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Abstract Video transmission over wireless channels is affected by channel-induced packet
losses. Distortion due to channel errors can be alleviated by applying forward error cor-
rection. Aggregating H.264/AVC slices to form video packets with sizes adapted to their
importance can also improve transmission reliability. Larger packets are more likely to be
in error but smaller packets require more overhead. We present a cross-layer dynamic pro-
gramming (DP) approach to minimize the expected received video distortion by jointly
addressing the priority-adaptive packet formation at the application layer and rate compati-
ble punctured convolutional (RCPC) code rate allocation at the physical layer for prioritized
slices of each group of pictures (GOP). Some low priority slices are also discarded to
improve protection to more important slices and meet the channel bit-rate limitations. We
propose two schemes. Our first scheme carries out joint optimization for all slices of a
GOP at a time. The second scheme extends our cross-layer DP-based approach to slices of
each frame by predicting the expected channel bit budget per frame for live streaming. The
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prediction uses a generalized linear model developed over the cumulative mean squared
error per frame, channel SNR, and normalized compressed frame bit budget. The parameters
are determined over a video dataset that spans high, medium and low motion complexity.
The predicted frame bit budget is used to derive the packet sizes and corresponding RCPC
code rates for live transmission using our DP-based approach. Simulation results show that
both proposed schemes significantly improve the received video quality over contemporary
error protection schemes.

Keywords H.264/AVC · Video compression · Cross-layer · Priority-adaptive packet
formation · Packet discarding · Error protection · Live streaming

1 Introduction

Multimedia applications such as video streaming, which are delay sensitive and bandwidth
intensive, are growing rapidly over wireless networks. However, existing wireless networks
provide only limited and time-varying quality of service (QoS) support for these applica-
tions. Further, compressed video bitstream is vulnerable to packet losses over noisy wireless
channels and the lost packets contribute different levels of video quality degradation due
to temporal and spatial dependencies in the compressed bitstream. Video transmission can
also tolerate some packet losses as the effect of lost packets can be concealed at the decoder
[2]. Recent research has demonstrated the promise of cross-layer protocols for supporting
the QoS demands of multimedia applications over wireless networks [44].

Adapting the packet size to channel error characteristics improves the successful packet
transmission probability and reduces retransmissions [22, 26, 34]. It involves a trade-off
between reducing the amount of overhead bits contributed by protocol headers at different
layers by using large packet sizes and reducing the packet error rate by using small packet
sizes. However, maximizing throughput in this manner does not guarantee the minimum
received video distortion since lost video packets induce significantly different amounts
of distortion. Hence, video packet size should also be adaptive to the packet importance.
However, existing payload (i.e., packet size) adaptation schemes do not consider distor-
tion contribution of the packet. Our recent cross-layer, priority-aware packet fragmentation
schemes for H.264/AVC video at the medium access control (MAC) layer provided sig-
nificant improvement in video quality over the priority-agnostic fragmentation schemes,
thereby showing the advantages of adapting video fragment size to the packet importance
[20]. However, the schemes in [20] did not use forward error correction (FEC) at the PHY
layer for noisy wireless channels. MAC layer fragmentation usually requires that all the
fragments of a packet are received error-free, otherwise the packet is discarded.

In this paper, our objective is minimizing the expected received video distortion by jointly
optimizing the packet sizes (by aggregating the slices based on their importance) at the
APP layer and estimating their FEC code rates to be applied at the PHY layer for noisy
channels. Some low priority slices are also discarded in order to increase the protection to
more important slices within the channel bit-rate constraints. Our proposed scheme ensures
that higher priority slices, which contribute more distortion, are sent in smaller packets with
stronger FEC coding. At the same time, it also controls the overhead incurred from the
total protocol header bits and FEC codes associated with the formed packets. The distortion
contributed by each slice is determined by its cumulative mean squared error (CMSE).

