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Abstract Human gesture recognition to be a new type of natural user interface (NUI)
using the person’s gesture action for operating the device is attracting much attention
nowadays. In this study, an adaptive hidden Markov model (HMM)-based gesture
recognition method with user adaptation (UA) using the Kinect camera to simplify
large-scale video processing is designed to be the NUI of a humanoid robot device. The
popular Kinect camera is employed for acquiring the gesture signals made by the active
user, and the gesture action from the user can then be recognized and used to be as the
control command for driving the humanoid robot to imitate the user’s actions. The
large-scale video data can be reduced by the Kinect camera where the data from the
Kinect camera for representing gesture signals includes the depth measurement infor-
mation, and therefore only simple 3-axis coordinate information of the joints in a
human skeleton is analyzed, categorized and managed in the developed system. By
the presented scheme, the humanoid robot will imitate the human active gesture
according to the content of the received gesture command. The well-known HMM
pattern recognition method with the support of the Kinect device is explored to classify
the human’s active gestures where a user adaptation scheme of MAP+GoSSRT that
enhances MAP by incorporating group of states shifted by referenced transfer
(GoSSRT) is proposed for adjusting HMM parameters, which will further increase the
recognition accuracy of HMM gesture recognition. Human gesture recognition experi-
ments for controlling the activity of the humanoid robot were performed on the
indicated 14 classes of human active gestures. Experimental results demonstrated the
superiority of the NUI by presented HMM gesture recognition with user adaptation for
humanoid robot imitation applications.
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1 Introduction

Speech recognition is developed earlier than gesture recognition, and therefore speech recog-
nition is generally viewed as a more matured technique than gesture recognition. However, the
famous Kinect camera produced by the Microsoft company is being popular on the market [18,
20], which can effectively reduce the large-scale video data and therefore largely accelerate the
progress of gesture recognition. Recently, human computer interaction (HCI) design using the
person’s biological features such as voice and motion has been a popular tendency for target
object operating applications including the robot control application. Popular pattern recogni-
tion techniques of speech recognition [5, 7] and gesture recognition [3, 11, 17] using voice and
motion features respectively have widely seen in the person’s daily life: voice-control in smart
mobile devices and motion sensing-control in gesture interaction of somatosensory games.
Undoubtedly, both speech recognition and gesture recognition are natural ways to design the
interface of humans and computers with the characteristics of natural user interface and natural
user experience [12, 15].

For gesture recognition, the Kinect device is the video sensor containing both a
depth camera and a RGB camera, which will facilitate studying gesture recognition by
analyzing, categorizing and managing the complex large-scale video data using only
simple 3-axis coordinate information of the joints in a human skeleton extracted from
the Kinect camera and the Kinect software development kit (Kinect SDK). In addition
to gesture recognition, Kinect is also useful in lots of technical area, such as 3D video
processing [10], spatial coordination sensing [9], human face image processing [2],
human emotion detection [14], human activity recognition [13], edge detection [19] and
robot operation [1, 4].

In this study, the Kinect camera is used in the application of humanoid robot
imitations by gesture command recognition. This paper proposes a hidden Markov model
(HMM)-based gesture recognition scheme using Kinect for NUI designs of humanoid
robot imitation applications. To further enhance proposed HMM-based gesture recogni-
tion with Kinect, a user adaptation (UA) scheme that involves the idea of speaker
adaptation in speech recognition [6, 8] is incorporated into the recognition system. UA
in this work will entail employing the active gesture data of a test user to adjust the
HMM gesture model parameters such that the model is more representative of a new test
user. Studies regarding the use of Kinect gesture recognition for humanoid robot action
imitations and the use of adaptation schemes in a Kinect-based gesture recognition
system are extremely rare. Figure 1 depicts the Kinect-based gesture command recogni-
tion system using proposed HMM incorporated with an UA scheme for NUI designs of
humanoid robot imitations. As could be seen in Fig. 1, the humanoid robot will correctly
play the same action as the real person user according to the indicated label of the
recognized gesture command made by the active user. Due to an interpolation of the UA
scheme, the system of HMM-based gesture recognition with Kinect will be gradually
adaptive to the active user, and the mismatch phenonmenon between the user and the
gesture recognition system will significantly be reduced, and therefore the humanoid
robot will effectively perform action imitations by the reliable recognition result.

