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Abstract Recently, several interesting computational intelligence based image denoising
techniques have been reported for the removal of either salt & pepper or uniform impulse
noise. However, to the best of our knowledge, the difficult challenge of developing a multi
denoising method that can remove mixed-impulse noise, uniform impulse, salt & pepper, and
impulse-burst noise, has not been reported so far. In this regard, we propose a new noise
removal approach called INDE-GP for the removal of multi types of impulse noises. The
proposed approach consists of two stages: noise detection stage and removal stage. At first, the
impulse noise is localized by a single stage GP detector that exploits various information-rich,
rank-ordered and robust statistical features for detection. Next the noise is removed only from
the detected noisy pixels by single stage GP estimator. This estimator is developed by
exploiting the global learning capability of GP and local statistical measures of noise-free
pixels present in the neighborhood of noisy pixels. The experimental results and comparative
analysis with existing denoising techniques show that multi denoising performance of the
proposed INDE-GP approach is better both quantitative and qualitative ways.

Keywords Image denoising . Genetic programming . Noise detection .Mixed impulse noise .

Salt & pepper noise . Impulse burst noise . Statistical features . Robust outlyingness ratio

Multimed Tools Appl (2016) 75:5887–5916
DOI 10.1007/s11042-015-2554-0

Electronic supplementary material The online version of this article (doi:10.1007/s11042-015-2554-0)
contains supplementary material, which is available to authorized users.

* Syed Gibran Javed
sgibranjaved@gmail.com

1 Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied
Sciences (PIEAS), P.O. Nilore, Nilore, Islamabad, Pakistan

2 College of Computer and Information Sciences, King Saud University, P.O. Box 51178,
Riyadh 11543, Kingdom of Saudi Arabia

http://dx.doi.org/10.1007/s11042-015-2554-0


1 Introduction

The quality of an image is degraded due to noise added during its acquisition or transmission.
This degradation by noise causes not only an unpleasant effect on its viewers but, in practical
imaging applications, it may also degrade the performance of various subsequent processes
such as image segmentation [36], object recognition [28] etc. Acquisitions from low graded
imaging sensor, and inherent noise in the transmission channels are the most common causes
of noise in images [6]. Irrespective of the cause, the behavior of the noise is random and prior
knowledge about its random behavior is helpful for its removal. However, this prior informa-
tion is not known in most practical applications.

A common type of noise is impulse noise that may occur in many practical imaging and
multimedia applications such as medical imaging, remote sensing, image segmentation and
content based image retrieval [20, 23, 27, 35]. This noise is caused due to malfunctioning of
optical sensor or due to electromagnetic interference during their acquisition, transmission and
storage. When this noise corrupts an image, some pixels are affected by noise and some left
noise-free. However, it is difficult to distinguish between a noisy pixel and noise-free pixel.
Several methods are developed to denoise images from impulse noise. Few notable methods
are discussed below.

An easily implementable technique for impulse noise removal is Standard Median Filter
(SMF) [6]. However, it also processes noise-free pixels that cause removal of fine details in the
denoised image. Afterwards, Weighted Median [2] and Center Weighted Median [25] filters
were proposed to preserve the image details by assigning weights to the pixels in the selected
window. Similarly, Adaptive Median Filter (AMF) [8] was proposed by Hwang and Haddad,
whereby the window size was scaled to a predefined level during filtration process. However,
in case of AMF, the larger window size causes the blurring of edges in the image.

Though the above mentioned filtration techniques were easy to implement but they filter
both noisy and noise-free pixels in the image. Consequently, to avoid filtration of noise-free
pixels, the idea of first locating an impulse noise and then removing, gained popularity among
researchers. In this regard, switching scheme for median filtering was introduced [24],
whereby, first impulses are detected and then removed with the median filter. In this way,
only noisy pixels are removed and image details are preserved. Another technique based on
switching median filter was proposed in [22]. The detection scheme was based on the
minimum absolute value of four convolutions obtained using 1-D Laplacian operators.
Similarly, Chan et al. [3] proposed a two phase scheme for the removal of salt & pepper
noise. They employed adaptive median filter for detection and noise removal was performed
by using a specialized regularization method. On the other hand, Luo et al. [16] proposed
alpha-trimmed mean filter in the detection phase. A linear combination of both the original and
the median pixel in a local window was used in the estimation phase. Dempster’s combination
rule based detector and rank-ordered arithmetic mean based noise removal was suggested [15].
In [30], a four-phase detection scheme was suggested to localize noise and median filter was
employed to remove noise. Switching based anisotropic diffusion was also used to suppress
random valued impulse noise [10].

Due to the introduction of noise detection stage in impulse noise removal methods, several
intelligent detectors are reported for the classification of noisy and noise-free pixels.
Computational intelligent (CI) techniques like artificial neural networks (ANN), evolutionary
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computing (EC) have attracted many researchers. Self-organizing maps and feed forward
neural networks were suggested to detect impulse noise [9, 12, 31]. Genetic Programming
(GP) has recently gained attention in solving many image processing problems. GP ap-
proaches have also been used for the removal of impulse noise. A two-stage GP detector for
the detection of salt & pepper and uniform impulse noise is reported in Universal Impulse
Noise Filtering using GP (UINFGP) [19]. If the pixel is detected as noisy by the first detector,
it is filtered with Alpha-Trimmed Mean filter. Otherwise, the second detector detects noise and
uses Center Weighted Median filter to remove noise. Else the pixel is categorized as noise-free.
GP as an estimator was used in Impulse Noise Filtering using GP (INFGP) [18]. For noise
detection, they used switching median filtering technique by selecting minimum absolute
value of convolutions kernels. The convolutions were obtained by using 1-D Laplacian
operators against a pre-specified threshold. Recently, for salt & pepper and uniform impulse
noise removal, another two stage method ROR-NLM is presented [1]. In this approach, the
detector is based on a new statistics called Robust Outlyingness Ratio (ROR), whereby, noise
is removed by an estimator based on Non-Local Means (NLM). The above approaches [1, 18,
19] are selected for comparison because they are more relevant to our proposed GP based
denoising approach.