We propose two cross-layer dynamic programming (DP) based schemes. Our first
scheme carries out joint optimization for all the slices of a group of pictures (GOP) together.
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An earlier version of this scheme was presented in [21]. To avoid the delays associated with
optimizing the packet sizes and their associated FEC code rates for entire slices of a GOP,
our second scheme carries out the joint optimization on each frame independently by pre-
dicting its expected channel bit budget. For this, we train a generalized linear model (GLM)
offline over the database of factors: (a) normalized CMSE per frame, (b) channel signal-to-
noise ratio (SNR), and (c) normalized compressed frame bit budget allocated by the H.264
encoder. The factors are determined for a video dataset that spans high, medium, and low
motion complexity. Simulation results show that both schemes achieve better received video
quality than other contemporary schemes over noisy channels. Our scheme considers the
point-to-point wireless communication environments which have also been considered in
[3, 9, 17, 29, 46, 47]. Such communication environments are prevalent in military commu-
nication (such as the line of sight among airborne nodes or air to ground nodes), emergency
communication, and device to device communication in certain industry applications (such
as supervisory control and data acquisition (SCADA), critical industrial automation and
control). In particular, a well-designed wireless network infrastructure cannot be assumed in
the military and emergency communication, and the channel can also degrade due to node
mobility, poor infrastructure (such as long distance between the nodes), and interference
due to jamming etc. An important challenge in such applications is alleviating the channel-
induced errors, which our scheme addresses by intelligently using the available channel
resources to protect different video slices and frames in a way that the received video quality
is improved over the noisy channels. The improved received video quality will also impact
many content analysis applications, including the surveillance applications [13].

Contributions: Existing payload adaptation schemes [22, 26, 34] do not consider different
distortion contributions (e.g., CMSE values) of video slices while computing their packet
size nor do they discard low priority slices. Our approach has the following distinguishing
features: (i) minimizes the video distortion by jointly optimizing the packet size and FEC
code rate for all slices of a GOP, for a given source video bit rate, channel bit rate and
channel SNR; (ii) adapts packet size and FEC code rate to the distortion contribution (i.e.,
CMSE values) of video slices; (iii) discards some low priority slices to improve protection
to high priority slices while meeting the channel constraints; and (iv) performs optimization
over slices of each frame (instead of slices of entire GOP) by using the predicted slice
CMSE and frame overhead bit budget values for live streaming applications.

Section 2 discusses the related work. Section 3 gives an overview of our proposed
cross-layer approach. Section 4 discusses the details of the joint optimization problem for
the slices of a GOP. Section 5 discusses our joint optimization scheme for the slices of
each frame. Details of the reference approaches and the performance comparison with our
proposed schemes are presented in Section 6, followed by conclusions in Section 7.

2 Related work

Many schemes have been designed for fragmenting data units at the MAC layer [6, 11, 12,
19, 20, 23]. To address the variation in network conditions, solutions for adaptive packet
size adjustments at the application layer have been discussed in [5, 7, 22, 25, 26, 30, 34,
39, 40, 43]. The effect of packet size on the loss rate and delay characteristics in a wireless
streaming application was studied in [22]. It was shown that the application level packet
size optimization could facilitate efficient use of wireless network resources, improving the
service provided to the end users. Choudhury and Gibson [7] observed that payload length
adaptation significantly improves the throughput at low channel SNRs.



3238 Multimed Tools Appl (2016) 75:3235–3257

Choi et al. [5] designed cross-layer schemes to study the effect of optimal packet size,
MAC layer retransmissions, and application layer FEC on multimedia delivery over wireless
networks. They noted that the packet size is tightly related to the packet delay and channel
conditions. A mathematical framework to maximize a single user throughput by using the
symbol rate, the packet length, and the constellation size of the modulation was described in
[7]. A theoretical framework to optimize the single user throughput by adjusting the source
bit rate and payload length as a function of channel conditions, without retransmission, was
discussed in [8, 50].