In summary, proposed HMM with UA for Kinect gesture recognition has several merits:

& The utilization of Kinect facilitates studying gesture recognition by simplifying complex
large-scale video data processing;

& An efficient and effective approach for humanoid robot action imitation applications by the
simple gesture command control-based approach;
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& Presented HMM-based gesture recognition with Kinect can be flexibly combined with UA
for further enhancing the HMM gesture recognition system;

& Presented UA-embedded HMM gesture recognition with Kinect has the significantly low
false rate for the gesture recognition result.

2 Gesture command control-based humanoid robot imitations by kinect gesture
recognition with UA

Figure 2 depicts the system framework of the humanoid robot imitation application using
presented Kinect-based HMM gesture command recognition incorporated with UA. As shown
in Fig. 2, proposed UA-embedded HMM gesture recognition with Kinect is used to drive a
humanoid robot to play the active gesture according to the label of the recognized gesture
command. Different to those studies of humaoid robot imitations by integrating the Kinect and
the robot to acquire the active motion parameter from the active user which is utilized for
control robot actions, this paper develops a NUI scheme by using a gesture command control-
based scheme for achieving the purpose of humaoid robot control. The user’s active gesture
can be used to be viewed as the operation command for controlling the robot.

Developed UA-embedded HMM gesture recognition with Kinet for humaoid robot control
is composed of three calculation phases. As could be seen in Fig. 2, the first phase in the
system framework is to establish an initial HMM model using collected training gesture data
from numerous requested active players; the second phase is to perform user adaptation on the
initial HMM model established in the first phase; the last phase in the framework is to classify
the gesture command made by the active user using the adapted HMM model, and then the
recognized gesture command with an indicated classification gesture label is sent to the
humanoid robot for active gesture imitations of the robot. When receiving the recognized
gesture command, the humanoid robot will operate the active gesture as the test active user’s
gesture.

Feature extraction is an important process in the field of pattern recognition including
Kinect-based HMM gesture recognition in this work. For the purpose of gesture recognition by
Kinect, the feature containing the 3D-coordiate position information of 20 joints in the Kinect-

Fig. 1 Kinect-based gesture command recognition using proposed HMM incorporated with an UA scheme for
NUI designs of humanoid robot imitations
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captured skeleton is the most frequently seen in practice and therefore is employed in the
author’s research. In Fig. 2 of the presented HMM gesture recognition with UA, the extracted
gesture feature of the training gesture data in the HMM establishment phase, the adaptation
gesture data in the HMMmodel adjustment phase and the test gesture data in the online HMM
gesture recognition phase is the popluar 3D-coordiate position information of 20 joints. For
gesture recognition by Kinect, video information obtained from the Kinect camera contains
RGB data and depth data, both of which are generlly combined and call as RGBD data. Such
RGBD data can be used to detect and estimate the joint position of the body of a user
performing an indicated active gesture. A open software development kit (SDK) released by
the Window company, Kinect SDK, is used to calculate the mentioned 3D data with (x,y,z)-
coordinate information on the 20 joints of a human skeleton in this study. The derived Kinect
3D data from the released Kinect SDK revealed the relative positions of the 20 joints of a
user’s body. In this work, the Kinect device of XBOX 360 is used in this work, and such the
image sensing device can track 20 relative positions of joints (or say 20 (x,y,z)-coordinates).
Gesture recognition can be easily carried out using such the 3D-coordiate data. A gesture
frame of 3D joint position data is a vector of 60 dimensions where (x,y,z)-coordinate infor-
mation for each of 20 joints is contained. Kinect-acquired 3D data with t frames of a certain
time period is expressed as Pij(k), i=1,2…20, j=x,y,z , k=1,2,…t, where i denoted the joint
index, j is the coordinate index, and k represents the frame index.

