore, if n = k, then tampering with even one
share image is not detectable as there can be only one possible combination to recover the
secret image. Therefore, for application requiring data integrity, we recommend choosing
n > k.

7.1.3 Availability

By inheriting the property of (k, n) secret sharing, all of SR-MPVR, SR-MSSS, and SR-
RSS also ensure data availability as the client is able to reconstruct the secret image even if
at most n − k number of datacenters are unable to participate.

7.2 Performance analysis

The usability of the proposed cloud-based secured rendering techniques depends on its com-
putational overhead, data overhead, and the quality of rendered image. The computational
overhead includes creation of n share from the secret data voxels at the server and recon-
struction of the secret image from k share images at the client. The data overhead includes
extra bandwidth by the server to transmit n share volumes to n datacenters extra bandwidth
to transmit k share images to the client. Computation of share volumes and their distribution
to datacenters is performed by the server offline and therefore is less of a concern. The data
overhead in transmitting k share images and the computational overhead to reconstruct the
secret image, however, add to the latency in rendering. We discuss them below.

(a) (b) (c) (d) (e) (f)

Fig. 9 (a)- recovered image when one share image is tampered; ((b), (c)) - recovered images when two share
images are tampered; ((d), (e)) - recovered images when all share images are tampered; and (f) - recovered
image when no share image is tampered

Multimed Tools Appl (2016) 75:6207–6235 6225

7.2.1 Computational overhead

The computation cost of our framework is equal to the computation cost required to recover
colors of secret image from the share images. Therefore, computational overhead is depen-
dent on the computation cost of Lagrange interpolation and the dimension of the image.
As SR-MPVR uses modular prime operation and large integer operations, its computation
cost is more than the computation cost of SR-MSSS and SR-RSS. The computation cost of
SR-MSSS, however, varies with the computation cost of SR-RSS according to their require-
ment of the number of shares to reconstruct the secret. In our implementation, SR-MPVR
and SR-MSSS takes 132 ms and 29 ms respectively to recover a 512× 512 rendered image
from the first, second, and third image shares. For the same image, SR-RSS takes 34 ms to
recover the secret image from the first, second, third, and fourth share images. The over-
head of SR-RSS is more than SR-MSSS as the constructed polynomial for SR-RSS is one
degree higher than that of SR-MSSS.

7.2.2 Data overhead

For SR-MPVR and SR-MSSS, our rendering framework requires k share images to recon-
struct the secret image. Thus, if b number of bits are required to represent a color component
of a pixel of a share image, then a total of 3bk + 8 number of bits are required to recon-
struct the color and opacity of a pixel: due to which, the data overhead is 3bk−24

32 times more
than conventional server-side rendering. The value of b, however, is dependent on how we
solve the incompatibility issue of secret sharing with ray-casting. In case of SR-MPVR, b
is dependent on the rounding off parameters d and f as the rendered color lays between 0 to
q, where q > (255 + εmax) × 10d+f . For SR-MSSS, b, however, is equivalent to the num-
ber of bits required to represent a floating point number. Therefore, in our implementation,
which uses (3, n) secret sharing, 32 bits for a floating point number, and sets d = 4 and
f = 6, the data overhead of SR-MPVR and SR-MSSS are approximately 11 times and 8
times more than the conventional server-side volume ray-casting.

In the case of SR-RSS, our rendering framework, however, requires four color shares
to recover the three color components of a pixel of the secret image. Thus, if b bits are
required to represent a color share, then a total of 4b+8 bits are required to obtain the secret
color and opacity value of a pixel in the secret image. We, however, know that the value
of a color share cannot exceed 65536 × 10g , where g is the number of decimal places by
which a share is rounded off. Therefore, our implementation of SR-RSS, which sets g = 1,

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12 14

P
S

N
R

 (
in

 d
b)

data overhead (in times)