Shih [39, 40] proposed a scheme which integrated the packet size control mechanism
with the optimal packet-level FEC in order to enhance the efficiency of FEC over wireless
networks. Both the degree of FEC redundancy and the transport packet size were adjusted
simultaneously in accordance with a minimum bandwidth consumption strategy. To transmit
video frames with delay bound and target frame error rate constraint, Lin et al. [30] formu-
lated an optimization problem to minimize the required resource units for a single user by
adjusting payload length, modulation, block size, and code rate for wireless channels. An
adaptive packet and block length FEC control mechanism was discussed in [43]. An algo-
rithm that allows an automatic repeat request (ARQ) protocol to dynamically optimize the
packet size based on the wireless channel bit error rates was proposed in [34]. Lee at al.
[25, 26] developed an analytic model to evaluate the impact of channel BER on the quality
of streaming a MPEG-4 FGS scalable video. They proposed a video transmission scheme,
which combines the adaptive assignment of packet size with unequal error protection to
increase the end-to-end video quality. A cross-layer design considering retransmission was
shown in [49]. Authors optimized the length of payload and suggested the associated physi-
cal transmission modes, which included modulation and coding scheme, for a given channel
SNR.

The above mentioned schemes attempt to minimize the video distortion during wireless
transmission without considering the different distortion contributions of video slices for
jointly computing their packet size and FEC code rate. They also do not consider discarding
some low priority slices which can further reduce the distortion compared to transmitting
all the slices on bit-rate constrained channels.

3 Proposed cross-layer approach

Our scheme minimizes the expected received video distortion by using the slice priorities
(i.e., slice CMSE values) and exploiting the trade-offs between the priority-adaptive packet
sizes, and their RCPC code rates with the total incurred overhead (FEC + network protocol
header) for a given source bit rate, channel SNR, and channel bit rate. Figure 1 illustrates a
flow diagram of our proposed cross-layer approach at the transmitter. The APP layer carries
out two functions: CMSE based slice prioritization and optimal packet formation (illustrated
further in Fig. 2) for H.264 video slices.

3.1 CMSE computation/prediction of H.264 video slices

The video frames are encoded into a GOP using the fixed slice size configuration in
H.264/AVC, where macroblocks of a frame are aggregated into slices with fixed size [14,
48]. The H.264 slices are prioritized based on their distortion contribution to the received
video quality. The loss of a slice introduces error in the current reference frame and could
propagate to other frames in the GOP. We compute the total distortion by using the CMSE
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Fig. 1 Flow diagram of proposed cross-layer system

introduced by a slice loss, since it takes into consideration the error propagation within the
entire GOP. Suppose the video resolution is H × W , represented in terms of the number of
pixels along the height (H ) and width (W ) of a video frame. Let ̂Peli,j,k represent the pixel
energy value at location (j, k) in the reconstructed frame i at the encoder without the slice
loss and ˜Peli,j,k represent the corresponding pixel energy value in the same frame decoded
at the receiver with the slice loss. The CMSE contributed by the loss of the slice is computed
in (1) as the sum of mean squared error (MSE) over the current and all the other frames in
the GOP.

CMSE =
last f rame of GOP

∑

i=current f rame with slice loss−t

⎧

⎨

⎩

1

H × W

H
∑

j=1

W
∑

k=1

(

̂Peli,j,k − ˜Peli,j,k
)2

⎫

⎬

⎭

(1)

Here, t is the temporal duration of a reference frame in the backward direction. The bi-
directionally predicted (B) frames in the backward temporal direction are also covered
by (1).

The computation of slice CMSE introduces high computational overhead as it requires
decoding the entire GOP for every slice loss. This overhead can be avoided by predicting the
slice CMSE using our low-complexity generalized linear model (GLM) scheme proposed
in [35]. This model reliably predicts the slice CMSE values by extracting the encoded frame
and the error frame features. The encoded frame features consist of motion characteristics,
signal characteristics, maximum residual energy, and number of macroblock sub-partitions.
The error frame features consist of the temporal duration, initial mean square error, and
initial structural similarity index. The slice contributing the highest distortion is the most
important slice (i.e., highest priority). This process defines the relative importance order
for the slices in the GOP [20]. Note that our joint video packetization and error protection

Fig. 2 Block diagram of proposed dynamic programming approach
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scheme proposed in this paper will also work well with other slice distortion computation
schemes such as Li and Liu [27] and Schierl and Welzl [38].

3.2 Video packet formation

The optimal packet formation uses a joint optimization scheme to form variable-sized
packets (by aggregating pre-encoded slices according to their CMSE) and estimating their
corresponding optimal FEC code rates that can be applied at the PHY layer, in order to
minimize the received video distortion.

