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Abstract In this paper, a new method to construct a secret image sharing (SIS) scheme
is proposed, where a secret image is shared into several shares by a perfect secure way
without any knowledge of cryptography. A basic algorithm implemented by flipping oper-
ations with probability for constructing a meaningful (2, 2) SIS scheme is first proposed.
Neither codebook tailor-made requirement nor pixel expansion is required in the proposed
scheme. Additionally, the meaningful shares by the proposed scheme can be directly gen-
erated without any extra data hiding process. During the decrypting procedure, the secret
image is visually revealed by performing XOR operations on two meaningful shares. In the
following stage, a meaningful (2, inf inity) SIS scheme is extended underlying the basic
algorithm, where the number of shares can be extended anytime. Further, no matter how
large the number of the extended shares is, the visual qualities of both the meaningful share
and revealed secret image remain unchanged. Finally, sufficient number of formal proofs
are provided to validate the correctness of the proposed schemes, whose superiority is also
demonstrated by the experimental results.

Keywords Secret image sharing · XOR operation · Flipping operation · Meaningful
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1 Introduction

The rapid increase in Internet usage and the continuing improvements in multimedia tech-
nologies are responsible for the increasing popularity of network-based digital images
transmission. However, transmitting the important images, such as those used by the mil-
itary or by commercial businesses, over the public network makes them vulnerable to be
attacked. The research toward image security for protecting important image had thus been
investigated. In general, the traditional image security methods can be classified into two
main categories: (1) image encryption methods for secret image protection, and (2) image
authentication methods for image integrity protection. An image encryption method, such
as the image encryption based on gyrator transform [14], fractional Mellin transform [33]
or compressive sensing [19], mainly involves the random phase and a secret key. By this
method, a secret image can be processed to generate the encrypted image which is non-
recognizable in appearance. Only the legal receiver with the corrected key can decrypt and
access the secret image. On the other hand, for the aim of protecting the image integrity,
image authentication methods were studied. By these methods, the authentication infor-
mation of the protected image, such as digital signature [1] or digital watermark [32], is
generated and used to detect the tempered areas. However, one common defect of the above-
mentioned methods is their policy of centralized storage, in which an entire protected image
is accommodated in a single information carrier. If a hacker detects an abnormality in the
information carrier in which the protected image resides, she/he may intercept it or simple
ruing the entire information carrier. Once the information carrier is destroyed, the protected
image is also lost forever. Secret image sharing (SIS) is another image security method
which does not suffer from these problems. The SIS scheme is constructed by applying
the secret sharing concept, which was introduced independently by Blakley [3] and Shamir
[22], on digital images. The SIS scheme is with higher tolerance against data corruption or
loss than other image-protection mechanisms, such as image encryption or image steganog-
raphy. In 1995, Naor and Shamir [20] construct a SIS scheme, called visual cryptography
(VC), which involves the notions of perfect cipher and human visual system. In a (k, n) VC
scheme, a secret image is encoded into n random-liked images, called shares or shadows. In
such a way, the secret image can be visually revealed by stacking any k shares, whereas any
k − 1 or less shares give no clue about the secret. Unlike traditional cryptographic methods
such as data encryption standard (DES) scheme and advanced encryption standard (AES)
scheme, VC provides fast decryption without any complex computation. Additionally, if the
random-liked share includes truly random pixels, VC is regarded unconditional secure and
provides unbreakable encryption. However, meaningless appearance of the random-liked
shares may impose difficulty for managing the shares. An initial model of VC was imple-
mented by Naor and Shamir [20] in 1995. Based on the pioneer work of Naor and Shamir,
many issues on VC have been extensively studied, such as providing meaningful shares [2,
16], improving the contrast [4, 11] and reconstructing black secret pixels perfectly [5, 13].
Despite lots of wonderful results on the above-mentioned VC schemes, some drawbacks
still remain as follows:

– Pixel expansion. The size of each share is m ≥ 2 times as big as that of the secret image.
Generally, the variable m is referred to as the pixel expansion factor, which is desired to
be as small as possible. The pixel expansion would cause a problem of burdening with
the data storage.

– Codebook required. The Naor-Shamir VC schemes always require a codebook to sup-
port encoding a secret image, where the codebook is difficult to be designed. For a
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(k, n) VC scheme, designing the codebooks for different parameters k or n is not
trivial.

– Poor visual quality. Due to the stacking decryption, the visual quality of revealed secret
image by VC schemes is usually poor. Moreover, when stacking more shares, the visual
quality of the revealed secret image becomes terrible.

To overcome the problems of pixel expansion and codebook required, random grid-based
VC schemes (RGVCS) [12, 23, 24] were introduced, where the shares with invariant size
can be generated. The initial model of RGVCS was implemented by Kafri and Keren [12].
The size of each share generated by Kafri and Keren is the same as that of the original
secret image, which implies no pixel expansion is achieved. Inspired by Kafri and Keren,
follow-up researches on RGVCS were further studied, such as investigating different access
structure schemes [7, 8, 28], improving visual quality [27, 30] and offering meaningful
shares [9, 10]. Unfortunately, due to the stacking decryption, the contrast of the revealed
secret image achieves at most 1/2 in RGVCS. Such low image quality further limits the
applications. To address this problem, another secret image sharing (SIS) schemes [17, 18,
25, 26] were investigated, where a secret image is decrypted by XOR operation instead of
stacking operation. In such a decryption way, the visual quality of revealed secret image can
be further improved and the alignment problem is solved as well. In [25], Tuyls et al. gave
some valid constructions for the XOR-based SIS scheme, but the tailor-made codebooks
are required. Moveover, their generated shares are meaningless which are hard to identify
and may impose difficulty for managing the shares. Liu et al. [18] presented an optimal
XOR-based VC scheme for improving the contrast, but the drawbacks such as meaningless
share, codebook required and pixel expansion still remain in their scheme. To manage the
shares efficiently, XOR-based SIS schemes with offering meaningful shares [21, 29] were
investigated. However, the existing meaningful SIS schemes are devised only for (n, n)