Note that the second phase in the presented Kinect-based HMM gesture command recog-
nition with UA is called as the user adaptation phase. Internal recognition model tuning of the
referential settings is undertaken in the user adaptation scheme so that the system adapts
toward the actual operating environment when a new active user appear for operating the
robot. Such the category technique of user adaptation uses Kinect-acquired sample gesture
frames collected from the new system user, i.e., the end-user of the system, for adapting the
system internal parameter settings of the pre-established HMM gesture model (see Fig. 2, the
HMM gesture model composed of n HMM state sequences, each of which denotes a gesture
command for robot control). Designs of the Kinect-bsaed HMM gesture recognition system
and developments of the user adaptation method for Kinect-bsaed HMM gesture recognition
will be described in detail in the following section.

Humanoid
robot imitations

HMM

initial model

User Adaptation

(UA)

HMM

adapted model

Gesture

recognition

Recognition

outcome

Gesture

recognition

Adaptation gesture data

(Unknown gesture label)

Test gesture data

UA-embedded HMM gesture recognition with Kinect

Fig. 2 System structures of humanoid robot imitations using presented Kinect-based HMM gesture command
recognition incorporated with UA
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3 Kinect-based hiddenMarkov model gesture recognition with HMMmodel adjustments

This section will provide the design methodology of HMM recognition model establishments,
HMM recognition strategy and HMM user adaptation for the Kinect-based gesture recognition
system.

3.1 Kinect-bsaed HMM gesture recognition

HMM is basically a stochastic process operating on an underlying Markov chain of a finite
number of states and the same number of random functions: at any given instance of time, the
process stays at a certain state and the random function associated with the current state
determines what the next state will be. Mathematically, a hidden Markov model can be
represented by the parameter set λ=(π,A,B). The underlying Markov chain of N states S1,
S2,…SN can be specified by an initial state distribution vector π=(π1,π2,…,πN) and a state
transition probability matrix A={aij|1≤i,j≤N}, in which π1 is the probability of Si at time t=0
and aij is the state transition probability of going from state Si to state Sj. Moreover, if the
observations composed of M discrete symbols O1,O2,…,OM are considered, the finite set of
probability distributions B={bj(q)|1≤j≤N,1≤q≤M} with bj(q) being the probability of observ-
ingOq given the state Sj, represents the random processes associated with the states. Usually, to
characterize an HMM, the decision of the number of states N also should be taken into account
besides specifying the parameters π, A and B [16].

In this work of Kinect-bsaed HMM gesture recognition, for calculation simplicty, a left-to-
right state transition is adopted for the design of state transition probability matrix A. In
addtion, for active gesture operated by the person at certain time-period, only left-to-right
transitions are allowed, i.e., the transition from each state is limited to only two alternatives:
either moving toward the right-hand side neighbor or staying at the current state. The HMM
modeling of certain active gesture command in N states is depicted in Fig. 3 where the number
of states, N, can be proerply decided according to the context of the active gesture commands
in the recognition system; each circle represents a state; aij represents the probability density
function concerning the transition from state Si to state Sj. As shown in Fig. 3, n HMM gesture
models are established for all of n gesture action commands where each category of gesture
commands is represented by the corresponding trained HMM model.

When performing gesture recognition to classify the gesture category of the active
user, the well-trained n HMM gesture models established in the training phase can be
used to estimate the class tendency of the test gesture data. As the well-known keywords
spotting method in the technical field of HMM-based automatic speech recognition,
HMM gesture recognition with Kinect developed in this study employs the keywords
spotting-like method, and a set of BKey scene^ containing n default active gesture
commands is required to be made in advance before performing HMM gesture model
establishments. As mentioned before, each of n HMM state sequences of gesture
commands defined in the gesture command table of HMM models denotes the extracted
key scene of certain continuous-time gesture operation made by the person. Figure 4
depicts the keyword spotting-like BKey scene^ recognition scheme employed in HMM
gesture recognition in this work. When the human user makes an indicated class of active
gestures, only those gesture frames in the key scene are useful and proper for further
performing gesture recognition, and the other gesture frames that are not contained in the
margin of the key scene are ineffective for recognition, which should be neglected. The
determination of both start-frame and end-frame of the key scene in a segment of
continuous-time gesture frames could be done by user interface designs. For example,
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both start-frame and end-frame of the key scene can be decided according to the user’s
uttered voice context or additional touched button designs in the user interface of the
recognition system.