In this paper, to achieve the objective of multi-denoising, we propose a new two-stage
GP approach Impulse Noise Detection and Estimation using Genetic Programming (INDE-
GP). The proposed INDE-GP approach is capable of removing mixed impulse, uniform
impulse, salt & pepper noise, and impulse burst noises. The global learning capability of
GP is exploited with local statistical features that have the ability to denoise multi-types
impulse noises. It comprises an impulse noise detection stage followed by an estimation
stage. We propose a single stage GP detector that is modeled as a function of rank-ordered,
robust statistical features to detect noise effectively instead of two stage GP detectors [19].
Instead of traditional mean or median filters, we propose GP based estimator to effectively
estimate the pixel value. This GP estimator is a function of statistical features of noise-free
pixels in the neighborhood of noisy pixel. Our GP based approach using statistical
measures of noise-free pixels has given the improved denoising performance than other
approaches [1, 18, 19].

To summarize, our contribution in this paper is as follows:

(1) Development of a multi denoising approach INDE-GP for removal of mixed impulse,
uniform impulse, salt & pepper, and impulse burst noises.

(2) Development of single stage GP based detector by exploiting the combination of rank-
ordered and robust statistical features to localize noise.

(3) Development of single stage GP based estimator to remove noise by effectively
exploiting statistical features of noise-free pixels in their neighborhood.

The performance of the proposed INDE-GP approach is evaluated on various standard
images. The effectiveness of the proposed approach is highlighted by qualitative and quanti-
tative comparisons with other existing approaches.

Section 2 describes different types of impulse noises. Section 3 explains the proposed
INDE-GP approach. Implementation details are described in Section 4. Section 5 presents the
results and discussion. Finally, concluding remarks are provided in Section 6.
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2 Impulse noise types

The presence of noise in an image degrades its quality. Due to randomness, the noise models
are represented by different probability density functions (pdfs) e.g., Uniform, Impulse,
Gaussian etc. [6]. When an image is corrupted with Gaussian noise, local variance of each
pixel is affected which means that no pixel is noise-free. An image f (x,y) corrupted by noise
η(x,y) is given by,

g x; yð Þ ¼ f x; yð Þ þ η x; yð Þ ð1Þ
where g(x,y) represents the degraded image.

Some Gaussian noise removal methods [4, 7, 14, 33] are suggested to remove salt & pepper
noise by considering it as the Gaussian noise with zero standard deviation, however, in this
work, we want to exploit the presence of noise-free pixels to improve image quality. Therefore,
we target the removal of impulse noise and its variants. When a pixel in an image is corrupted
by an impulse noise, the actual value of the pixel is completely replaced by the noise.
However, the degraded image g(x,y) also contains set of pixels that are not affected by the
impulse noise. Therefore, Eq. (2) suggests that at any location (x,y) in a degraded image, either
a pixel is noisy η(x,y) or noise-free f(x,y), i.e.,

g x; yð Þ ¼ η x; yð Þ withprobabilityp
f x; yð Þ withprobability1−p

�
ð2Þ

Impulse noise is categorized as either salt & pepper (fixed-valued) noise or uniform impulse
(random-valued) noise. In case of salt & pepper noise, the noisy pixel η(x,y) can have fixed
values either 0 or 255 for an 8-bit image. In case of uniform impulse noise, the noisy pixel η(x,
y) can have any discrete value in the dynamic range [0, 255] for an 8-bit image. Another
characteristic of impulse noise is that it is highly different from its neighborhood pixels and has
no correlation with the actual value of that pixel. Therefore, the neighborhood of the corrupted
pixels plays an important role in impulse noise removal. That is why, small local windows
usually of size 3×3 and 5×5 are selected for processing.

The mixed impulse noise model is more realistic. It assumes that images can be
corrupted with salt & pepper and uniform impulse noise, simultaneously. It is given by
Eq. (3)

g x; yð Þ ¼
η1 x; yð Þ withprobabilityp=2
η2 x; yð Þ withprobabilityp=2
f x; yð Þ withprobability 1−pð Þ

8<: ð3Þ

where η1(x,y)∈{Lmin,Lmax} and η2(x,y)∈[Lmin,Lmax] represent the salt & pepper and
uniform impulse noise, respectively. Lmin and Lmax show the lowest and highest possible
intensity values of the pixel. The occurrence of mixed impulse noise in images increases
the difficulty level of the denoising problem. Figure 1 illustrates the comparison amongst
different impulse noise models along with their respective histograms. The left column
shows the original image containing single intensity value and its variants corrupted by
uniform impulse, salt-pepper and mixed impulse noises, respectively. The right column
shows their respective histograms. The histograms demonstrates an image corrupted by
mixed impulse noise contains both salt-pepper and uniform impulse noise,
simultaneously.
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In many practical applications, images are transmitted using an analog signal communica-
tion channel [11, 29] . For example, aerial images are transmitted by an aircraft or unmanned
aerial vehicle to ground station where they are subject to visualization and analysis. In such
applications, various types of electromagnetic sensors and signal processing units are also
installed. They cause electromagnetic interference with the operating waveband of the trans-
mission channel and corrupt several consecutive pixels of the transmitted aerial images in
single or multiple rows. This type of noise is called impulse burst noise. Removal of this type
of noise is very important in order to improve the quality of the receiving image at the ground
station. In Eq. (2), p is the probability of a pixel to be noisy, whereas, in impulse burst noise
model, p is the probability of a row to be corrupted by the burst noise. This noise can randomly
corrupt any row in the image. The maximal length of the burst is another parameter that
characterizes the impulse burst noise. The burst length describes the maximum number of
consecutive pixels in a corrupted row of the image.