case, which may limit the applications.
Based on the above-mentioned problems, our work aims to propose a meaningful XOR-

based SIS scheme for (2, inf inity) case. The definition of (2, inf inity) case is first
introduced in [6], where the number of shares can be extended anytime. In this paper,
the proposed XOR-based SIS scheme is implemented by performing flipping operations
on the pre-selected cover images. First, a basic algorithm for constructing a meaningful
(2, 2) XOR-based SIS scheme is devised, where the meaningful shares can be directly
generated without extra data hiding process. Subsequently, a meaningful (2, inf inity)

XOR-based SIS scheme is extended underlying the basic algorithm. Further, no matter how
large the number of the extended shares is, the visual qualities of both the meaningful
shares and revealed secret image always maintain the same as those in the basic (2, 2) algo-
rithm. In general, the main contributions of the proposed SIS scheme are summarized as
follows:

1. Neither codebook nor pixel expansion is needed.
2. Shares with meaningful contents are achieved, which makes shares management

efficient.
3. Unlike some existing meaningful schemes [9, 10], our scheme can generate meaningful

shares without extra data hiding process, which may reduce the computation time of
the scheme.

4. Due to the XOR decryption, superior visual qualities of both the share and revealed
secret image are achieved.

5. Black secret pixels can be reconstructed perfectly, so that the revealed secret image can
be further identified by human visual system.
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6. Sufficient number of formal proofs are provided to demonstrate the correctness of the
proposed scheme.

The rest of this paper is organized as follows. Related works on secret image sharing are
briefly introduced in Section 2. The proposed meaningful SIS schemes, including the basic
(2, 2) case and the extended (2, inf inity) case, are stated in Section 3. Experimental results
and discussions are provided to demonstrate the feasibility of the proposed SIS scheme in
Section 4, and finally some conclusions are made in Section 5.

2 Related works

In this paper, secret image sharing concept is applied for constructing the proposed SIS
scheme. For offering a better comprehension of the proposed scheme, the secret image
sharing concept is first introduced in the following. In a traditional (k, n) SIS scheme, a
secret image is encoded into n random-liked images, called shares, each of which is then
distributed to the related participant. A (k, n) SIS scheme is consider valid if it meets the
security and contrast conditions. The security condition indicates that the knowledge of any
k−1 or fewer shares gives no clue about the secret image, and the contrast condition implies
that any k or more shares can reveal the secret image. In 1995, Naor and Shamir [20] first
constructed a valid SIS scheme by using two collections of n × m Boolean matrices B1
and B0. Each pixel of the secret image is encoded into n pixels, each of which consists of
m sub-pixels. To encode a black (resp.white) secret pixel, the dealer randomly selects one
matrix from the Boolean matrices B1 (resp.B0), and assigns the row i of the selected matrix
to the pixel of share SHi . With stacking any k or more shares in a way which properly
aligns the sub-pixels, the secret image can be disclosed by human visual system. However,
no clue about the secret image can be gained if only k − 1 or fewer shares are collected.
An example for constructing a (2, 2) Naor-Shamir’s SIS scheme is shown in the follow-
ing. Two collections of Boolean matrices used in the (2, 2) SIS scheme are designed as
bellow:

B0 =
{[

0 1
0 1

]
,

[
1 0
1 0

]}
(1)

B1 =
{[

0 1
1 0

]
,

[
1 0
0 1

]}
(2)

In the (2, 2) SIS scheme, a secret pixel is encoded into two shared pixels, each of which
includes two sub-pixels. Thus, its pixel expansion is 2. When encoding a secret pixel sp,
a matrix MT is randomly selected from B0 if sp is white, and from B1 if sp is black.
Simulation results are shown in Fig. 1 to demonstrate the feasibility of the (2, 2) SIS
scheme, where the image of Fig. 1a is taken as a secret image. Two shares generated by the
(2, 2) SIS scheme are illustrated in Fig. 1b-c. By observing Fig. 1b-c, it can be found that
each generated share is a random-liked image which gives no clue about the secret. How-
ever, the stacked result by the two shares can visually reveal the secret image, as shown
in Fig. 1d. Although the Naor-Shamir SIS schemes can provide an easy and fast decryp-
tion, some problems of poor visual quality, random-liked shares and pixels alignment still
remain.

To achieve high visual quality, another XOR-based SIS scheme [25] is introduced, where
the secret image is decrypted by XOR operation instead of stacking operation. In addition,
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(a) (b)

(c) (d)

Fig. 1 Simulation results of the (2,2) Naor-Shamir SIS scheme which is constructed by using two collections
of the Boolean matrices B0 and B1. a The secret image, b the share 1, c the share 2, d the stacked result by
(c) and (d)

the XOR-based SIS scheme can solve the problem of pixels alignment as well. For handling
more applications, a (2, inf inity) SIS schemes based on XOR decryption is extended.
The definition of a (2, inf inity) scheme is first given in [6], where the number of shares
can be extended anytime. No matter how large the number of the extended shares is, the
(2, inf inity) SIS scheme always meets the security and contrast conditions. For example,
when the number of shares is extended from 2 to N , where N denotes an any arbitrarily
large positive integer. For the XOR-based (2, inf inity) SIS scheme, the security condition
implies each of N shares gives no clue about the secret image, while the contrast condition
indicates the XOR-ed result by any 2 of N shares can visually reveal the secret image.
Note that, the decryption procedure of our (2, N) SIS scheme is different from that of the
traditional (2, N) SIS scheme. When the share number k > 2, all the k shares are generally
utilized to decrypt the secret image in the traditional (2, N) SIS scheme. However, in our
(2, N) SIS scheme, we just utilize any 2 of these k shares to decrypt the secret image.