The FEC configuration contains a mother code rate and a family of rate compatible
punctured convolutional (RCPC) code rates [15]. We use BPSK modulation. The maxi-
mum transmission unit (MTU) size for the wireless network is 1500 bytes [31]. The optimal
packet formation block uses the information about the MTU size, RTP/UDP, IP and MAC
layer headers which remain unchanged for a given network, and the channel SNR, FEC con-
figuration and channel bit rate information from the PHY layer. The RTP/UDP/IP overhead
appended to each packet formed at the APP layer is 4 bytes after robust header compres-
sion (RoHC) [37]. Each packet is also appended with 50 bytes of MAC and PHY layer
headers.

4 Expected video distortion minimization

We introduce a dynamic programming based optimization approach, denoted as DP-
UEP(GOP) to minimize the expected video distortion for the slices of a GOP. The channel
transmission rate is RCH bits per second. The video is encoded at a frame rate of fs frames
per second. The total outgoing bit budget for a GOP of length LG frames is RCH LG

fs
. ns

denotes the total number of slices generated within a GOP; ns is a constant. np denotes
the number of packets formed from these slices in the GOP; np is variable. Sp(i) is the ith

packet size before adding network headers of size h bits and parity bits from the selected
RCPC code. The RCPC code rates are chosen from a candidate set, R, of punctured code
rates {R1, R2, R3, ..., RK }. The number of packets discarded is npd .

4.1 Packet size adaptation

The proposed scheme is a recursive process between two blocks: packet formation (PF)
block and optimal RCPC code rate allocation (OCRA) block as shown in Fig. 2. The
PF block initializes np = ns and npd = 0 and calls the OCRA block after sorting the
np = ns packets of a GOP in descending order of their CMSE values. The OCRA block
determines the optimal RCPC code rates for the packets and the number of packets dis-
carded npd , to minimize a dual cost function value (computed over the GOP) which will
be described in the next section. The number of packets is updated to np = ns − npd .
The OCRA block then forwards the computed parameters to the PF block as shown in
Fig. 2 [21].

The PF block aggregates two packets with the least CMSE contribution from the remain-
ing set of packets not discarded by the OCRA block. The aggregated packet is inserted into a
new position in the sorted list based on its distortion computed as the sum of the CMSE val-
ues of both packets. This maintains the decreasing order of packet distortion. As an example,
Fig. 3 shows one iteration of our proposed scheme in the PF block. The aggregated packet
is at position np − j . The np − 1 packets with their sizes and distortion values are once
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Fig. 3 Packet formation in PF block

again sent to the OCRA block which estimates their new optimal packet code rates. The
parameters shown in Fig. 2 are exchanged recursively between the blocks until aggregating
packets no longer reduces the dual cost function value [21].

The size of the aggregated packets is constrained by the MTU size for wireless net-
works. Aggregating packets reduces the total overhead from network protocol headers; the
bits saved are used to increase the FEC protection to more important packets. Since the PF
block aggregates the least important packets in each iteration, this ensures that packets con-
tributing higher distortion are transmitted with smaller sizes, and the OCRA block ensures
that they have stronger FEC hence lower packet error probabilities.

4.2 Distortion minimization with OCRA block

The distortion due to compression is neglected in this formulation because the slices are
encoded at relatively high quality. Therefore, the distortion due to compression is small
compared to distortion from slice losses and discards. The initial values are np = ns

and npd = 0. The expected video distortion within a GOP, E[D̃GOP ] is modeled as
the sum of the distortion due to channel-induced packet loss and distortion from pack-
ets discarded at the sender as in [29]. The distortion due to the compression is neglected
in this formulation because the slices are encoded at a relatively high quality. So, the
distortion due to compression is small compared to distortion from packet losses and
discards.