3 Proposed INDE-GP approach

In this section, Impulse Noise Detection and Estimation using Genetic Programming
(INDE-GP) approach is described for the restoration of corrupted images. Figure 2

Fig. 1 Comparison of different impulse noise models and their respective histograms
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illustrates the working of multi denoising INDE-GP approach. The denoising functionality
of INDE-GP consists of two stages. Stage–I detects the locations of noisy pixels by
extracting features from noisy image G. These extracted features are evaluated by the
proposed GP detector to classify pixels as either noisy or noise-free. It generates a binary
noise map B∈{0,1}, where ‘0’ and ‘1’ represents noise-free and noisy pixels, respectively.
Stage–II extracts statistical features from the neighborhood of detected noisy pixels in G

using detection information in B. Stage – II estimates the denoised image bF by using the
proposed GP estimator. The procedure can be applied iteratively to improve the quality of
the denoised image, if required.

Our major contribution in this work is the design and development of impulse noise
detector (Stage-I) and the estimator (Stage-II) using genetic programming. For Stage-I, we
designed impulse noise detector by combining rank-ordered and robust statistical features
extracted from noisy images. These features are then used by the single stage GP detector to
classify as noisy or noise-free pixels. For Stage-II, we designed GP estimator based on
statistical features of noise-free pixels extracted from the neighborhood of noisy pixels. The
developments of these stages are discussed in the following sub-sections.

3.1 Stage-I: GP based impulse noise detection

The main objective of Stage-I is to detect whether a pixel g(x,y) at any location in the corrupted
image G is noisy or noise-free. This makes it a binary classification problem in which the
classifier results in either ‘0’ for noise-free pixels or ‘1’ for noisy pixels. In order to achieve the
objective of Stage-I, we need to develop a binary classifier that takes discriminant features
extracted from the noisy image and detects impulse noise. The outcome of this stage is a binary
noise map B that locates the noisy pixels.

Towards the development of impulse noise detector, the first issue is the selection of those
features that can discriminate the impulsive behavior. The second issue is how GP can be
exploited to develop an improved impulse noise detector. These issues are addressed in the
following subsections.

Fig. 2 Proposed INDE-GP Denoising Approach
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3.1.1 Feature extraction for impulse noise detector

In order to develop an impulse detector, we have selected eight statistical features most
commonly used in the literature [1, 5, 19, 34]. Table 1 indicates these discriminant features
to represent the effective behavior of impulse noise. These features collectively form a feature
vector u=[u1,....,u8] that represents the input parameters of proposed model. For each pixel in
the noisy image, a corresponding feature vector u is computed. Because the pixels corrupted
by impulse noise have no correlation with the actual intensity values and they are different
from their neighborhood, we have chosen small local windows of sizes 3×3 (W3) and 5×5
(W5) for feature vector formation.

Rank Ordered Absolute Difference (ROAD) u1 is a local statistics which is effective in
representation of an impulsive behavior. Its high value corresponds to a noisy pixel and low
value corresponds to noise-free pixel. In case of uniform impulse noise, there might be the case
where the absolute difference between the noisy pixel and its neighborhood may not be very
significant. Therefore, to address this Rank Ordered Logarithmic Difference (ROLD) was used
as feature element u2. Another local statistics is Robust Outlyingness Ratio (ROR) u3 that
represents a measure about how much a pixel is likely to be an impulse. Its large value means
the given pixel is likely to be an impulse. The feature elements u4, u5, u7 denote the
Normalized Median of Absolute Deviation (MADN) from median in W5, Median of
Absolute Deviation (MAD) from median in W5 and W3, respectively. The feature elements
u6, u8 represents absolute deviations from median in W5 and W3, respectively. Absolute
deviations give useful information about a pixel. Larger deviations indicate that the pixel
may be corrupted and smaller deviation means that it could be free from noise. Median of the
absolute deviation from the median is a robust estimator that is able to correctly estimate the
local image variance in the presence of impulse noise and preserves fine details in the image.
With the help of these extracted statistical features, we developed a single GP detector for
impulse noise detection. These extracted features are given to the GP learning process as
terminal set.