In this paper, two logical operations, the NOT operation (“(·)”) and the XOR operation
(“⊕”), are needed to construct the proposed SIS schemes. The logical NOT operation is
equivalent to the flipping operation which is utilized to share the secret image, and the
logical XOR operation is used to decrypt the secret image from the shares. The truth-table
of XOR and NOT logical operations for binary scalar inputs is given in Table 1. For binary
scalar inputs, the XOR or NOT operation is carried out bit by bit. For binary matrix inputs,
the XOR operation of two H ×W matrices, A and B, is defined element-wise. That is, A⊕
B = [Ai,j ⊕ Bi,j ], where i = 1, 2, · · · , H, j = 1, 2, · · · ,W . Other notations used in this
paper are illustrated as follows: digits 1 and 0 are referred to as the white and black pixels,
respectively; R{⊕,1,2} denotes the XOR-ed result by shares {R1, R2}, such that R{⊕,1,2} =
R1 ⊕ R2.
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Table 1 The truth-table of XOR
and NOT logical operations for
binary scalar inputs

a b a ⊕ b a b

0 0 0 1 1

0 1 1 1 0

1 0 1 0 1

1 1 0 0 0

In the following, some definitions are given for the further analysis on the proposed SIS
schemes.

Definition 1 (Average light transmission [23, 29]). For a certain pixel p in a binary image
I with sized H × W , the probability of pixel p being white, denoted by Prob(p = 1),
represents the light transmission of pixel p, denoted by T (p), such that T (p) = Prob(p =
1). When p is a white pixel, the light transmission of p is T (p) = 1. Whereas, when p is a
black pixel, the light transmission of p is T (p) = 0. Totally, the average light transmission
of image I is defined as

T (I) =
∑H

i=1
∑W

j=1 T (Ii,j )

H × W
. (3)

Definition 2 (Area representation [23, 29]). Let A(1) (resp. A(0)) be the area of all the
white (resp. black) pixels in image A where A = A(1) ∪ A(0) and A(1) ∩ A(0) = ∅.
Therefore, B[A(1)] (resp. B[A(0)]) is the corresponding area of all the white (resp. black)
pixels in image B.

Definition 3 (Contrast of the XOR-ed result). Given an original secret image S, and any
two of n corresponding shares generated by our schemes, denoted by Ri and Rj . To evaluate
the visual quality of the XOR-ed result by the two shares Ri and Rj , such that R{⊕,i,j} =
Ri ⊕ Rj , the contrast of the XOR-ed result with respect to the original secret image S is
defined as

αxor = T (R{⊕,i,j}[S(1)]) − T (R{⊕,i,j}[S(0)])
1 + T (R{⊕,i,j}[S(0)]) ,

Remark 1 The contrast is widely accepted to evaluate the visual quality of the revealed
binary image. Since secret image in the revealed result would be better identified by human
visual system with larger contrast, the contrast is expected to be as large as possible. As
documented in [7], if the contrast is bigger than zero, the revealed result can disclose
the contents of the secret image, that is called the contrast condition. Especially, when
T (R{⊕,i,j}[S(0)]) = 0, all the revealed pixels associated to the black secret pixels are
definitely black. By the same way, the contrast of the share is as given as Definition 4.

Definition 4 (Contrast of the share). Given an original cover image C, and the correspond-
ing share Ri generated by our schemes. The contrast of the share Ri with respect to the
original cover image C is

αshare = T (Ri[C(1)]) − T (Ri[C(0)])
1 + T (Ri[C(0)])
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Remark 2 Similarly, the share Ri resembles the cover image C if the contrast of the share
meets αshare > 0, that is called the meaningful condition. On the other hand, if the contrast
of the share meets αshare = 0, such that T (Ri[C(1)]) = T (Ri[C(0)]), which implies
the share Ri is meaningless and hard to be identified. Generally, the security, contrast and
meaningfulness conditions should be met at the same time for a meaningful SIS scheme.

3 The proposed meaningful SIS schemes

To address the problems of poor visual quality and pixels alignment, the SIS schemes con-
structed by flipping operations are proposed. In addition, to make the shares managements
efficient, the proposed SIS schemes can generate meaningful shares without any extra data
hiding process. A basic algorithm for constructing a meaningful (2, 2) SIS scheme is first
proposed, where a secret image is shared into two meaningful shares by flipping operations
with probability. During the decrypting procedure, the secret image can be visually revealed
by performing XOR operations on two meaningful shares. Subsequently, a meaningful
(2, inf inity) SIS scheme is extended underlying the basic algorithm. Meanwhile, suffi-
cient number of formal proofs are also provided to validate the correctness of the proposed
schemes.

3.1 The basic (2, 2) SIS scheme

The basic algorithm for constructing a meaningful (2, 2) SIS scheme is formally illustrated
as in Algorithm 1.

Remark 3 Algorithm 1 is implemented by different flipping strategies, where neither
codebook nor pixel expansion is needed. Especially, Algorithm 1 can directly generate
meaningful shares without any extra data hiding process, which may reduce the computa-
tion time of the scheme. In the following, formal proofs are provided to demonstrate the
correctness of Algorithm 1. As formulated by Theorem 1, Algorithm 1 can be proved to
be a valid construction for a meaningful (2, 2) SIS scheme. Meanwhile, the contrasts of
the revealed secret image and meaningful shares are also analyzed in Theorems 2 and 3,
respectively.
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Lemma 1 Given two shares R1 and R2 generated by Algorithm 1, each of which gives no
clue about the secret image S : T (Rk[S(0)]) = T (Rk[S(1)]), where k = 1, 2.