E[D̃GOP ] =
np−npd
∑

i=1

E[D̃p(i)] +
np
∑

i=np−npd+1

Dp(i) (2)

Dp(i) is the distortion caused due to the loss of packet i and is computed as the sum of
the CMSE of individual slices contained in the packet. Each video packet is appended with
a h bit network header and the parity bits for a code rate ri selected from the set R. A video
packet is in error if at least one bit is in error after channel decoding at the receiver. The
packet error probability ppkt (i), which depends on the channel SNR, packet size, and the
selected RCPC code rate is estimated as given in [3, 7, 29, 32]:

ppkt (i) = 1 − (1 − pb(SNR, ri))

(

h+Sp(i)

ri

)

(3)
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where pb(SNR, ri) is the bit error probability after channel decoding for code rate ri . We
use the packet error probability estimate in the OCRA block to determine the packet FEC
rates. For a given value of npd , the distortion due to the discarded packets in (2) is a constant
K1. The optimization problem for minimizing expected video distortion over the GOP by
allocating optimal code rates is formulated as in [21],

minr

{

∑np−npd

i=1

[

1 − (1 − pb(SNR, ri))

(

h+Sp(i)

ri

)]

Dp(i) + K1

}

= K1 + minr

{

∑np−npd

i=1

[

1 − (1 − pb(SNR, ri))

(

h+Sp(i)

ri

)]

Dp(i)

}

subject to

(C1)
∑np−npd

i=1
h+Sp(i)

ri
≤

(

RCH LG

fs

)

(C2) ri−1 ≤ ri for i = 2, 3, 4, 5, 6, ..., (np − npd)

where r = [

r1, r2, ..., rnp−npd

]

and ri ε R (4)

Constraint 1 in (4) is the channel bit rate constraint. Constraint 2 ensures that higher
priority packets have code rates at least as good as those allocated to lower priority packets.
This speeds up the optimization process by narrowing down the selection set of packet code
rates. To solve this non-linear integer programming problem, we first relax the constrained
optimization problem in (4) to an unconstrained problem [28]. By absorbing the constraints
into the objective using Lagrange multipliers λ = [

λ1, λ2, ..., λnp−npd

]

with each λi ε R
+,

we construct the Lagrangian cost function as in [21],

FGOP (r, λ) = K1 + ∑np−npd

i=1

[

1 − (1 − pb(SNR, ri))

(

h+Sp(i)

ri

)]

Dp(i)

+λ1

(

∑np−npd

i=1
h+Sp(i)

ri
− RCH LG

fs

)

+ ∑np−npd

i=2 λi(ri−1 − ri)

where λ = [

λ1, λ2, ..., λnp−npd

]

(5)

We form the dual cost function dGOP (λ) by minimizing the Lagrangian cost function for
a given λ, where λ is searched using a subgradient approach discussed in the next section.
Let C be the space of all possible combinations of ri , i = 1, 2, ..., np − npd selected from
R that can be applied to the packets before transmission. The dual function is computed as
in [21],

dGOP (λ) = minr ε C FGOP (r, λ)

= minr ε C
∑np−npd

i=1

{

ppkt (i)Dp(i)
} + λ1

(

∑np−npd

i=1
h+Sp(i)

ri
− RCH LG

fs

)

+ ∑np−npd

i=2 λi(ri−1 − ri) + K1

= minr ε C
{

∑np−npd

i=1

(

ppkt (i)Dp(i) + λ1

(

h+Sp(i)

ri

))

+ ∑np−npd

i=2 λi(ri−1 − ri)
}

+K2

(6)
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K2 = K1 − λ1

(

RCH LG

fs

)

in (6) is a constant and the computation of dGOP (λ) can

be further simplified as follows. Let A(ri) = ppkt (i)Dp(i) + λ1

(

h+Sp(i)

ri

)

. Then we can

modify the first term in (6) as in [21],

minr ε C
{

∑np−npd

i=1 A(ri) + ∑np−npd

i=2 λi(ri−1 − ri)
}

= minr ε C
{

A(r1) + A(r2)+...+A(rnp−npd
) + λ2(r1 − r2)+...+λnp−npd

(rnp−npd−1 − rnp−npd
)
}

= minr1 ε R {A(r1) + λ2(r1)} + minr2 ε R {A(r2) − λ2(r2) + λ3(r2)}
+... + minrnp−npd −1 ε R

{

A(rnp−npd−1) − λnp−npd−1(rnp−npd−1) + λnp−npd
(rnp−npd−1)