SR-MPVR
SR-RSS

(a)Head

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12 14

P
S

N
R

 (
in

 d
b)

data overhead (in times)

SR-MPVR
SR-RSS

(b)Foot

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12 14

P
S

N
R

 (
in

 d
b)

data overhead (in times)

SR-MPVR
SR-RSS

(c)Bucky

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12 14

P
S

N
R

 (
in

 d
b)

data overhead (in times)

SR-MPVR
SR-RSS

(d) IronProt

Fig. 10 For SR-MPVR and SR-RSS, this figure shows the PSNR value of the Head, Foot, Bucky, and
IronProt rendered images for different data overhead. As SR-MPVR results different PSNR for a fixed
overhead (as for a fixed number of rounding bits d + f , the PSNR can change with the change in the value
of d and f), we show the maximum obtained PSNR

6226 Multimed Tools Appl (2016) 75:6207–6235

Table 2 Comparison among
SR-MPVR, SR-MSSS, and
SR-RSS

SR-MPVR SR-MSSS SR-RSS

Security Perfect security Some More

information information

loss loss than

SR-MSSS

Data Overhead Dependent on Moderate Dependent on

rounding bits. rounding bits.

Typically, High Typically, Low

Computation Cost High Low Moderate

Image Quality Lossy Lossless Lossy

results in approximately twice the data overhead than the conventional server-side volume
ray-casting.

7.2.3 Image quality

By rounding off floating point numbers during rendering, both SR-MPVR and SR-RSS ren-
ders lossy image; but SR-MSSS, without performing rounding operations, renders lossless
image.

In the case of SP-MPVR and SR-RSS, we can, however, obtain better quality image by
using higher precision fixed point numbers. As discussed in Section 7.2.2, a higher number
of rounding bits can increase the data overhead: resulting in a tradeoff between the quality
of image and the data overhead. This claim can be verified from Fig. 10, which, for our
experimental setup, shows the PSNR values of Head, Foot, Bucky, and IronProt rendered
images for different overheads. As illustrated, to obtain similar quality image, SR-MPVR
leads to higher overhead than SR-RSS as SR-MPVR rounds off two floating point numbers
in contrast to only one in SR-RSS. Note that for any of these schemes, the PSNR values of
different images are different for fixed overhead as the round-off error and its effect on final
rendered color are dependent on the scalar values of the data voxels.

Table 2 shows the security level, overheads, and image quality of all our proposed
schemes: SR-MPVR, SR-MSSS, and SR-RSS. As highlighted, (i) SR-MPVR is best suit
for applications prioritizing security over overheads and image quality; (ii) SR-RSS is suit-
able for applications requiring low overhead at cost of high security and loss of information
from the rendered image; and (iii) SR-MSSS is designed for applications requiring lossless
rendered image, and moderate security and overhead.

8 Conclusion

Rendering important data in third party cloud datacenters presents security and privacy
challenges. In this paper, we addressed these challenges by proposing a secure cloud-based
rendering framework that, by integrating Shamir’s secret sharing (or its variant) with pre-
classification volume ray-casting (or its variant), can hide color of volume data or rendered
image from datacenters. To address the incompatibility of secret sharing with ray-casting,

Multimed Tools Appl (2016) 75:6207–6235 6227

we modified either secret sharing (which is the case in SR-MSSS) or ray-casting (which
is the case in SR-MSSS), and to decrease high data overhead of both these techniques, we
optimized modified secret sharing (which is the case in SR-RSS). Experiments and analyzes
showed that SR-MPVR provides high security at the cost of high data overhead and loss of
some information from the rendered image; SR-MSSS renders lossless image and provides
moderate security at the cost of moderate overheads; and SR-RSS incurs low overhead at
the cost of high security and the loss of some information from the rendered image.

We believe that the philosophy of this work, i.e., using a somewhat homomorphic cryp-
tosystem to hide some operations of an algorithm, and distributing the non-homomorphic
operations among more than one participants such that none of the participant can get
sufficient secret information, can be the basis of designing practical secure cloud based
imaging frameworks for other applications in future. In the place of secret sharing, other
cryptosystems also can be used to serve any particular requirement.