Figure 5 shows the designed algorithm for performing the task of classing the test gesture
data in the recognition phase of the presented Kinect-based HMM gesture recognition system.
A popular dynamically programming algorithm, the Viterbi algorithm, is employed for
computing the likelihood degree between the test gesture data and each of n trained HMM
gesture models. As could be seen in Fig. 5, the test gesture data containing t frames acquired
from the active user is extracted the gesture feature of (x,y,z)-coordinate information on the 20
joints of a human skeleton (Pij(k), i=1,2,…,20, j=x,y,z, k=1,2,…,t). A process of key scene

S1 S2 S3 S4 SN

a11 a22 a33 a44 aNN

a12 a23 a34 a45 a(N-1)N

Gesture HMM state table

Gesture HMM state table

S1 S2 S3 S4 SN

a11 a22 a33 a44 aNN

a12 a23 a34 a45 a(N-1)N

S1 S2 S3 S4 SN

a11 a22 a33 a44 aNN

a12 a23 a34 a45 a(N-1)N

Gesture command 2

Gesture command n

HMM gesture model 1

HMM gesture model 2

HMM gesture model n

Gesture HMM state tableGesture command 1
Kinect

Kinect

Kinect

Fig. 3 HMMmodel establishments for all gesture action commands where each command is represented by the
corresponding trained HMM model

Key scene

Time margin of the key scene

Start-frame

Time

End-frame
Useful gesture frames contained in the key scene

Fig. 4 The keyword spotting-like BKey scene^ recognition scheme employed in HMM gesture recognition in
this work (the key scene located between the start-frame and the end-frame)
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determination is then done on these t frames to find out the useful frames located between start-
frame and end-frame of the key scene. And then, the sequence of gesture frames contained in
the key scene is calculated the likelihood degree of each HMM gesture model by Viterbi, and
the label of the HMM gesture model with highest likelihood degrees is the gesture recognition
result.

3.2 User adaptation (UA) for kinect-bsaed HMM gesture recognition

User adaptation used in this work is to enhance Kinect-based HMM gesture recognition for
further improving the performance of the recognition system for those outlier system users
such as the users with abnormal active gestures or others not well represented in the training set
of model establishments. As speech recognition, gesture recognition can generally classified
either as active user-independent type or active user-dependent type, depending on how
gesture samples are colleted during gesture reconition system construction. An active user-
independent system typically collects gesture samples from an as large population of active
users as possible, whereas an active user- dependent system collects a large amount of gesture
sample data from possibly just one designated active user. In general, a well-trained active
user-dependent model achieves better performance than an active user-independent model on
recognizing the gesture categorization of a specific active user. However, when the amount of
training data available to acquire the active user-dependent model is not sufficient, such
superiority would no longer exist. This is where the user-adaptive technique, sometimes

Algorithm for recognition calculations by the presented Kinect-based HMM gesture recognition
/* Initialize the joint position data of all gesture frames of test gesture data to be zero. */

For each t = 1 to MAX /* MAX is the defined maximum frame numbers obtained from the Kinect camera. */

For each j = 1 to 20 /* j denotes the joint index. */

X_position[t][j] = 0;

Y_position[t][j] = 0;

Z_position[t][j] = 0;

End For
End For
Acquire the gesture 3D data from the Kinect SDK( X_position, Y_position, Z_position, MAX);
Determine the Start-frame and End-frame at total frames;
/*Find the useful gesture frames contained in a key-scene.*/
For each t = Start-frame to End-frame /* Key-scene is located between Start-frame and End-frame */

For each j = 1 to 20 /* j denotes the joint index. */

Keyscene_ X_position[t][j] = X_position[t][j];
Keyscene_ Y_position[t][j] = Y_position[t][j];
Keyscene_ Z_position[t][j] = Z_position[t][j];