Proof As stated in Algorithm 1, each shared pixel Rk(i, j) is obtained by flipping the
related original pixel with the probability β no matter whether the secret pixel S(i, j) is 1
or 0. By Definitions 1 and 2, we have T (Rk[S(0)]) = T (Rk[S(1)]) (k = 1, 2). Therefore,
every share Rk gives no clue about the secret image S.

Lemma 2 Given two shares R1 and R2 generated by Algorithm 1, each of which resembles
the cover image C: T (Rk[C(1)]) > T (Rk[C(0)]), where k = 1, 2.

Proof Since each shared pixel Rk(i, j) is generated by flipping the original cover pixel
C(i, j) with probability β, we have

Prob(Rk(i, j) = 1|C(i, j) = 1) = 1 − β,

P rob(Rk(i, j) = 1|C(i, j) = 0) = β.

By Definitions 1 and 2, we obtain T (Rk[C(1)]) = 1 − β and T (Rk[C(0)]) = β. Therefore,
T (Rk[C(1)]) − T (Rk[C(0)]) = 1 − 2β. Since 0 < β < 1

2 , we have T (Rk[C(1)]) −
T (Rk[C(0)]) > 0. As a result, T (Rk[C(1)]) > T (Rk[C(0)]). Therefore, each share Rk can
resemble the cover image C.

Lemma 3 Given two shares R1 and R2 generated by Algorithm 1, the XOR-ed
result by the two shares R{⊕,1,2} = R1 ⊕ R2 visually reveals the secret image S:
T (R{⊕,1,2}[S(1)]) > T (R{⊕,1,2}[S(0)]), but carries no information about the cover image
C: T (R{⊕,1,2}[C(1)]) = T (R{⊕,1,2}[C(0)]).

Proof As stated in Algorithm 1, when S(i, j) is 0, both the two cover pixels are together
flipped with probability β. It is observed that the two generated shared pixels R1(i, j)

and R2(i, j) are always the same no matter the flipping operations are performed or
not, hence the XOR-ed result by the two shared pixels are equal to zero. Thus, we have
Prob(R1(i, j) ⊕ R2(i, j) = 1|S(i, j) = 0) = 0. By Definitions 1 and 2, we get
T (R{(⊕,1,2}[S(0)]) = 0. When S(i, j) is 1, the shared pixels R1(i, j) and R2(i, j) are indi-
vidually generated by flipping the corresponding pixel C(i, j) with the probability β; thus,
we have

Prob(R1(i, j) ⊕ R2(i, j) = 1|S(i, j) = 1) = 2β(1 − β).

By Definitions 1 and 2, we get T (R{(⊕,1,2}[S(1)]) = 2β(1−β). Hence, T (R{(⊕,1,2}[S(1)])−
T (R{(⊕,1,2}[S(0)]) = 2β(1 − β). Since 0 < β < 1

2 , we have 2β(1 − β) > 0. As a result,
T (R{⊕,1,2}[S(1)]) > T (R{⊕,1,2}[S(0)]). Therefore, the XOR-ed result R{⊕,1,2} visually
reveals the secret image S.

On the other hand, we know that the shared pixels R1(i, j) and R2(i, j) are generated by
flipping the corresponding cover image pixel with probability β. Since

Prob(R1(i, j) ⊕ R2(i, j) = 1|C(i, j) = 1) = 2β(1 − β)

and
Prob(R1(i, j) ⊕ R2(i, j) = 1|C(i, j) = 0) = 2β(1 − β),

we get

Prob(R{⊕,1,2} = 1|C(i, j) = 1) = Prob(R{⊕,1,2} = 1|C(i, j) = 0).
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By Definitions 1 and 2, we get T (R{⊕,1,2}[C(1)]) = T (R{⊕,1,2}[C(0)]). As a result, the
XOR-ed result R{⊕,1,2} gives no information about the cover image S.

Theorem 1 Algorithm 1 is a valid construction of a meaningful (2, 2) SIS scheme. It meets
the following conditions:

– (Security condition) Every share Rk gives no clue about the secret image S:
T (Rk[S(0)]) = T (Rk[S(1)]), where k = 1, 2.

– (Meaningfulness condition) Every share Rk looks like the cover image C:
T (Rk[C(1)]) > T (Rk[C(0)]), where k = 1, 2.

– (Contrast condition) The XOR-ed result by the two shares R{⊕,1,2} = R1 ⊕ R2 visu-
ally reveals the secret image S: T (R{⊕,1,2}[S(1)]) > T (R{⊕,1,2}[S(0)]), but gives no
information about the cover image C: T (R{⊕,1,2}[C(1)]) = T (R{⊕,1,2}[C(0)]).

Proof According to Lemmas 1, 2 and 3, the three conditions are satisfied. Therefore,
Algorithm 1 is a valid construction of a meaningful (2, 2) SIS scheme.

Theorem 2 Given two shares R1 and R2 generated by Algorithm 1, the contrast of the
XOR-ed result by two shares is 2β(1 − β), and the reconstruction of black secret pixels is
perfect: T (R{⊕,1,2}[S(0)]) = 0.

Proof From the proof of Lemma 3, we have T (R{⊕,1,2}[S(0)]) = 0 and T (R{⊕,1,2}
[S(1)]) = 2β(1 − β). The formula T (R{⊕,1,2}[S(0)]) = 0 implies the reconstruction of
black secret pixels is perfect. According to Definition 3, the contrast of the XOR-ed result
is calculated by

αxor = T (R{⊕,1,2}[S(1)]) − T (R{⊕,1,2}[S(0)])
1 + T (R{⊕,1,2}[S(0)])

= [2β(1 − β) − 0] / [1 + 0]

= 2β(1 − β).