Acknowledgment This research was supported by Singapore Ministry of Education Academic Research
Fund Tier 1 No: T 1251RES1213 (Secure and Efficient Remote 3D Rendering). Majority of this work was
done when the first author, Manoranjan Mohanty, was a PhD student in Department of Computer Science,
School of Computing, National University of Singapore. Dr. Atrey’s contribution was supported in parts by
the NSERC Canada discovery grant number 371714 and the University at Albany grant number 640075.

Appendix A: Example of conventional pre-classification ray-casting
and SR-MPVR

In this section, we will show the working of conventional ray-casting and SR-MPVR with a
simple example. Since SR-MSSS and SR-RSS are similar to SR-MPVR, we do not provide
examples for these two schemes.

In our example, we will first run through the conventional pre-classification ray-casting,
and then will discuss SR-MPVR. We will show that the colors rendered by SR-MPVR is
almost equal to the colors rendered by the conventional algorithm.

Conventional pre-classification volume ray-casting

As explained in Section 4.1 and shown in Fig. 1, the conventional volume ray-casting
algorithm steps can be divided into the following steps: pre ray-projection, ray-projection,
sampling, interpolation, and composition. We discuss these steps with an 8 × 8 × 8 input
volume data V.

Pre ray-projection

This step finds the shaded colors and opacities of the voxel values, and stores them in a
look up table. For our example, let us assume that the colors and opacities of the voxels are
stored in Table 3.

Ray-projection

In this step, a number of rays are projected to V from the image space. In the image space,
the colors and opacity of a pixel are the colors and opacity rendered along the ray originated

6228 Multimed Tools Appl (2016) 75:6207–6235

Table 3 Color look up table
for V Coordinate Red (R) Green (G) Blue (B) Opacity (A)

0,0,0 120 252 3 0.7

0,0,1 5 45 9 0.1

...

3,3,3 37 44 211 0.4

3,3,4 37 45 210 0.3

3,4,3 45 45 120 0.7

3,4,4 45 46 121 0.4

4,3,3 44 46 121 0.1

4,3,3 44 46 120 0.6

4,4,3 45 46 135 0.5

4,4,4 46 245 100 0.25

...

5,5,5 105 45 150 0.1

5,5,6 110 50 100 0.4

5,6,5 111 50 98 0.5

5,6,6 110 48 98 0.1

6,5,5 100 50 100 0.5

6,5,6 50 50 100 0.3

6,6,5 50 50 101 0.4

6,6,6 150 50 50 0.3

...

from it. Since the rendering along a ray is similar to the rendering along other rays, we
discuss about the rendering along one ray X.

Sampling

In our example, let us assume that the projected ray X is sampled at two sample points s1
and s2.

Interpolation

The colors and opacities along s1 and s2 are found by trilinear interpolation of the colors
and opacities of the neighbouring voxels.

In our example, let us assume that the voxels (3, 3, 3). . .(4, 4, 4) are the neighbouring
voxels of s1 and the voxels (5, 5, 5). . .(6, 6, 6) are the neighboring voxels of s2. If the inter-
polating factors of voxels (3, 3, 3). . .(4, 4, 4) and (5, 5, 5). . .(6, 6, 6) are given as D3,3,3 =
0.125,D3,3,4 = 0.125,D3,4,3 = 0.125,D3,4,4 = 0.125,D4,3,3 = 0.125,D4,3,4 =
0.125,D4,4,3 = 0.125,D4,4,4=0.125 and D5,5,5 = 0.125,D5,5,6 = 0.125,D5,6,5 =
0,D5,6,6 = 0.25,D6,5,5 = 0.25,D6,5,6 = 0,D6,6,5 = 0.125,D6,6,6 = 0.125 respectively,
the interpolated colors and opacities of s1 and s2 can be calculated as Rs1 = 42.875,Gs1 =
70.375, Bs1 = 142.25, As1 = 0.406 and Rs2 = 104.375,Gs2 = 48.875, Bs2 =
93.25, As2 = 0.3 respectively.