End For
End For
/* Perform recognition calculations by Viterbi algorithm */

For each c = 1 to n /* n is the total number of HMM gesture models. */

Likelihood degree (c) = Viterbi (Keyscene_ X_position, Keyscene_ Y_position, Keyscene_ Z_position, 
c-th HMM model);

End For
/*Find the HMM gesture model with the maximum likelihood degree*/

For each c = 1 to n /* n is the total number of HMM gesture models. */

HMM model m = Find_MAX(Likelihood degree (c)); 
End For
Gesture command label = Gesture command table of HMM ( HMM model m);
Return Gesture command label;

Fig. 5 Classifications of the test gesture data in the recognition phase of the presented Kinect-based HMM
gesture recognition system
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referred to as model-based adaptation techniques, get in to play, which would adapt a full
active user-independent model into an active user-dependent one and achieves user dependent-
like performance, requiring only a small fraction of specific gesture training data from the
active user. The main task of UA in Kinect-based HMM gesture recognition is that the
parameters of the HMMs can be updated by gesture data obtained from a new active user
when the user operates such an adaptative system.

In this study of user adaptation on Kinect-based HMM gesture recognition, Bayesian-
based adaptation is adopted. Maximum a posteriori (MAP) adaptation is the representa-
tive of Bayesian-based adaptation and widely-used in speaker adaptation of speech
recognition. MAP adaptation offers a framework of incorporating newly acquired system
user-specific gesture data into the existing HMM models. As mentioned in Section 3.1, a
hidden Markov model can be mathematically represented by the parameter set
λ=(π, A, B). Generally, for speaker adaptaion on HMM speech recognition, only the
component B with Gaussian distruibution probabilities is tuned, and therefore, assume
that the HMM parameters characterized by the parameter vector Λ={wik,μik,∑ik}, where
wik, μik and ∑ik are the mixture gain, mean vector and covariance matrix of the k-th
mixture component from the i-th state, respectively. For calculation simplicity, in this
work of HMM gesture recognition, the number of mixtures is set as 1, and the charac-
terized HMM model Λ={wik,μik,∑ik} can be replaced with Λ={μi,∑i} where the mixture
gain parameter is neglected since the gain value of the only mixture is always to be 1.
MAP adaptation for the characterized HMM model Λ in the Kinect-based HMM gesture
recognition is as follows,

bμi ¼
Mi

τ þMi
yi þ

τ
τ þMi

μi; i ¼ 1; 2;…;N ð1Þ

where Mi is the total number of training samples observed for the corresponding
recognition unit with the i-th state, yi is the sample mean with the i-th state, τ is a
parameter which gives the bias between the maximum likelihood estimate of the mean
from the data and the prior mean, μi is the original mean vector and bμi is the adapted
mean vector. Observed from Eq. (1), MAP adaptation in Kinect-based HMM gesture
recognition is a kind of direct model adaptation, which attempts to directly re-estimate
the model parameters, i.e., re-estimates only the portion of model parameter units
associated the adaptation gesture data. Note that in this work of user adaptation on
Kinect-based HMM gesture recognition, only the mean parameter is adjusted and the
covariance parameter of the HMM model Λ keeps unchanged.

Since MAP adaptation is a kind of direct model adaptation and usually needs a large
amount of gesture data for adaptation and the performance will be improved as adapta-
tion data increases and gets covering the model space. However, when the amount of
data is insufficiently scarce, the performance of MAP estimation will be strictly restrict-
ed. For overcoming the problem of MAP adaptation with only rare adaptation gesture
data available, an improved approach for MAP, called MAP+GoSSRT, is developed as
follows.

The MAP+GoSSRT approach for enhancing MAP is MAP incoporated with a
scheme, group of states shifted by referenced transfer (GoSSRT). And the idea of
Bcollateral adaptation^ is the rationale behind MAP+GoSSRT adaptation where all the
N mean vectors of the HMM gesture model that not adapted due to the lack of
adaptation data have the neighbor MAP-adapted gesture model for adaptation refer-
ences. The unadapted x-th HMM model, μj(x), j=1,2,…,N, without adaptation gesture
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data could also be performed the adaptation work by referring MAP-adapted behaviors
of the neighbor y-th HMM model, μj(y), j=1,2,…,N, with adaptation gesture data
available. As shown in Eqs. 2, 3 and 4, the x-th HMM model without adaptation data
is carried out model adjustments by referring the transferred vector of the neighbor
MAP-adapted y-th HMM model with adaptation data, ν yð Þ.