}

+minrnp−npd
ε R

{

A(rnp−npd
) − λnp−npd

(rnp−npd
)
}

= minr1 ε R {A(r1) + λ2(r1)} + ∑np−npd−1
i=2 minri ε R {A(ri) + ri(λi+1 − λi)}

+minrnp−npd
ε R

{

A(rnp−npd
) − λnp−npd

(rnp−npd
)
}

The dual function can now be expressed in terms of function A(ri) as,

dGOP (λ) = K2 + minr1 ε R {A(r1) + λ2(r1)} + ∑np−npd−1
i=2 minri ε R {A(ri) + ri(λi+1 − λi)}

+minrnp−npd
ε R

{

A(rnp−npd
) − λnp−npd

(rnp−npd
)
}

= K2 + ∑np−npd

i=1 minri ε R F̃GOP,i (ri , λi)

(7)

where F̃GOP,i(ri , λi) =
⎧

⎨

⎩

A(r1) + λ2(r1) for i = 1
A(ri) + ri(λi+1 − λi) for i = 2, 3, 4, ..., np − npd − 1
A(rnp−npd

) − λnp−npd
(rnp−npd

) for i = np − npd

The minimum of the dual cost function for a given λ can be found by minimizing the
sub-Lagrangian cost functions F̃GOP,i(ri , λi) individually. The solution space of the min-
imization of FGOP (r,λ) is (K + 1)(np−npd ). Since we can minimize the sub-Lagrangians
individually, dGOP (λ) can be computed with only (np − npd)(K + 1) evaluations of
F̃GOP,i(ri , λi) and comparisons [28]. This reduces the computational complexity involved
in deriving the optimal set of packet sizes and their code rates. The frame based optimiza-
tion scheme discussed in Section 5 uses only the slices of a frame (instead of a GOP) to
form packets. Therefore, the optimization complexity is significantly reduced compared to
the DP-UEP(GOP) scheme.

4.2.1 Determination of λ

We use the subgradient method [28] to search for the best λ over the space C. The dual func-
tion dGOP (λ) is a concave function of λ even when the problem in the primal domain is
not convex [28]. Therefore the optimal λ is found by solving maxλ ε R+ dGOP (λ). Since the
dual is a piecewise linear concave function [28], it may not be differentiable at all points.
Nevertheless, subgradients can still be found and are used to compute the optimal value
[28]. It can be shown that the subgradient is a descent direction of the Euclidean distance
to the set of maximum points of the dual function [28]. This property is used in the subgra-
dient method for the optimization of a non-smooth function. The subgradient method is an
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iterative search algorithm for λ. In each iteration, λk+1
i is updated by the subgradient ξk

i of
dGOP (λ) at λk

i as in [21],

λ
(k+1)
i = max(0, λk

i + skξ
k
i /‖ξk‖) (8)

where sk is the step size. Based on the derivation in [28], the subgradients ξ k of dGOP (λ) at
λk are

ξk
1 = g(rk) − RCH LG

fs
= ∑np−npd

i=1

(

h+Sp(i)

ri

)

− RCH LG

fs

ξk
i = ri−1 − ri for i = 2, 3, 4, ..., np − npd

(9)

where g(.) is the rate constraint function of the problem and rk =
[

rk
1 , rk

2 , ..., rk
np−npd

]

is

the solution to the term minr ε C FGOP (r, λk) in (6).

4.3 Discarding packets

By explicitly discarding a small number of low priority packets, our scheme gains additional
room for packet size adaptation and FEC, and can achieve significant benefits overall [21].
To allow either the discarding of less important packets or sending them unprotected, the
candidate set of punctured code rates R is modified to {1, R1, R2, R3, ..., RK,∞}. This
neither changes the objective function to be minimized in (4), nor does it affect the above
optimization algorithm. If the code rate of packet i, ri = ∞, then its probability of bit error
pb(SNR, ri) = 1 causing it to be discarded. The induced distortion is accounted for in the
overall expected distortion E[D̃GOP ] through component K1 in (4). If ri = 1, the video
packet is transmitted uncoded over the channel.