Multimed Tools Appl (2016) 75:6207–6235 6229

Composition

In this step, the colors and opacity along the ray are found by compositing the colors and
opacities of the sample points. The composited colors are then truncated to get the rendered
color.

Therefore, in our example, the rendered colors and opacity are calculated as R =
43,G = 34, B = 68, and A = 0.5842.

SR-MPVR

As discussed in Section 6, our scheme, such as SR-MPVR, is targeted to cloud-based pre-
classification rendering. Figure 2 shows the architecture of our scheme. In our scheme,
the server performs the pre ray-projection step of ray-casting and then creates shares of
output color in data preparation step. A color share and a copy of opacities represents a
share volume, which is sent to a datacenter. The datacenters perform post ray-projection
operation, such as sampling, interpolation, and classification, on their share volumes and
send the rendered share images to the client. Finally, the client recovers the secret image
from the shared images by reconstructing the secret colors from the share colors.

Data preparation

In this step, the server first performs pre ray-projection operations on V, and then creates
three shares of V using Shamir’s secret sharing.

Table 4 Color look up table
for V1 Coordinate Red (R) Green (G) Blue (B) Opacity (A)

0,0,0 220 352 103 0.7

0,0,1 105 145 109 0.1

...

3,3,3 137 144 311 0.4

3,3,4 137 145 310 0.3

3,4,3 145 145 220 0.7

3,4,4 145 146 221 0.4

4,3,3 144 146 221 0.1

4,3,3 144 146 220 0.6

4,4,3 145 146 235 0.5

4,4,4 146 345 200 0.25

...

5,5,5 205 145 250 0.1

5,5,6 210 150 200 0.4

5,6,5 211 150 198 0.5

5,6,6 210 148 198 0.1

6,5,5 200 150 200 0.5

6,5,6 150 150 200 0.3

6,6,5 150 150 201 0.4

6,6,6 250 150 150 0.3

...

6230 Multimed Tools Appl (2016) 75:6207–6235

Without loss of generality, let us assume that the server uses (2, 3) Shamir’s secret
sharing. Therefore, three datacenters performing rendering operations, but shared rendered
images from at least two datacentres are required to get the secret image.

Suppose we decide to round off the floating point number in interpolation step by
4 decimal places (i.e., d = 4) and the float in composition step by 6 decimal places
(i.e., f = 6). Then, the server uses the secret sharing polynomial F(x) = (C + 100x)

mod 2570000000011, where C is the color. Using this polynomial, three shares of colors
are created. The color shares along with copies of opacities are given in Tables 4, 5, and 6,
those represent the share volumes V1, V2, and V3 respectively.

Ray-projection

The client projects the same rays those it could have projected to the conventional ray-
casting, to the data volumes presented by share tables in the datacenters.

Post ray-projection rendering

Post ray-projection steps are as follows.
Sampling: A ray is sampled at the same sample points where it could have been sampled

in the conventional ray-casting. Thus, our discussed ray X is sampled at the sample points
s1(3.5, 3.5, 3.5) and s2(5.5, 5, 6) for all three datacenters.

Table 5 Color look up table
for V2 Coordinate Red (R) Green (G) Blue (B) Opacity (A)

0,0,0 320 452 203 0.7

0,0,1 205 245 209 0.1

...

3,3,3 237 244 411 0.4

3,3,4 237 245 410 0.3

3,4,3 245 245 320 0.7

3,4,4 245 246 321 0.4

4,3,3 244 246 321 0.1

4,3,3 244 246 320 0.6

4,4,3 245 246 335 0.5

4,4,4 246 445 300 0.25

...