Theorem 3 The contrast of the meaningful share Rk (k = 1, 2) generated by Algorithm 1
is 1−2β

1+β
.

Proof From the proof of Lemma 2, we have T (Rk[C(1)]) = 1 − β and T (Rk[C(0)]) = β.
According to Definition 4, the contrast of the share Rk is calculated by

αshare = T (Rk[C(1)]) − T (Rk[C(0)])
1 + T (Rk[C(0)])

= [1 − β − β] / [1 + β]

= 1 − 2β

1 + β
.

Remark 4 It is convenient to see that as β increases from 0 to 1/2, αxor goes up but αshare

goes down. With the adjustable parameters, the application of the proposed SIS schemes
becomes flexible. The tradeoff among the visual quality of the revealed secret image
and meaningful shares can vary from the application to application by setting different
parameters.
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3.2 The extended (2, inf inity) SIS scheme

In this section, a meaningful (2, inf inity) SIS scheme is extended underlying the basic
(2, 2) SIS scheme. The extended (2, inf inity) scheme inherits all the advantages of the
basic (2, 2) SIS scheme, such as no codebook required, no pixel expansion, meaningful
shares and superior visual quality. Additionally, the extended (2, inf inity) scheme obtains
some new properties: (1) the shares generated by the basic (2, 2) SIS scheme could be re-
used in the extended (2, inf inity) SIS scheme, (2) the visual qualities of both the new share
and revealed secret image maintain exactly the same as those in the basic (2, 2) SIS scheme
no matter how large the number of the extended shares is.

As stated in the basic (2, 2) SIS scheme, every pixel of the original cover image is flipped
with probability β no matter the corresponding secret pixel is white or black, so that the
generated share gives no clue about the secret image. In the following, underlying the basic
(2, 2) SIS scheme, we construct new shares to extend the number of shares, where every
pixel of the new share is also generated by flipping the cover image pixel with probability
β. The extended (2,infinity) SIS scheme is formally illustrated as in Algorithm 2.

Similarly, sufficient number of formal proofs are provided to demonstrate the correctness
of Algorithm 2. As formulated by Theorem 4, Algorithm 2 can be proved to be a valid
construction for a meaningful (2, inf inity) SIS scheme.

Theorem 4 Let R1 and R2 be the two shares generated by Algorithm 1 with a parameter β

(0 < β < 1
2 ), and Rnew

1 , · · · , Rnew
N be the N new shares generated by Algorithm 2, where

N denotes an any arbitrarily large positive integer. Algorithm 2 is a valid construction for
a meaningful (2, inf inity) SIS scheme. It should meet the following conditions:

– Each of shares {R1, R2, Rnew
1 , · · · , Rnew

N } gives no clue about the secret image S.
– Each of shares {R1, R2, Rnew

1 , · · · , Rnew
N } is a meaningful image which can resemble

the cover image C.
– The XOR-ed result by any two of shares {R1, R2, Rnew

1 , · · · , Rnew
N } visually reveals

the secret image S, but carries no information about the cover image C.
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Proof Since the shares R1 and R2 are generated by Algorithm 1, it is convenient to see
each of these two shares gives no clue about the secret image by the security condition of
Theorem 1. As we known, the input share R for Algorithm 2 is generated by Algorithm 1,
that is R ∈ {R1, R2}. As stated in Algorithm 1, every pixel of the share R is generated by
performing flipping operation on the corresponding cover image pixel with probability β,
which can be denoted by Prob(R(i, j) = C(i, j)) = β.

For each new share Rnew
k (k = 1, · · · , N), when S(i, j) = 0, the corresponding shared

pixel Rnew
k (i, j) = R(i, j); thus, we have

Prob(Rnew
k (i, j) = C(i, j)|S(i, j) = 0) = Prob(R(i, j) = C(i, j)) = β.

On the other hand, when S(i, j) = 1, as stated in Step 3 of Algorithm 2, it is clearly obtained

Prob(Rnew
k (i, j) = C(i, j)|S(i, j) = 1) = β.

Therefore, no matter whether the secret pixel S(i, j) is 0 or 1, the probability of perform-
ing flipping operation on pixel C(i, j) is always equal to β. As a result, for all shares
{R1, R2, Rnew

1 , · · · , Rnew
N }, each of them gives no clue about the secret image S.

As formulated by Lemma 2, the shares R1 and R2 generated by Algorithm 1 are
meaningful. By Theorem 3, the contrast of the share Rk (k = 1, 2) is obtained by computing

αshare = 1 − 2β

1 + β
.

Since 0 < β < 1
2 , we have αshare > 0. On the other hand, for each new share Rnew

k (k =
1, · · · , N), since every pixel Rnew

k (i, j) is generated by flipping the corresponding cover
image pixel C(i, j) with probability β, we have

Prob(Rnew
k (i, j) = 1|C(i, j) = 1) = 1 − β

and
Prob(Rnew

k (i, j) = 1|C(i, j) = 0) = β.

By Definition 4, the contrast of the new share can be calculated as

αnew
share = 1 − β − β

1 + β
= 1 − 2β

1 + β
.