νi yð Þ ¼ bμi yð Þ−μi yð Þ; i ¼ 1; 2;…;N ð2Þ

ν yð Þ ¼

XN
i¼1

νi yð Þ

N
; ð3Þ

bμ j xð Þ ¼ μ j xð Þ þ C

dxy
⋅ν yð Þ; j ¼ 1; 2;…;N ð4Þ

where νi(y) is referred to as the transferred vector for the initial state μi(y) of the y-th HMM
gesture model; ν yð Þ is the averaged transfer vector estimated from all N state transfer vectors of
the y-th HMM model with adaptation gesture data available; bμ j xð Þ indicates the adapted mean
vector of the x-th HMM model without adaptation gesture data available by referring ν yð Þ; the
parameter C is a constant for being the scaling factor; dxy denotes the Euclidean distance
between the x-th HMM model and the neighbor y-th HMM model. Note that dxy in Eq. (4) is
used to control the weight of refenencing ν yð Þ. When the distance between the centroid of the
HMM model with adaptation data and the centroid of the HMM model without any data
available for adaptation is small, the characteristics of two HMM gesture models on space
distributions is close, and therefore, the refereced degree of the transferred vector ν yð Þ for the
unadapted HMM model is calclulated as a large value. In contrast, a small value of the
refereced degree of the transferred vector ν yð Þ is derived by Eq. (4) with a large value of dxy. A
large dxy item indicates that the spacial caracteristics between the HMMmodel with adaptation
data and the HMM model without any data available for adaptation is not similiar, and
therefore the adaptive learning action for the HMM model without adaptation data should
be a little restricted.

4 Experiments and results

Experimental settings and related results of the presented UA-embedded HMM gesture
recognition with Kinect for human action imitation applications of the humanoid robot will
be given in this section. Experimental settings and the database collections will be described
first, followed by the experimental result of gesture command recognition, and the experi-
mental results of humanoid robot imitations are given at the last.

In gesture recognition experiments, one Kinect sensor with the RGB camera and the
infrared camera is used to capture the active user’s gestures. The default setting of the frame
rate in Kinect is 30, and therefore, there are totally 30 active frames captured in one second.
There are totally 4 active users requested to operate a series of the designed active gestures.
The gesture database collected includes fourteen active gesture categorizations which are
popular and frequently seen, BClass-1:lifting the right foot with both hands held,^ BClass-
2:lifting the left foot with both hands held,^ BClass-3:waving the right hand to the left side,^
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BClass-4:waving the left hand to the right side,^ BClass-5:waving the right hand up,^ BClass-
6:pulling the ceiling fan by using the right hand,^ BClass-7:pulling the ceiling fan by using the
left hand,^ BClass-8:jumping in place,^ BClass-9:keeping a standing posture,^ BClass-
10:handing the phone by using the right hand,^ BClass-11:handing the phone by using the
left hand,^ BClass-12:pushing the door by using the right hand,^ BClass-13:putting both hands
on the hip with the right foot lifted to the right side,^ and BClass-14:Putting both hands on the
hip with the left foot lifted to the left side.^ Each of 4 active users is requested to operate 10
active gestures for each of these indicated fourteen classes of gestures, and therefore there are
totally 560 active gestures with fourteen gesture classes. The 560 active gestures were then
divided into two parts, 280 active gestures for establishments of HMM gesture models and the
other 280 active gestures for recognition test of HMM gesture models. In addition to the
collected 560 active gestures, each of these 4 active users is requested again to additionally
operate 5 active gestures for each of these indicated fourteen classes of gestures, totally 280
active gestures. 25 gesture samples were randomly chosen in these additionally collected 280
active gestures for the performance evaluation of the presented UA methods in user adaptation
experiments.