5,5,5 305 245 350 0.1

5,5,6 310 250 300 0.4

5,6,5 311 250 298 0.5

5,6,6 310 248 298 0.1

6,5,5 300 250 300 0.5

6,5,6 250 250 300 0.3

6,6,5 250 250 301 0.4

6,6,6 350 250 250 0.3

...

Multimed Tools Appl (2016) 75:6207–6235 6231

Table 6 Color look up table
for V3 Coordinate Red (R) Green (G) Blue (B) Opacity (A)

0,0,0 420 452 303 0.7

0,0,1 305 345 309 0.1

...

3,3,3 337 344 511 0.4

3,3,4 337 345 510 0.3

3,4,3 345 345 420 0.7

3,4,4 345 346 421 0.4

4,3,3 344 346 421 0.1

4,3,3 344 346 420 0.6

4,4,3 345 346 435 0.5

4,4,4 346 545 400 0.25

...

5,5,5 405 345 450 0.1

5,5,6 410 350 400 0.4

5,6,5 411 350 398 0.5

5,6,6 410 348 398 0.1

6,5,5 400 350 400 0.5

6,5,6 350 350 400 0.3

6,6,5 350 350 401 0.4

6,6,6 450 350 350 0.3

...

Interpolation: In this step, each datacenter finds the color and opacity of the sam-
ple points by interpolating the color shares and opacities given in its share table. Since
we convert the interpolating factors by rounding off them by 4 decimal places, the
interpolating factors of voxels (3, 3, 3). . .(4, 4, 4) and (5, 5, 5). . .(6, 6, 6) are calculated as
D

(4)
3,3,3 = 1250,D(4)

3,3,4 = 1250,D(4)
3,4,3 = 1250,D(4)

3,4,4 = 1250,D(4)
4,3,3 = 1250,D(4)

4,3,4 =
1250,D(4)

4,4,3 = 1250,D(4)
4,4,4 = 1250, and D

(4)
5,5,5 = 1250,D(4)

5,5,6 = 1250,D(4)
5,6,5 =

0,D(4)
5,6,6 = 2500,D(4)

6,5,5 = 2500,D(4)
6,5,6 = 0, D(4)

6,6,5=1250,D
(4)
6,6,6 = 1250 respectively.

Using these interpolating factors, the first datacenter, second datacenter, and third data-
center calculate the colors of s1 and s2 as (R1,1 = 1428750,G1,1 = 1703750, B1,1 =
2422500, R2,1 = 2043750,G2,1 = 1488750, B2,1 = 1932500), (R1,2 = 2428750,G1,2 =
2703750, B1,2 = 3422500, R2,2 = 3043750,G2,2 = 2488750, B2,2 = 2932500),
and (R1,3 = 3428750,G1,3 = 3703750, B1,3 = 4422500, R2,3 = 4043750,G2,3 =
3488750, B2,3 = 3932500) respectively.

Interpolation: In this step, the colors and opacity along the ray are found by composit-
ing colors and opacities of the sample points. Each datacenter composites its colors and
opacities from the interpolated colors and opacities available to it. In our example, f = 6.
Using this value, the first datacenter, the second datacenter, and the third datacenter cal-
culate their composite colors as (R′

1 = 1019175750000,G′
1 = 930830750000, B ′

1 =
1268224500000), (R′

2 = 1603375750000,G′
2 = 1515030750000, B ′

2 = 1852424500000),
and (R′

3 = 2187575750000,G′
3 = 2099230750000, B ′

3 = 2436624500000) respectively.
For all datacenters, the composited opacity is 0.5842.

6232 Multimed Tools Appl (2016) 75:6207–6235

Image recovery

In this step, the client obtains the secret colors and opacities from the share colors and opaci-
ties obtained from three datacenters. Since each datacenter has a copy of the secret rendered
opacity, the opacity of a pixel is the rendered opacity along that ray at any datacenter. There-
fore, for Ray X, the opacity is 0.5842, which is equal to the rendered opacity along that ray
by the conventional pre-classification ray-casting.