It is clearly seen that αnew
share = αshare > 0. Hence, for all shares {R1, R2, Rnew

1 , · · · ,

Rnew
N }, each of them is a meaningful image which resembles the cover image C. Addition-

ally, it can be concluded that all shares have the same contrast 1−2β
1+β

.
Let Rx1 and Rx2 be any two shares from {R1, · · · , Rn, R

new
1 , · · · , Rnew

N }. As stated
in Algorithms 1 and 2, when S(i, j) = 0, the shared pixels Rx1(i, j) and Rx2(i, j) are
always the same; thus, we have Prob(R{⊕,x1,x2}(i, j) = 1|S(i, j) = 0) = 0. When
S(i, j) = 1, the shared pixels Rx1(i, j) and Rx2(i, j) are individually generated by flipping
the corresponding image pixel C(i, j) with the probability β; thus, we have

Prob(R{⊕,x1,x2}(i, j) = 1|S(i, j) = 1) = 2β(1 − β).

By Definitions 1 and 2, we have T (R{⊕,x1,x2}[S(0)]) = 0 and T (R{⊕,x1,x2}[S(1)]) = 2β(1−
β). According to Definition 3, the contrast of the XOR-ed result R{⊕,x1,x2} can be calculated

[2β(1 − β) − 0] / [1 + 0] = 2β(1 − β).

Since 0 < β < 1
2 , we have 2β(1 − β) > 0. As a result, the XOR-ed result R{⊕,x1,x2} can

disclose the secret image by human visual system.
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On the other hand, we know that the shares Rx1 and Rx2 are generated by flipping the
cover image pixel with probability β. Since

Prob(R{⊕,x1,x2}(i, j) = 1|C(i, j) = 1) = 2β(1 − β)

and
Prob(R{⊕,x1,x2}(i, j) = 1|C(i, j) = 0) = 2β(1 − β),

we get

Prob(R{⊕,x1,x2}(i, j) = 1|C(i, j) = 1) = Prob(R{⊕,x1,x2}(i, j) = 1|C(i, j) = 0).

By Definitions 1 and 2, we have T (R{⊕,x1,x2}[C(1)]) = T (R{⊕,x1,x2}[C(0)]). Hence, the
XOR-ed result R{⊕,x1,x2} does not give any information about the cover image C.

Remark 5 From the proof of Theorem 4, the contrast of the new share is 1−2β
1+β

, which is
the same as the contrast of the share generated by the basic (2, 2) SIS scheme. Meanwhile,
the contrast of the XOR-ed result by the extended (2, inf inity) SIS scheme is 2β(1 − β)

which dose not depend on the extended number N . It implies that when the parameters β

is set, the contrasts of the shares and the revealed secret image are fixed to some value no
matter how large the number of new shares is. Further, the reconstruction of black secret
pixels by the proposed schemes is perfect, which makes the secret image well identified by
human visual system.

4 Experimental results and discussions

4.1 Feasibility

In this section, several experiments were conducted to demonstrate the feasibility of the
proposed schemes. The first experiment is a (2, 2) SIS scheme constructed by Algorithm
1 with parameter β being 0.2, where all the test images are 512 × 512 in size. Simulation
results of the first experiment are illustrated in Fig. 2, where Fig. 2a and b respectively
show the secret image and the cover image used in the experiment. As shown in Fig. 2c-d,
the generated shares are meaningful images which resemble the cover image. The XOR-ed
result by two shares (c) and (d) visually reveals the secret image but carries no information
about the cover image, as illustrated as in Fig. 2e. It is observed that the reconstruction of
black secret pixels is perfect, which is helpful to further identify the secret image in the
XOR-ed result by the naked eyes.

The second experiment conducted by the extended (2, inf inity) SIS scheme is illus-
trated in Fig. 3, where the (2, 2) case of Fig. 2 is extended to a (2, 3) case by Algorithm
2. The three meaningful shares of the (2, 3) case are shown in Fig. 3a-c, where shares of
Fig. 3a-b directly utilize the two shares generated from the (2, 2) case of Fig. 2, and the new
meaningful share of Fig. 3c is generated by Algorithm 2. The XOR-ed results by any two
of these three shares are illustrated in Fig. 3d-f, where the secret image is visually revealed.
Note that, all the revealed pixels associated to the black secret pixels are always black, that
implies the reconstruction of black pixels is perfect.

To further demonstrate the feasibility of the extended (2, inf inity) SIS scheme, another
experiment for a (2, 10) case is conducted by Algorithm 2 with a bigger number N being 8,
where the (2, 2) case of Fig. 2 is extended to a (2, 10) case. Five of ten meaningful shares
are shown in Fig. 4a-e, where Fig. 4a-b directly re-use the two shares of the (2, 2) case and
Fig. 4c-e are the three of eight new shares generated by Algorithm 2. It can be observed
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(a) (b)

(c) (d) (e)

Fig. 2 Experimental results of the basic (2, 2) SIS scheme with β = 0.2, where all the test images are
512 × 512 in size. a The secret image, b the cover image, c share R1, d share R2, e R1 ⊕ R2

that the XOR-ed result by any two meaningful shares of Fig. 4a-e visually reveals the secret
image with perfect reconstruction of black pixels, as illustrated as in Fig. 4f-o.

4.2 Correctness of the theoretical contrasts

As stated in Section 3, theoretical contrasts of the extended (2, inf inity) SIS scheme are
exactly the same as those of the basic (2, 2) SIS scheme. The theoretical contrasts can be
characterized by a general formula with a parameter β, as described as follows:

αshare = 1 − 2β

1 + β
(4)

αxor = 2β(1 − β) (5)

It is observed that the contrasts of the shares and the revealed secret image do not depend
on the extended number of shares. For example, assume that an extended (2, inf inity)

SIS scheme is constructed underlying the (2, 2) SIS scheme with β being 0.25. For the
(2, inf inity) SIS scheme, no matter how large the number of the extended shares is, the
contrasts of the share and the revealed secret image are fixed to 2

5 and 3
8 , respectively.