5 Frame-Level optimization using prediction

The DP-UEP(GOP) scheme was designed for a pre-encoded video and the cross-layer opti-
mization was performed over the slices of each GOP. It’s computational complexity and
delay may not be suitable for live streaming applications such as live telecast of sports
events. In this section, we extend our scheme to be applied over the slices of a single frame
instead of the entire GOP, to reduce its computational complexity and delay. This requires
the scheme, denoted as DP-UEP(frame) to perform optimization over the encoded slices of
only one frame at a time. Since a typical GOP consists of different frame types (i.e., IDR,
I, P and B), we require an estimate of the channel bit budget for each frame in order to
allocate the protocol header and FEC bits to its packets. Moreover the different frame types
generate different numbers of slices that contribute different amounts of distortion based on
the error propagation and the video content. Therefore, we need to distribute the channel bit
budget for a GOP among different frames. For this, we study the video factors which have
the most influence on the expected channel bit budget estimate of a frame.

First, we analyze the channel bit budget allocation Rl for a frame l made by the DP-
UEP(GOP) scheme. For this, its overhead bit budget proportion wl

ovh is computed from the
result of the DP-UEP(GOP) scheme as,

wl
ovh = # FEC bits for frame l

# FEC bits for whole GOP
(10)

This quantity, while it is explicitly the fraction of FEC bits which a particular frame gets
relative to the FEC bits for the whole GOP, is taken to be an estimate of overhead bits (both



Multimed Tools Appl (2016) 75:3235–3257 3245

FEC and protocol header bits) which the frame gets relative to the overhead bits for the
whole GOP. For a video bit rate denoted by Rv , Rl is then evaluated as:

Rl =
nl

s
∑

i=1

Sl
p(i) + wl

ovh

{

(RCH − Rv)LG

fs

}

(11)

where Sl
p(i) is the size of slice i and nl

s is the number of slices in frame l. However, comput-

ing the wl
ovh requires the knowledge of FEC bits allocated for the entire GOP which is not

available in our frame-based approach. Therefore, we predict the value of wl
ovh as discussed

below.

5.1 wl
ovh prediction

From the analysis of the DP-UEP(GOP) scheme, we observed that wl
ovh for a frame l is

dependent on the following video factors: (a) normalized compressed frame bit budget,
wl

c, (b) normalized frame CMSE, wl
cmse, (c) channel SNR, and (d) video content. wl

c is
computed as the ratio of the size of the compressed frame l in bits to the total source bit rate
for the GOP. wl

cmse is computed as the ratio of the total CMSE contribution of all slices in
frame l to the total CMSE contribution of all slices in the GOP.

wl
c =

∑nl
s

i=1 Sl
p(i)

(

RvLG

fs

) ; wl
cmse =

∑nl
s

i=1 Dl
p(i)

∑LG

j=1

∑n
j
s

i=1 D
j
p(i)

(12)

where Dl
p(i) is the actual measured distortion (i.e., CMSE) due to the loss of slice i in frame

l.
To determine the channel bit budget for different frames in each GOP in real-time, we

train a GLM to estimate the predicted overhead bit proportion of every frame l, ŵl
ovh in real

time. The GLM is trained offline over a database of the factors that were discussed above
and derived for videos with different types of motion and content. We use a database of
15 CIF video sequences that span (a) low motion: Silent, Mother-Daughter, Bridge, Akiyo,
and Container; (b) medium motion: Table Tennis, Coastguard, Tempete, Foreman, and Hall
Monitor; and (c) high motion: Soccer, Bus, Football, Stefan, and Whale Show. First three
sequences from each motion category are used for training and the last two from each cate-
gory for testing. For a given source encoding rate Rv , we compute the factors wl

ovh, w
l
cmse,

wl
c for the frames of each training video sequence by using the DP-UEP(GOP) scheme and

store them in the database along with the channel SNR. The GLM, explained in the next
section, is trained offline only once. ŵl

ovh is then used to estimate the channel bit budget
constraint (as shown in (11) and estimate the optimal packet sizes and code rates for the
slices of frame l.