The secret colors, however, are found by first reconstructing (using Lagrange interpola-
tion) a value from the share colors, and then dividing the value by 10000000000. Since we
use (2, 3) secret sharing, we need at least two shares to obtain the secret. Without any loss
of generality, we choose the shares of first and second datacenters, and find the rendered
color as R = 43,G = 34, and B = 68.

Appendix B: List of symbols

Table 7 Symbol table

Symbol Meaning

ai ith coefficient in secret sharing polynomial

c Total number of sample points along a projected ray

d Number of decimal places by which Dv is rounded off

f Number of decimal places by which Oi is rounded off

g Number of decimal places by which C’ is rounded off

k Minimum number of shares required to construct a secret in Shamir’s secret sharing

li (x) Lagrange basis function

n Total number of shares created from a secret in Shamir’s secret sharing

p Share number

q Prime number

s A sample point in a secret data volume V

sp A sample point in the pth share of a data volume V

v A data voxel in a secret data volume V

vp A data voxel in the pth share of a data volume V

Ai Opacity of ith voxel of ith sample point

A Opacity of a paxel composited by the conventional ray-casting or by the modified ray-casting

Ci Color of ith voxel or ith sample point

C Composited color of a pixel rendered by the conventional ray-casting

Cv,p pth share of the color of a data voxel v

C′
S Scaled interpolated color of a sample point s rendered by the modified ray-casting

C′
p pth share of the composited color of a pixel rendered by the modified ray-casting

C′
s,p pth share of scaled interpolated color of sample point s

C’ Scaled composited color rendered by modified ray-casting

Di Interpolation factor of ith voxel or ith saple point

X(d) Fixed point representation of a float X

εx,y Roundoff error due to rounding off x by y decimal places

Multimed Tools Appl (2016) 75:6207–6235 6233

References

1. AlZain MA, Pardede E, Soh B, Thom JA (2012) Cloud computing security: From single to multi-clouds.
In: Proceedings of the 45th Hawaii International Conference on System Sciences Hawaii, pp 5490–5499

2. Benaloh JC (1987) Secret sharing homomorphisms: Keeping shares of a secret secret. In: Proceedings
of the Advances in Cryptology–CRYPTO’87, Sanata Barbara, pp 31–36

3. Catrina O, Saxena A (2010) Secure computation with fixed-point numbers. In: Proceedings of the 14th
international conference on financial cryptography and data security, Tenerife, pp 35–50

4. Chor B, Kushilevitz E (1993) Secret sharing over infinite domains. J Cryptol 6:87–95
5. Cooper J, Donovan D, Seberry J (1994) Secret sharing schemes arising from Latin sqaures. Bull Inst

Comb Appl 12:33–43
6. Dorn K, Ukis V, Friese T (2011) A cloud-deployed 3D medical imaging system with dynamically opti-

mized scalability and cloud costs. In: Proceedings of the 37th EUROMICRO conference on software
engineering and advanced applications, Oulu, pp 155–158

7. Fellgiebel A, Müller MJ, Wille P et al (2005) Color-coded diffusion-tensor-imaging of posterior
cingulate fiber tracts in mild cognitive impairment. Neurobiol Aging 6:1193–1198

8. Finamore T (2012) Shamir’s secret sharing scheme using floating point arithmetic. Master Thesis,
Florida Atlantic University

9. Harn L, Changlu L (2010) Authenticated group key transfer protocol based on secret sharing. IEEE
Trans Comput 59:842–846

10. Henry K (2008) The theory and applications of homomorphic cryptography. Master Thesis
11. Kamara S, Lauter K (2010) Cryptographic cloud storage. In: Proceedings of the 14th international con-

ference of financial cryptography and data security: Workshop on Real-Life Cryptographic Protocols
and Standardization Canary Islands, pp 136–149