To examine the correctness of the theoretical contrasts, the experimental contrasts of the
revealed secret image and shares are desired to be calculated. Table 2 illustrates the experi-
mental contrasts of the (2, 2) experiment by Algorithm 1, while Tables 3 and 4 respectively
illustrate the experimental contrasts of the (2, 3) and (2, 10) experiments, both of which are
constructed underlying the (2, 2) experiment by Algorithm 2. From Tables 2–4, for each
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Experimental results of the extended (2, inf inity) SIS scheme for a (2, 3) case, which is constructed
underlying the (2, 2) case of Fig. 2. a–b Two shares of the (2, 2) case by Algorithm 1: R1 and R2, c a new
share R3 generated by Algorithm 2, d R1 ⊕ R2, e R1 ⊕ R3, f R2 ⊕ R3

single share Ri , we have T (Ri[S(1)]) ≈ T (Ri[S(0)]) and T (Ri[C(1)]) > T (Ri[C(0)]).
That implies the share resembles the cover image C but gives no clue about the secret image
S. Hence, the security and meaningfulness conditions are met. For the XOR-ed result by
any two shares Rx and Ry , denoted by Rx ⊕ Ry , we can obtain T ((Rx ⊕ Ry)[S(1)]) >

T ((Rx ⊕ Ry)[S(0)]) and T ((Rx ⊕ Ry)[C(1)]) ≈ T ((Rx ⊕ Ry)[C(0)]). That indicates the
XOR-ed result by any two shares visually reveals the secret image but carries no informa-
tion about the cover image, so that the contrast condition is met as well. In addition, we
found that T ((Rx ⊕ Ry)[S(0)]) is always equal to 0, that implies that the reconstruction of
the black secret pixel is perfect. Further, the correctness of the theoretical contrasts is also
substantiated by Tables 2–4, where the experimental contrasts are approximately the same
as the theoretical contrasts.

4.3 Comparisons

For the extended (2, inf inity) SIS scheme, the contrasts of both the share and revealed
secret image do not depend on the extended number of shares. Indeed, the visual qualities
of the extended (2, infinty) SIS scheme are always the same as those of the basic (2, 2) SIS
scheme no matter how large the share number is. It is desired to calculate the contrasts of
the revealed secret images by the proposed schemes, and compare them with those by other
related schemes. In some reported (2, n) SIS schemes [6–8, 29], the stacked result by any
two shares can visually reveal the secret image, but the shares generated by these schemes
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o)

Fig. 4 Experimental results of the (2, inf inity) SIS scheme for a (2, 10) case, which is constructed under-
lying the (2, 2) case of Fig. 2. (a-c) Two shares of the (2, 2) case by Algorithm 1: R1 and R2, (c-e) three of
eight new shares by Algorithm 2: R3, R4 and R5, (f) R1 ⊕ R2, (g) R1 ⊕ R3, (h) R1 ⊕ R4, (i) R1 ⊕ R5, (j)
R2 ⊕ R3, (k) R2 ⊕ R4, (l) R2 ⊕ R5, (m) R3 ⊕ R4, (n) R3 ⊕ R5, (o) R4 ⊕ R5

are meaningless. For the fairness, the parameter β is set to 0.5 for generating meaningless
shares by the proposed schemes. Contrast comparisons among the proposed schemes and
related SIS schemes [6–8, 29] are provided in Table 5, where all the generated shares are
meaningless. It is observed that the largest contrast of the revealed secret image by the
proposed schemes is achieved. Specially, the value of T (SR[S(0)]) calculated from the
revealed secret image by the proposed schemes is always equal to zero, which indicates that
the reconstruction of black secret pixels is perfect. However, the shares generated above are
meaningless which may impose difficulty for managing the shares and increase the chance
of suspicion on secret image communication. Fortunately, when the adjustable parameter
β is satisfied 0 < β < 0.5, the meaningful version of the proposed SIS scheme can be
achieved, where the meaningful shares are generated.

It is desired to calculate the computational complexity of XOR decryption for the pro-
posed scheme, and make comparisons of computational complexity among the proposed

Table 2 Experimental contrasts for the (2, 2) experiment of Fig. 2, where the theoretical contrast of the share
is 0.5000 obtained by (4), and the theoretical contrast of the revealed secret image is 0.3200 obtained by (5)

Image R T (R[S(1)]) T (R[S(0)]) Experimental αxor T (R[C(1)]) T (R[C(0)]) Experimental αshare

for revealed for the share

secret image

R1 0.6047 0.6273 − 0.7988 0.2022 0.4971

R2 0.6037 0.6273 − 0.7999 0.1992 0.5009

R1 ⊕ R2 0.3209 0 0.3209 0.2652 0.2708 −
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Table 3 Experimental contrasts for the (2, 3) experiment of Fig. 3, where the theoretical contrast of the share
is 0.5000 obtained by (4), and the theoretical contrast of the revealed secret image is 0.3200 obtained by (5)

Image R T (R[S(1)]) T (R[S(0)]) Experimental αxor T (R[C(1)]) T (R[C(0)]) Experimental αshare

for revealed for the share

secret image

R1 0.6047 0.6273 − 0.7998 0.2022 0.4971

R2 0.6037 0.6273 − 0.7999 0.1992 0.5009

R3 0.6030 0.6273 − 0.7984 0.2007 0.4978

R1 ⊕ R2 0.3209 0 0.3209 0.2652 0.2708 −
R1 ⊕ R3 0.3220 0 0.3220 0.2653 0.2735 −
R2 ⊕ R3 0.3201 0 0.3201 0.2652 0.2686 −

Table 4 Experimental contrasts for the (2, 10) experiment of Fig. 4, where the theoretical contrast of the
share is 0.5000 obtained by (4), and the theoretical contrast of the revealed secret image is 0.3200 obtained
by (5)