Table 1 Discriminant features for GP based detector

Features Equations

Rank ordered absolute difference [5]
u1 x; yð Þ ¼ ∑

4

i¼1
sr ið Þ; sr ¼ sort W 3−g x; yð Þj jð Þ (4)

Rank ordered logarithmic difference [34]
u2 x; yð Þ ¼ ∑

4

i¼1
sl ið Þ; sl ¼ sort log W 3−g x; yð Þj jð Þð Þ (5)

Robust outlyingness ratio [1] u3 x; yð Þ ¼ g x;yð Þ−med W 5ð Þð Þ
MADN W 5ð Þ

��� ��� (6)
Normalized median of absolute deviations from

median [1]
u4(x,y)=MADN(W5)=|MAD5(W5)/0.6745| (7)

Median of absolute deviation from median 5×5
window [19]

u5(x,y)=MAD5(W5)=med(|W5−med(W5)|) (8)

Absolute deviation from median 5×5 window [19] u6(x,y)=|g(x,y)−med(W5)| (9)

Median of absolute deviation from median 3×3
window [19]

u7(x,y)=med(|g(x,y)−med(W3)|) (10)

Absolute deviation from median 3×3 window [19] u8(x,y)=|g(x,y)−med(W3)| (11)
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3.1.2 Development of GP based detector

For the development of GP detector, we first prepared the training dataset S={(u(n),t(n))}n=1
N ,

where N is the total number of training samples. As discussed in previous section, u is the
extracted feature vector from nth pixel of the noisy training images. t is the corresponding nth

target pixel in the ground truth binary noise map T. The training dataset is prepared by
corrupting each training image with different densities of mixed impulse noise. For each noise
level, its ground truth binary noise map T is stored. Once the features are extracted and training
data is prepared, it is given to the GP learning process to develop the impulse noise detector.

The main objective is to develop an impulse noise detector that classifies each pixel in the
noisy image as noisy or noise-free. This objective is achieved by considering impulse noise
detection D as a function of feature vector u and is given by (12)

b ¼ 0 if Dθ uð Þ < 0
1 if Dθ uð Þ≥0

�
ð12Þ

where, b is the binary output of the detector, and θ represents GP parameters.
Figure 3 illustrates the GP learning process for the development of impulse noise detector.

The first step is the initialization of the random population of detectors. Each individual
(detector) in the population is represented as a tree structure comprising a set of terminals,
and non-terminals. Non-terminals may include arithmetic, logical or relational operators or
functions. Table 2 shows the function set for the impulse noise detector. Before population

Fig. 3 GP Learning Process for Impulse Noise Detector
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initialization, we need to specify the terminal set. The terminal set consists of the feature vector
u along with 10 uniformly distributed random constants in the range [−10, 10]. The inclusion
of these random constants in the terminal set improves the learning process and helpful in
application of mutation operator [13]. Besides representing GP tree as a set of terminals and
non-terminals, the size of initial population must be specified. Each individual in the popula-
tion represents a candidate solution as a tree structure.

The next step is the evaluation of fitness level of each detector or individual. To evaluate the
fitness of each individual, we select detection accuracy as a fitness function that is given as:

f itDetAcc ¼ Trη þ Tr f
M

ð13Þ

where, Trη and Trf represents no. of truly detected noisy pixels and truly detected noise-free
pixels, respectively and M represents the total number of pixels. We want the learning process
to maximize detection accuracy. If fitDetAcc=1, all the pixels are correctly classified as noisy or
noise-free. If fitDetAcc=0, all pixels are incorrectly classified. During training, the learning
process searches for the best detector that gives maximum detection accuracy in the search
space. The number of truly detected pixels is counted by comparing the output of the candidate
detector with the corresponding ground truth t in the training data.

When all the candidate detectors are evaluated for their fitness, the termination criterion is
checked. GP process can be terminated either by the maximum no. of generations achieved or
the required detection accuracy is achieved. Otherwise, GP selects fittest individuals from the
current population to apply genetic operators. There are various techniques for the fitness
based selection of individuals present in the current population. We selected the most
commonly used tournament selection criterion. It randomly selects a subset of population
described by tournament size instead of entire population. It also gives chance to weak
individuals to improve their fitness. The individuals in the tournament compete with each
other and the individual with best fitness in the tournament is selected.

Next step is the application of crossover and mutation operators to the selected individuals
for the generation of new population. The optimal ratio of crossover/mutation play important
role in the convergence of candidate solution towards the optimal/near-optimal solution.
Crossover operator produces new offspring by recombining sub-trees of two selected individ-
uals. Mutation operator randomly selects a portion of the individual to change. This causes the

Table 2 Function set for GP detector and estimator

Function Arity Description

iflte 4 IF THEN ELSE operation

plus 2 Adds two inputs

minus 2 Subtracts the second input from the first input

times 2 Multiplies the first input with the second input

psqroot 1 Protected square root of input

tanh 1 Hyperbolic tangent of input

exp 1 Exponential value of input

cos 1 Cosine of input

plog 1 Protected natural log of input

square 1 Square of input
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diversity in the solution space that helps in avoiding the local minima. After the generation of
new population, the fitness function is evaluated and the whole cycle is repeated. Finally, when
the termination criteria meet, the best individual is selected as the impulse noise detectorDθ(u).

3.2 Stage- II: GP based impulse noise estimation

The main purpose of Stage-II is to remove noise by estimating the most suitable pixel value to
replace the detected noisy pixel. This stage takes two inputs: noisy image G, and the binary
noise map B (output of Stage-I). This stage extracts statistical features from the set of noise-
free pixels present in the neighborhood of the detected noisy pixel as indicated by B. The set of
noise-free pixels in G remain unprocessed. The proposed GP estimator is a mapping function
of statistical features to the restored pixel value at any location (x,y). It is to be noted that only
set of noise-free pixels present in the neighborhood contributes in the estimation for noise
removal. Inclusion of noisy pixels to calculate statistical features may lead to erroneous

estimation. The output of Stage-II is the denoised image bF.
GP development process of the estimator is similar to the development of the detector,

however, its model is different due to different set of features, training set, and the objective
function.