The experimental design of Kinect-based gesture recognition experiments in this
work contained three main phases, the HMM gesture model training phase, the recog-
nition testing phase of the trained HMM model, and the UA phase of MAP adaptation
and MAP+GoSSRT adaptation on HMM gesture models. As mentioned, 280 active
gestures of 4 active users were used to establish the initial HMM gesture model with 14
gesture categorizations, and the established HMM gesture model was evaluated the
recognition performance using the other 280 active gestures that were not included in
the training phase. In the user adaptation experiment phase, one user was chosen
among these 4 active users to perform user adaptation of presented MAP and MAP+
GoSSRT where 5, 10, 15, 20 and 25 adaptation gesture samples were used to construct

(b) (a)                

Fig. 6 Humanoid action setup using the motion editor of the RoBoPlus software, totally 18 AI joints in the
Biloid robot (see Fig. 6(a)) and 20 human joints acquisition from the Kinect-captured skeleton (see Fig. 6(b))
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5-adaptation, 10-adaptaion, 15-adaptation, 20-adaptation and 25-adaptation respectively
user adaptation experiments.

In the aspect of humanoid robot settings, as could be seen in Fig. 6, the robot
adopted to imitate the human gesture is the Bioloid humanoid robot. The adopted
Bioloid humanoid robot is produced by the South Korean company, Robotis, and the
Bioloid robot is composed of components and modular servomechanisms (called
artificial joint motor) which can be arranged according to the requirement of the user.
For the Bioloid humanoid robot, the premium version of the kit with 18 degrees of
freedom (DOF), i.e., 18 artificial joint motors, is used in this study. The Bioloid
humanoid robot includes three classes of mechanical designs, Type-A, Type-B and
Type-C according to the functional complexity, and this work adopts the Type-A
Bioloid humanoid robot. In this work, there are totally fourteen gesture commands,
and therefore fourteen different setting configurations for the corresponding fourteen
robot action establishments are made. As shown in Fig. 6, the number of joints in the
Kinect-captured human skeleton is 20, which is different to the number of the artificial
joint motor in Bioloid humanoid robot. The Bioloid humanoid robot has 18 modular
servomechanisms, each of which represents a corresponding artificial joint motor. In
this study, the gesture operated by the test user is recognized, and then three

Table 1 Averaged recognition performances (%) of Kinect-based HMM gesture recognition with different
settings of state numbers, N, among 4 test active users

Average recognition rates (%)

State numbers of HMM state sequences (N)

20 30 40 50

69.29 81.79 78.57 77.50

Table 2 Recognition rates (%) by MAP user adaptation with various τ on Kinect-based HMM gesture
recognition of the chosen one test active user

τ Recognition rates (%)

Numbers of active gestures for adaptation

0 5 10 15 20 25

1 72.14 75.71 78.57 77.14 77.14 74.29

2 72.14 75.71 78.57 70.00 77.86 79.29

5 72.14 75.00 77.14 77.86 78.57 80.00

10 72.14 75.00 76.43 77.86 78.57 80.00

15 72.14 75.00 77.14 77.86 78.57 81.43

20 72.14 73.57 75.71 77.86 77.86 79.29

25 72.14 72.14 74.29 77.14 77.86 78.57

50 72.14 72.14 72.86 73.57 74.29 75.71

75 72.14 72.14 74.29 74.29 74.29 74.29
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dimensional positions of a series of joint sets, each joint set containing 20 joints, in the
Kinect-captured human skeleton are determined. The setting configurations for the
corresponding robot action is made according to all these derived position information
of joint sets in the Kinect-captured human skeleton and the real action gesture from the
human actor. Figure 6 also shows the motion editor of the RoBoPlus user interface,
which is used to set the configuration of Bioloid humanoid actions where 14 motion
behavior model settings corresponding to the indicated fourteen gesture recognition
commands are made in this work.