Image R T (R[S(0)]) T (R[S(1)]) Experimental αxor T (R[C(0)]) T (R[C(1)]) Experimental αshare

for revealed for the share

secret image

R1 0.6047 0.6273 − 0.7998 0.2022 0.4971

R2 0.6037 0.6273 − 0.7999 0.1992 0.5009

R3 0.6033 0.6273 − 0.7986 0.2009 0.4978

R4 0.6051 0.6273 − 0.8013 0.2001 0.5010

R5 0.6052 0.6273 − 0.8005 0.2019 0.4979

R1 ⊕ R2 0.3209 0 0.3209 0.2652 0.2708 −
R1 ⊕ R3 0.3208 0 0.3208 0.2646 0.2716 −
R1 ⊕ R4 0.3198 0 0.3198 0.2638 0.2708 −
R1 ⊕ R5 0.3204 0 0.3204 0.2635 0.2731 −
R2 ⊕ R3 0.3203 0 0.3203 0.2647 0.2704 −
R2 ⊕ R4 0.3171 0 0.3171 0.2616 0.2685 −
R2 ⊕ R5 0.3192 0 0.3192 0.2632 0.2707 −
R3 ⊕ R4 0.3210 0 0.3210 0.2651 0.2713 −
R3 ⊕ R5 0.3216 0 0.3216 0.2656 0.2717 −
R4 ⊕ R5 0.3184 0 0.3184 0.2623 0.2705 −

Table 5 Contrast comparisons among the proposed schemes with β = 0.5 and related SIS schemes

Schemes T (SR[S(1)]) T (SR[S(0)]) α for revealed secret image

Our (2, 2) scheme 1
2 0 1

2

Our (2, inf inity) scheme 1
2 0 1

2

Wu and Sun’s (2, n) scheme [29]
√

2 − 1 3 − 2
√

2 > 0
√

2−1
2 < 1

2

Chen and Lin’s (2, inf inity) scheme [6]
√

2 − 1 3 − 2
√

2 > 0
√

2−1
2 < 1

2

Chen and Tsao’s (2, n) scheme [7] 1
4 + 1

2n(n−1)
1
4 − 1

2n(n−1)
> 0 4

5n(n−1)−2 < 1
2

Chen and Tsao’s (2, n) scheme [8] 1
2

1
4 > 0 1

5 < 1
2
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Table 6 Comparisons of
computational complexity for
the decryption among the
proposed scheme and other
related SIS schemes, where
k is the number of shares

Schemes Computational complexity

The proposed scheme O(1)

[29] O(1)

[6] O(1)

[7] O(1)

[18] O(k)

[8] O(1)

[25] O(k)

[20] O(1)

[31] O(k log2 k)

[15] O(k log2 k)

scheme and other related SIS schemes [6–8, 15, 18, 20, 25, 29, 31], as shown as in Table 6.
In the traditional (2, n) SIS schemes [18, 25], when the involved share number k is larger
than 2, all the k shares are usually used to decrypt the secret image. Since the computa-
tional complexity of XOR decryption is proportional to the share number, its computational
complexity can be stated as O(k). However, in the proposed scheme, we just utilized any 2
of these k shares to decrypt the secret image, so that its computational complexity is O(1)

which is approximately the same as that of the OR-based VC schemes [6–8, 20, 29]. Further,
as compared to the computational complexity O(k log2 k) of Shamir-based SIS schemes
[15, 31], the computational complexity of the proposed scheme requires less time.

Feature comparisons among the proposed SIS schemes and related SIS schemes are
demonstrated in Table 7. Major advantages of the proposed SIS schemes are given as
follows:

1. The shares are with meaningful contents, which makes the shares management effi-
cient.

2. The XOR-ed result by any two shares visually reveals the secret image but carries no
information about the cover image.

3. The reconstruction of black secret pixels is perfect, which makes the secret image well
identified by human visual system.

Table 7 Feature comparisons among our scheme and other related SIS schemes

Schemes Features

Meaningful Decryption Perfect Visual Pixel Code book Type of

shares black quality Expansion required VCS

ours Yes XOR Yes High No No (2, inf inity)

[29] No OR No Low No No (2, n)

[6] No OR No Low No No (2, n),(2, infinity)

[7] No OR No Low No No (k, n)

[18] No XOR No High Yes Yes (2, n)

[8] No OR No Low No No (2, n), (n, n)

[25] No XOR No High Yes Yes (k, n)

[20] No OR No Low Yes Yes (k, n)
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4. Superior visual quality is achieved as compared to some reported OR-based SIS
schemes.

5. Merits such as no codebook required and no pixel expansion are maintained.

5 Conclusion

This paper is aimed at giving a new method to devise meaningful SIS schemes by flipping
operations. The devised SIS schemes include the basic (2, 2) SIS scheme and the extended
(2, inf inity) SIS scheme. The proposed SIS schemes have advantages of no pixel expan-
sion and no codebook required. In addition, shares with meaningful contents can be directly
generated without any extra data hiding process, and superior visual qualities of both the
share and revealed secret image are achieved by the proposed schemes. In the decrypt-
ing procedure of the extended (2, inf inity) SIS scheme, when more than two shares are
provided, we just need any two of them to decrypt the secret image by XOR operations.
Meanwhile, sufficient number of formal proofs are provided to validate the correctness of
the proposed SIS schemes. The contrasts of both the share and revealed secret image can
be characterized by a general formula with a parameter β, where the contrast of the share is
1−2β
1+β

and the contrast of the revealed secret image is 2β(1 − β). Further, the application of
the proposed SIS schemes is flexible, because that the tradeoff among the visual quality of
the share and revealed secret image can vary from the application to application by setting
different parameters.
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