3.2.1 Feature extraction for GP estimator

Towards the development of Stage-II, we selected six statistical features extracted from the
noisy image. Our idea is that the extraction of statistical features from the set of noise-free
pixels present in the local neighborhood of a detected noisy pixel may lead to better estimation.
Therefore, statistical features like mean, median and standard deviation (std) of noise free
pixels in 3×3 and 5×5 neighborhood of a noisy pixel are selected. The feature vector v=[v1,
…,v6] consists of six statistical features. Let Z1,Z2 represents two sets of noise-free pixels in a
window of size 5×5 and 3×3, respectively. Here, v1 and v2 represent the mean of Z1 and Z2,
respectively. v3 and v4 represent the median of Z1 and Z2, respectively. v5 and v6 represent the
standard deviation of Z1 and Z2, respectively.

3.2.2 Development of GP estimator

The development of an accurate GP estimator for noise removal is the main objective in Stage-
II. We extracted the feature vector v for each noisy pixel g(x,y) and give it as input parameter to

our GP based estimator Eϕ(⋅) to estimate the restored value bf x; yð Þ of the pixel.
bf x; yð Þ ¼ Eϕ vð Þ ð14Þ

In order to prepare the training dataset S'={(v(k),f(k))}k=1
K where v(k) represents the kth

feature vector corresponds to kth target pixel f(k) and K represents the total number of samples
for estimator training, the degraded imageG, the ground truth T and original image F are used.
The feature vectors v are extracted for each noisy pixel indicated by ‘1’ in the ground truth T.
The corresponding intensity values in original image F represent the desired target values.
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The development process of the estimator is similar to the detector development process
except the selection of the terminal set and the fitness function. Here, the GP process searches
for the best estimator that minimizes the fitness function. Each candidate solution (estimator) is
represented as a tree structure comprising terminals and non-terminals sets. The terminal set
consists of elements of feature vector v and random constants in the range [0, 255] generated
from uniform distribution. This range is selected because each pixel to be approximated can
have values from 0 to 255. The non-terminals include the function set as mentioned in Table 2.
The initial population of estimators is generated as per predefined population size using
ramped half and half method. Next each candidate solution in the initial population is
evaluated. To achieve the objective of the estimator, we have selected Mean squared error
(MSE) as a fitness function to be minimized given by Eq. (15). The minimum score of fitness
function indicates the effectiveness of the estimator.

f itMSE ¼ 1

K

XK
k¼1

f kð Þ−bf kð Þ� �2
ð15Þ

Rest of the GP development process for the estimator is same as that for the detector.
Finally, when GP learning process is stopped after convergence criterion is met or maximum
no. of generations achieved, the best individual is selected as noise removal estimator Eϕ(v).

4 Implementation details

The proposed INDE-GP approach for the removal of impulse noise is implemented in MATL
AB 7.12 environment [26]. GP based detector and estimator are developed using GPTIPS
toolbox [21]. Before starting the GP process, GPTIPS requires initialization of few parameters
described in Table 3. The simulations were carried out using Intel Core i7 processor with
12GB RAM.

Table 3 Initialization of GP parameters

Parameters GP detector GP estimator

Terminal set Feature Vector, u=[u1,....,u8]
Uniformly Distributed Random

Constants [−10,10]

Feature Vector, v=[v1,....,v6]
Uniformly Distributed Random

Constants [0,255]

Function set Listed in Table 2 Listed in Table 2

Fitness function Detection Accuracy, Eq. (13) Mean Squared Error, Eq. (15)

Initial population size 500 200

Max generations 25 25

Population initialization method Ramped Half and Half Ramped Half and Half

Operator probabilities Variable Crossover/ Mutation ratio Variable Crossover/ Mutation ratio

Termination criterion Fitness=0.99 Fitness=0.01

Survival criterion Best Individual Best Individual
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In order to develop the proposed detector and the estimator, standard grayscale images are
used as training image set that include CAMERAMAN, COUPLE and HOUSE images (see
Fig. 4). The spatial resolution of each training image is 256×256 pixels. These training images
are used to generate two training datasets; one for the impulse noise detector S={(u(n),t(n))}n=1

N

and the other for the noise removal estimator S'={(v(k),f(k))}k=1
K . For training purpose, each

image is corrupted with mixed impulse noise to obtain their noisy variants with noise densities
of 10 to 50 % in steps of 10 %. Therefore, a total of 15 noisy images are used to generate the
training sets.

Figure 5 shows the set of testing images used to evaluate the denoising performance. These
are standard images that include AIRPLANE, BOAT, LENA, MANDRILL, PEPPERS,
BRIDGE, and ELAINE. The spatial resolution of each testing image is 512×512. We
corrupted these images with different levels of mixed impulse, uniform impulse and salt &
pepper noises. To evaluate our proposed approach for the removal of impulse burst noise, we

Fig. 4 Set of training images. a CAMERAMAN, b COUPLE, c HOUSE

Fig. 5 Set of testing images. aAIRPLANE, bBOAT, cBRIDGE, dELAINE, eLENA, fMANDRILL, g PEPPERS
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also corrupted and denoised three aerial images of sizes 256×256, 512×512 and 1024×1024
taken from USC-SIPI image database [32].