12. KDDI Inc. (2012) Medical real-time 3d imaging solution. Online Report. http://www.kddia.com/en/sites/
default/files/file/KDDI America Newsletter August 2012.pdf

13. Lathey A, Atrey PK, Joshi N (2013) Homomorphic low pass filtering on encrypted multimedia over
cloud. In: Proceedings of the 7th IEEE international conference on the semantic computing, Irvine,
pp 310–313

14. Levoy M (1988) Display of surfaces from volume data. IEEE Comput Graph Appl 8:29–37
15. Mather T, Kumaraswamy S, Latif S (2009) Cloud security and privacy: An enterprise perspective on

risks and compliance. O’Reilly Media Inc.
16. Mohanty M (2013) Secret sharing approach for securing cloud-based image processing. PhD Thesis
17. Mohanty M, Atrey PK, Tsang Ooi W (2012) Secure cloud-based medical data visualization. In:

Proceedings of the 20th ACM international conference on Multimedia, Nara, pp 1105–1108
18. Mohanty M, Tsang Ooi W, Atrey PK (2013) Secure cloud-based volume ray-casting. In: Proceedings of

the IEEE international conference on cloud computing technology and services, Bristol
19. Naehrig M, Lauter K, Vaikuntanathan V (2011) Can homomorphic encryption be practical? In:

Proceedings of the 3rd ACM workshop on cloud computing security workshop, Chicago, pp 113–124
20. NICE (2011) Desktop cloud visualization. Online Report. http://www.nice-software.com/products/dcv
21. NVIDIA (2009) Realityserver 3.0 white paper. Online Report. http://www.mentalimages.com/fileadmin/

user upload/PDF/RealityServer White Paper1212.pdf
22. Parsonson L, Grimm S, Bajwa A, Bourn L, Bai L (2012) A cloud computing medical image analysis and

collaboration platform. In: Cloud Computing and Services Science. Springer, New York, pp 207–224
23. SaghaianNejadEsfahani SM, Luo Y, Cheung SCS (2012) Privacy protected image denoising with

secret shares. In: Proceedings of the 19th IEEE international conference on image processing, Orlando,
pp 253–256

24. Shamir A (1979) How to share a secret. Commun ACM:612–613
25. Sinha System (2012) Cloud based medical image management and visualization platform. Online

Report. http://www.shina-sys.com/assets/brochures/3Di.pdf
26. Smelyanskiy M, Holmes D, Chhugani J (2009) Mapping high-fidelity volume rendering for medical

imaging to CPU, GPU and many-core architectures. IEEE Trans Vis Comput Graph 15:1563–1570
27. Tharaud J, Wohlgemuth S, Echizen I et al (2010) Privacy by data provenance with digital watermarking.

In: Proceedings of the 6th international conference on intelligent information hiding and multimedia
signal processing, Darmstadt, pp 510–513

28. Vazhenin D (2012) Cloud-based web-service for health 2.0. In: Proceedings on joint international
conference on human-ventered computer environments, Hamamatsu, pp 240–243

29. Zissis D, Lekkas D (2012) Addressing cloud computing security issues. Future Gener Comput Syst
28:583–592

http://www.kddia.com/en/sites/default/files/file/KDDI_{A}merica_{N}ewslette r_{A}ugust_{2}012.pdf
http://www.kddia.com/en/sites/default/files/file/KDDI_{A}merica_{N}ewslette r_{A}ugust_{2}012.pdf
http://www.nice-software.com/products/dcv
http://www.mentalimages.com/fileadmin/user_{u}pload/PDF/RealityServer_{W}hi te_{P}aper1212.pdf
http://www.mentalimages.com/fileadmin/user_{u}pload/PDF/RealityServer_{W}hi te_{P}aper1212.pdf
http://www.shina-sys.com/assets/brochures/3Di.pdf

6234 Multimed Tools Appl (2016) 75:6207–6235

Manoranjan Mohanty is a postdoctoral fellow in the Security Lab of Swedish Institute of Computer Sci-
ence (SICS Swedish ICT), where he is employed under ERCIM Alain Bensoussan research fellowship
program. He obtained PhD from Department of Computer Science, National University of Singapore in 2014.
Broadly, his research interest includes cloud-based outsourcing, hidden domain processing, applied security
and privacy, and multimedia computing.