In the experimental results of gesture command recognition, the average recognition
rates of 280 active gestures of 4 active users on the established Kinect-based HMM
gesture model with different settings of state numbers are shown in Table 1. Observed
from Table 1, the Kinect-based HMM gesture recognition system with 30 states has the
best performance on the recognition rate among all settings of state numbers, achieving
81.79 %, which is the recognition rate of outside-testing evaluations, and therefore such
the performance is competitive and acceptable. Kinect-based HMM gesture with the
setting of 30 states is used in all user adaptation experiments. Table 2 shows the
recognition rate using MAP user adaptation with various values of τ on Kinect-based
HMM gesture recognition of the chosen one test active user. It could be seen in Table 2

Table 3 Recognition performance comparisons of MAP adaptation and MAP+GoSSRT adaptation (τ=15 on
both user adaptations)

UA methods Recognition rates (%)

Numbers of active gestures for adaptation

0 5 10 15 20 25

MAP 72.14 75.00 77.14 77.86 78.57 81.43

MAP+GoSSRT 72.14 75.00 78.57 79.29 80.00 83.57
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Fig. 7 Comparisons of system learning curves of MAP adaptation and MAP+GoSSRT adaptation (π=15 on
both user adaptations)
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that MAP adaptation performs best when τ is set to 15. MAP adaptation with τ=15 has
outstanding performanc on user adaptation where the recognition rate of the test active
user is significantly improved by 9.29 %, from 72.14 % of the initial HMM model to
81.43 % of the 25-adaptation HMM model. Table 3 gives the recognition performance
comparisons of MAP and MAP+GoSSRT adaptation methods, and system learning
curves of both MAP and MAP+GoSSRT are plotted in Fig. 7. It is clearly seen from
Table 3 and Fig. 7 that MAP+GoSSRT performs better than MAP on recognition
performances. When the number of active gestures for adaptation is increased to 25,
83.57 % of MAP+GoSSRT is apparently superior to 81.43 % of MAP. In addition, for
system learning curves on recognition performances, MAP+GoSSRT also performs
better than MAP especially when the number of active gestures for adaptation is
increased to 10.

Finally, in the humanoid robot imitation experiments, there are mainly two factors for the
performance of humanoid robot imitations, one is the recognition accuracy of UA-embedded
HMM gesture recognition with Kinect for dictating the robot and the other is the matched
degree between the joint number and the joint distribution in the Kinect-captured human
skeleton and those in the Bioloid humanoid robot. The Bioloid humanoid robot cannot operate
the same gesture as the active gesture operated by the test active user due to an incorrect
gesture command recognition result or an imperfect match of the joint number and the joint
distribution between the Kinect-captured skeleton and the Bioloid humanoid robot. However,
the incorrect gesture command recognition result will cause a completely wrong imitation
operation of the Bioloid humanoid robot. The action difference between the human user and
the humanoid robot caused by the imperfect match of the joint number and the joint
distribution will still be tolerable. Figure 8 shows humanoid robot imitations by the presented
approach where the user made an active gesture, and the Kinect-captured skeleton was
analyzed for further gesture command recognition. The correctly recognized gesture command
is then sent to the robot and then drive the robot successfully to play the same action as the
human user according to the indicated label of the given gesture command.

(a) (b)                   

(c)

Fig. 8 Humanoid robot imitation experiments by the presented approach where the user made an active gesture
(Fig. 8(a)), and the kinect-captured skeleton was analyzed for gesture command recognition (Fig. 8(b)) which
drives the robot to play the action as indicated by the given gesture command (Fig. 8(c))
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5 Conclusions

In this paper, a humanoid robot action imitation system is developed by a gesture command
control scheme where Kinect-based HMM gesture command recognition incorporated with
user adaptation is presented. Proposed Kinect-based HMM gesture recognition with UA is
effective and efficient for humanoid robot imitations where the gesture command made by the
active user to operate the robot can be accurately recognized. For UA designs for enhancing
Kinect-based HMM gesture recognition, this paper proposes an MAP+GoSSRT user adapta-
tion method which is based on the MAP method. HMM gesture recognition with MAP+
GoSSRT adaptation can be adaptive to a new robot operator, and therefore the competitive
performance on recognition accruacy of gesture commands will be effectively maintained.
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