5 Results and discussions

In this section, the denoising performance is evaluated on various standard test images. To
evaluate the multi-denoising performance, we have performed four sets of experiments. In the
first set of experiments, we evaluated the performance of INDE-GP to remove mixed impulse
noise. Next, we tested the denoising performance of our proposed approach when images were
corrupted with uniform impulse or salt & pepper noise. In the last set of experiments, we
corrupted three aerial images with impulse burst noise and denoised with our proposed
approach.

Two performance metrics; Peak Signal to Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM) are selected to assess the denoising performance of INDE-GP. PSNR
measure is an approximation to human perception of restoration quality. It is given by Eq. (16)

PSNR ¼ 10 log10
Imaxð Þ2
MSE

 !
ð16Þ

where Imax is the maximum intensity value. For 8-bit image, it is 255. MSE is the mean
square error. A high PSNR means high reconstruction quality. On the other hand, SSIM
[37] is a method for measuring similarity between the structures of two images. Spatially
close pixels have strong inter-dependencies and these dependencies provide important
information about the structure of the objects in the image. SSIM dynamically ranges
between −1 and 1 for each block. The value of 1 is only achieved when the two images
have exact identical structures. Eq. (17) is used to measure SSIM between two blocks y1
and y2 of size N×N.

SSIM y1; y2ð Þ ¼
2μy1

μy2
þ c1

� �
2σy1y2 þ c2
� �

μ2
y1
þ μ2

y2
þ c1

� �
σ2
y1
þ σ2

y2
þ c2

� � ð17Þ

where μy1
; μy2

denotes the mean of windows y1 and y2, respectively. σ2
y1
;σ2

y2
denotes the

variance of y1 and y2, respectively. σy1y2 is the covariance of y1 and y2. c1 and c2 are
stabilization variables. Mean Structural Similarity Index Measure (MSSIM) gives the mean
value of the structural similarity between the blocks of reference image F and the denoised

image bF of same spatial resolution.
As a result of evolutionary process, the evolved GP expressions for noise detection and

estimation stages are given by Eqs. (18 and 19), respectively. Generally, computer generated
GP expressions cannot be easily understood by humans [17]. However, these expressions can
be easily evaluated by computers when their respective input parameters are provided.

In the following subsections, we report the results obtained by INDE-GP on test images
while denoising different variants of impulse noise. We also compared these results with
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existing relevant noise removal approaches including SMF [6], AMF [8], UINFGP [19], INFG
P [18] and ROR-NLM [1].

(18)
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5.1 Removal of mixed impulse noise

In this set of experimentation, we evaluated the denoising performance of our proposed
approach for the removal of mixed impulse noise. The standard test images were corrupted
with different densities of mixed impulse noise. At first, we corrupted BOAT and BRIDGE
images with 10–50 % mixed impulse noise. The BOAT and BRIDGE images contain medium
and high-level of image details. The PSNR curve for these images against different noise levels
are shown in Fig. 6a and c. It is worthy to note that high PSNR values are achieved by INDE-
GP across different noise levels in both images. For BOATand BRIDGE images, our approach
has achieved the maximum PSNR of 31.20 dB and 27.37 dB, respectively at 10 % noise level.
At 50 % noise, the maximum PSNR of 26.27 and 23.40 dB is also achieved. Comparison with
the curves produced by other existing methods, it is notable that the proposed approach has
outperformed the other approaches in terms of PSNR. Similarly, Fig. 6b and d show the plots
of MSSIM against different noise levels on BOAT and BRIDGE, respectively. It is obvious
from the plots that our approach has achieved better MSSIM values. On BOAT image, our
approach has yielded the maximum MSSIM values of 0.9491 and 0.8013 at 10 and 50 %
mixed impulse noise, respectively. However, in case of BRIDGE image, the maximum MSSI
M values of 0.8892 and 0.7080 are achieved.

To further assess the removal of mixed impulse noise, we have selected five relevant
existing approaches of SMF, AMF, UINFGP, INFGP, and ROR-NLM. In Table 4, we report

(19)
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the comparative analysis of our approach with existing approaches against different noise
levels for LENA and PEPPERS images. These images contain low and medium levels of
image details. It can be observed from Table 4 that results are consistent for these images. In
case of these images, the performance of our approach in terms of PSNR is better than other
methods. On all noise levels, the MSSIM values of our approach are better than other
approaches except at 50 % noise, where ROR-NLM has performed slightly better. In case of
LENA, the value of MSSIM by our approach is almost comparable to ROR-NLM. In case of
PEPPERS, ROR-NLM is slightly (0.0188) better than our approach. However, the corre-
sponding PSNR by ROR-NLM is much less than our approach. It can be depicted from better
PSNR values that the human visual perception of the results by our approach is better than
other denoising approaches. Moreover, our approach has preserved well the local structures of
the denoised images. We have also performed the comparative analysis for the removal of
mixed impulse noise on other testing images that are provided in the supplementary materials
as Table 1.

The visual performance of the proposed approach for the removal of mixed impulse noise
for LENA, PEPPERS and MANDRILL images are shown in Fig. 7. Figures 7a, f and k show
the original noise-free LENA, PEPPERS and MANDRILL images, respectively. These images
were corrupted by mixed impulse noise of 50 % noise density. These corrupted images are

Fig. 6 Comparative plots for mixed impulse noise removal a PSNR plot for BOAT, bMSSIM plot for BOAT, c
PSNR plot for BRIDGE, d MSSIM plot for BRIDGE
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shown as Fig. 7b, g and l, respectively. Figure 7e, j and o show the denoised images obtained
by our approach. For visual comparison, the denoised images produced by other approaches of
UINFGP and ROR-NLM are also given as Fig. 7c, h, m, and d, i, n, respectively. It is clearly
seen that the denoising results from our approach are better than UINFGP and ROR-NLM
approaches. These restored images by our approach are closer to their respective original
images. On the other hand, ROR-NLM is the second best. On visual inspection, we observe
that images denoised by our approach have preserved the image details well whereas ROR-
NLM has produced smoothed denoised images. This is due to the inherent blurring property of
NLM approach.