Wei Tsang Ooi received the BSc (Hon.) degree from the National University of Singapore in 1996, and
the PhD degree in computer science from Cornell University, in 2001. He spent a year as postdoc at Berke-
ley Multimedia Research Center in U.C. Berkeley, before rejoining NUS in 2002, where he is currently
an associate profes- sor in the Department of Computer Science. His research interests include interactive
multimedia systems, including zoomable videos and net- worked graphics.

Multimed Tools Appl (2016) 75:6207–6235 6235

Pradeep K. Atrey is an Assistant Professor at the State University of New York, Albany, NY, USA. He is
also an (on-leave) Associate Professor at the University of Winnipeg, Canada and an Adjunct Professor at
University of Ottawa, Canada. He received his Ph.D. in Computer Science from the National University of
Singapore, M.S. in Software Systems and B.Tech. in Computer Science and Engineering from India. He was
a Postdoctoral Researcher at the Multimedia Communications Research Laboratory, University of Ottawa,
Canada. His current research interests are in the area of Security and Privacy with a focus on multimedia
surveillance and privacy, multimedia security, secure-domain cloud-based large-scale multimedia analytics,
and social media. He has authored/co-authored over 90 research articles at reputed ACM, IEEE, and Springer
journals and conferences. His research has been funded by Canadian Govt. agencies NSERC and DFAIT,
and by Govt. of Saudi Arabia. Dr. Atrey is on the editorial board of several journals including ACM Trans.
on Multimedia Computing, Communications and Applications, ETRI Journal and IEEE Communications
Society Review Letters. He was also guest editor for Springer Multimedia Systems andMultimedia Tools and
Applications journals. He has been associated with over 30 international conferences/workshops in various
roles such as General Chair, Program Chair, Publicity Chair, Web Chair, Demo Chair and TPC Member. Dr.
Atrey was a recipient of the Erica and Arnold Rogers Award for Excellence in Research and Scholarship
(2014), ETRI Journal Best Editor Award (2012), ETRI Journal Best Reviewer Award (2009) and the three
University of Winnipeg Merit Awards for Exceptional Performance (2010, 2012 and 2013). He was also
recognized as ICME 2011 - Quality Reviewer.

	Secret sharing approach for securing cloud-based pre-classification volume ray-casting
	Abstract
	Introduction
	Related work
	Attacker model
	Background
	Pre-classification volume ray-casting
	Shamir's secret sharing
	Share creation
	Secret reconstruction

	Pre-classification volume ray-casting with fixed point operations
	Modifying interpolation
	Modifying composition

	Cloud-based secure rendering
	Architecture
	SR-MPVR
	Data preparation
	Ray-projection
	Post ray-projection rendering
	Image recovery

	SR-MSSS
	SR-RSS
	Data preparation
	Post ray-projection rendering
	Image Recovery

	Results and analysis
	Security analysis
	Confidentiality
	Integrity
	Availability

	Performance analysis
	Computational overhead
	Data overhead
	Image quality

	Conclusion
	Acknowledgment
	Appendix: A: Example of conventional pre-classification ray-casting and SR-MPVR
	Conventional pre-classification volume ray-casting
	Pre ray-projection
	Ray-projection
	Sampling
	Interpolation
	Composition
	SR-MPVR
	Data preparation
	Ray-projection
	Post ray-projection rendering
	Image recovery
	Appendix B: List of symbols
	Appendix: B: List of symbols
	References