5.2 Removal of uniform impulse noise

In this set of experiments, we corrupted the testing images with different levels of uniform
impulse noise. Then the denoising performance of our approach is evaluated for BOAT and
BRIDGE testing images. Figure 8 shows the average PSNR and MSSIM plots for BOAT and
BRIDGE images against different levels of uniform impulse noise. Figure 8a and c show the
PSNR plots of our approach and its comparison with other approaches. At 10 % noise for
BOAT, our approach has produced the maximum PSNR of 30.98 dB that is 2.97 dB better than
ROR-NLM and 0.66 dB better than UINFGP. At 50 % noise, our approach has given the
maximum PSNR of 25.49 dB that is 6.17 dB better than UINFGP and 0.75 dB better than
ROR-NLM. In case of BRIDGE, for 10 and 50 % noise, our approach has yielded PSNR of
27.34 and 22.64 dB, respectively. For 10 % noise, UINFGP is the second best whereas for

Fig. 7 Visual comparison of mixed impulse noise removal. a LENA, b 50 % Corrupted LENA c UINFGP, d
ROR-NLM, e Proposed INDE-GP, f PEPPERS, g 50 % Corrupted PEPPERS, h UINFGP, i ROR-NLM, j
Proposed INDE-GP, k MANDRILL, l 50 % Corrupted MANDRILL m UINFGP, n ROR-NLM, o Proposed
INDE-GP
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50 % noise, ROR-NLM is the second best. It is inferred that due to higher PSNR values, the
visual perception of denoised images by our approach is better than other approaches. From
the MSSIM plots for these images as shown in Fig. 8b and d, it is noted that the details in the
denoised images by our approach are well-preserved. It is anticipated from these plots that
INDE-GP works better on images with medium and high levels of details while removing
uniform impulse noise.

Table 5 shows the quantitative comparison of our approach with five relevant ap-
proaches including SMF, AMF, UINFGP, INFGP, and ROR-NLM for LENA and PEPP
ERS images. These images are corrupted with different levels of uniform impulse noise.
In case of LENA image, our approach has produced better PSNR results for all noise
levels except at 50 % noise where ROR-NLM has performed 0.29 dB better than our
approach. In case of PEPPERS image, our approach has performed better at higher noise
levels. At 10 % noise, our approach has performed 0.49 dB less than INFGP. However,
at higher noise levels, INFGP performed very low as compared to INDE-GP. In terms of
MSSIM on both LENA and PEPPERS, INDE-GP performed better at lower noise levels
upto 30 %. However, at higher noise levels, the performance of INDE-GP is comparable
to ROR-NLM. From these results, it can be inferred that our approach gives better
denoising when medium level detailed images are corrupted with high density of uniform

Fig. 8 Comparative plots for uniform impulse noise. a PSNR plot for BOAT, bMSSIM plot for BOAT, c PSNR
plot for BRIDGE, d MSSIM plot for BRIDGE
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impulse noise. On images with low level of details, the performance of our approach is
comparable to ROR-NLM. Comparative analysis on other testing images is also provided
in the supplementary materials as Table 2.

Figure 9 shows the visual qualitative performance of the proposed approach for the removal
of uniform impulse noise on LENA, PEPPERS and MANDRILL images. Figures 9a, f and k
show the original noise-free LENA, PEPPERS and MANDRILL images, respectively.
Figures 9b, g and l show their respective 50 % uniform impulse noise corrupted versions.
The denoised images obtained by our proposed approach are shown in Fig. 9e, j and o. For
visual comparison, the denoised images by UINFGP and ROR-NLM are also given as Fig. 9c,
h, m, and d, i, n, respectively. It is clearly visible that at 50 % uniform impulse noise, our
approach has performed better than UINFGP and ROR-NLM on images with medium
(PEPPERS) and high levels of details (MANDRILL). However, in case of LENA (low
detailed level) image, our approach has performed comparable to ROR-NLM. Visual inspec-
tion reveals that details are well preserved in all the images denoised by our approach. ROR-
NLM has produced smoothed denoised images in case of medium and high levels of image
details. This smoothness is due to inherent blurring property of NLM.

5.3 Removal of salt and pepper noise

In this set of experiments, we corrupted the testing images with different levels of salt &
peppers noise. The performance of our approach is assessed to remove salt & pepper noise in

Fig. 9 Visual comparison of uniform impulse noise removal. a LENA, b 50 % Corrupted LENA c UINFGP, d
ROR-NLM, e Proposed INDE-GP, f PEPPERS, g 50 % Corrupted PEPPERS, h UINFGP, i ROR-NLM, j
Proposed INDE-GP, k MANDRILL, l 50 % Corrupted MANDRILL m UINFGP, n ROR-NLM, o Proposed
INDE-GP
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terms of PSNR and MSSIM. Figure 10a and c show the PSNR plots of our approach against
different noise levels of BOAT and BRIDGE images, respectively. These plots show that our
approach has performed better than other noise removal approaches. When both these images
were corrupted with 10 % salt & pepper noise, the proposed approach has produced the best
PSNR of 31.09 and 27.42 dB for BOAT and BRIDGE, respectively. At 50 % noise level, our
approach has yielded the PSNR of 25.87 and 22.92 dB for these images. The plots of MSSIM
for BOAT and BRIDGE are shown in Fig. 10b and d, respectively. These plots show that
against different noise levels our approach has performed better than other approaches. It is
inferred that our approach has performed better on medium and high detailed images.

The quantitative comparison of our approach with five other approaches is presented
in Table 6. We corrupted these LENA and PEPPERS images with different levels of salt
& pepper noise. In case of LENA image, our approach has produced better results in
terms of PSNR for all noise levels. The maximum PSNR of 37.25 dB is achieved by our
approach at 10 % noise level. At 50 % noise, our approach has produced the best PSNR
of 28.38 dB that is 1.1 dB better than ROR-NLM and 0.31 dB better than AMF. In case
of PEPPERS image, at 10 and 50 % noise, our approach has yielded 36.92 dB and
28.09 dB, respectively that is better than other approaches. In terms of MSSIM for
LENA and PEPPERS, our approach performed better up to noise levels of 40 %. At

Fig. 10 Comparative plots for salt & pepper noise. a PSNR plot for BOAT, b MSSIM plot for BOAT, c PSNR
plot for BRIDGE, d MSSIM plot for BRIDGE
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50 % noise, the performance of INDE-GP is comparable to ROR-NLM. From these
results, it is inferred that our approach has performed better in denoising of salt & pepper
noise from images with low and medium levels of details. We have also performed the
comparative analysis for the removal of salt & pepper noise on other testing images that
are provided in the supplementary materials as Table 3.

The qualitative comparison of our approach with UINFGP and ROR-NLM for the removal
of salt & pepper noise is shown in Fig. 11. Figures 11a, f and k show the original noise-free
LENA, PEPPERS and MANDRILL images. These images were corrupted by 50 % salt &
pepper noise as shown in Fig. 11b, g and l, respectively. Figure 11e, j, and o show the images
denoised by our proposed approach. The corresponding images denoised by ROR-NLM and
UINFGP are shown in Fig. 11c, h, m and Fig. 11d, i, n, respectively. Visual inspection shows
that the results from our approach are better than UINFGP and ROR-NLM for these images
and closer to their respective original images. From PSNR values and visual observation, it can
be depicted that the images denoised by our approach has better human visual perception than
other methods. Moreover, the local structures in the denoised images by our approach are well-
preserved.

5.4 Removal of impulse burst noise

In this last set of experiments, we evaluated the performance of our proposed approach to
remove impulse burst noise. For this purpose, we obtained three aerial images from USC-SIPI
image database [32] are shown as left column in Fig. 12. These aerial images are of size L×L

Fig. 11 Visual comparison of salt & pepper noise removal. a LENA, b 50 % Corrupted LENA c UINFGP, d
ROR-NLM, e Proposed INDE-GP, f PEPPERS, g 50 % Corrupted PEPPERS, h UINFGP, i ROR-NLM, j
Proposed INDE-GP, k MANDRILL, l 50 % Corrupted MANDRILL m UINFGP, n ROR-NLM, o Proposed
INDE-GP
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where L=256, 512, 1024. These three images were corrupted with impulse burst noise and are
shown in the middle column of Fig. 12. The right most columns in Fig. 12 show images
denoised by our proposed approach to remove impulse burst noise. It is clear from the figure
that the denoised images are visually very close to the original images which is in agreement
with the obtained PSNR values of 27.96, 30.74 and 31.30 dB on Aerial Image I, II and III,
respectively. The results show the effectiveness of our proposed approach for the removal of
impulse burst noise from aerial images. Due to exploitation of discriminant features for GP
detector and statistics of noise-free pixels for GP estimator, our proposed approach removed
impulse burst noise successfully. This also highlights the generalization capability of our
approach to suppress different types of impulse noise.

We have also performed the comparison of average computational time of INDE-GP with
ROR-NLM as shown in Fig. 13. The average computational time is reported for seven testing

Fig. 12 Impulse burst noise removal of aerial images by the proposed INDE-GP approach
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images against different levels of noise. It is observed that with the increase in noise density,
the computational time is also increased. However, our proposed approach takes compara-
tively less computational time than ROR-NLM. We computed that our approach has taken
4.67 s less than ROR-NLM to denoise an image corrupted with 10 % noise. However, at 50 %
high noise density, the proposed approach consumed 13.05 s less than ROR-NLM.

6 Conclusion

In this paper, we proposed an effective GP based multi-denoising approach, INDE-GP, for the
removal of different types of impulse noise from images. The proposed approach consists of
noise detection and noise removal stages. Noise detection stage has exploited the extraction of
rank-ordered and robust statistical features from noisy image. These features are employed by
the proposed GP impulse noise detector to locate corrupted pixels. In noise removal stage, the
proposed GP estimator has exploited the extraction of statistical measures mean, median,
standard deviation of noise-free pixels present in the neighborhood of noisy pixel and
approximates the pixel value.

The proposed approach has been tested on a variety of standard test images corrupted with
impulse noise of different types. The results reveal that the proposed approach has effectively
reduced different types of impulse noise. The improved quantitative results of our approach in
terms of PSNR and MSSIM measures are reported. In this study, by effectively exploiting
statistical features through GP optimization technique, we successfully achieved the multi-
denoising objective. It can be concluded that our proposed INDE-GP approach can be applied
to enhance the performance of various applications e.g., content based image retrieval and
object recognition.
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