5.2 GLM for estimating ŵl
ovh

GLMs are an extension of classical linear models [33]. Let Y = [y1, y2, y3, ..., yN ] be
a vector of our response variable wl

ovh from the database. Every data point yi in Y is
expressed as a linear combination of a known covariate vector

[

1, xi1, xi2, xi3, ..., xip

]

,
where p is the number of factors, and a vector of unknown regression coefficients β =
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[

γ, β1, β2, ..., βp

]T . The covariate vector is a row of matrix X of order N × (p + 1) with
elements xij for N observations and p factors also from the database.

f (Y) = Xβ ; f (yi) = γ +
p

∑

j=1

xijβj . (13)

where f (.) is called the link function. After estimating β, we use it to derive the predicted
response variable vector ̂Y = [

ŷ1, ŷ2, ŷ3, ..., ŷN

]

computed as f −1(Xβ); f −1 is the inverse
of the link function and ̂Y is a vector of ŵl

ovh.

5.2.1 Response variable distribution

To determine the link function for the GLM, we need to know the distribution family of our
response variable. We evaluate the goodness of fit for ranking Weibull, Gamma and Gaus-
sian fitted distributions of wl

ovh by using three information criteria (IC): (a) SIC: Schwarz
information criterion, aka Bayesian information criterion [41], (b) AIC: Akaike information
criterion [1], and (c) HQIC: Hannan-Quinn information criterion [16]. Each information cri-
terion depends on the (i) number of distribution parameters to be estimated, and (ii) number
of observations of our response variable wl

ovh, and the maximized log-likelihood estimate
of the fitted distribution producing the set of observations.

We randomly chose m = 5000 observations from the vector of wl
ovh values in the

database, obtained from all the training videos at channel SNRs from -2 dB to 6 dB. These
are divided into 100 bins from zero to one and the likelihood function is maximized for
each of the three fitted distributions. The distribution parameters where the likelihood is
maximized are: (a) Gaussian: mean = 0.05, standard deviation = 0.095, (b) Gamma: shape
parameter = 1, scale parameter = 0.05, and (c) Weibull: shape parameter = 1, scale param-
eter = 0.05. Since the shape parameter of both Gamma and Weibull distributions is 1, they
are in essence exponential distributions. In Table 1, the goodness of fit of all three infor-
mation criteria are minimum for Weibull and Gamma distributions; therefore our response
variable is exponential. Figure 4 also shows that the cumulative distributions of Weibull and
Gamma are the same and closer to the cumulative distribution of the 5000 observations than
the Gaussian cumulative distribution.

5.2.2 Model fitting and validation

We use the statistical software R [42] for fitting our GLM and its validation. We classified
our response variable as a member of the exponential family of distributions with identity
as its link function. The GLM model in R uses the AIC index [1] to determine the order in
which three factors, wl

cmse, w
l
c and channel SNR are fitted. Here the AIC index is defined as

2× p − 2× max(L), where p is the number of factors and L is the log-likelihood estimate

Table 1 Goodness of fit statistics for maximized likelihood function

IC/Fitted Distribution Weibull Gamma Gaussian

SIC 23.71 23.71 25.79

HQIC 12.72 12.72 16.88

AIC 6.25 6.25 8.33
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Fig. 4 Cumulative distribution function (CDF) for the binned observations and fitted distributions of wl
ovh

for the model. We let Yk represent the model with a subset of k factors (i.e. covariates). The
ith data point in Yk , yk

i , where i = 1, 2, ..., N is expressed as:

yk
i = γ + βk

1xi1 + βk
2xi2 + ... + βk

j xij + ... + βk
k xik. (14)

Here, γ is the intercept as considered in (13), βk
j = 1, 2, ..., k are the fitted coefficients for

k factors, and xij represents the j th factor value for the ith observation in Yk . The forward
stepwise approach is used to determine the order of our covariates [45]. The covariates and
coefficients of our final model are shown in Table 2. We also introduced two interactions,
wl

c×channel SNR and wl
cmse×channel SNR.

The goodness of fit for a GLM can be characterized by its deviance, which is a general
term of variance [33]. A smaller deviance means a better model fit. Third column in Table 2
shows the reduction in deviance as each of the covariates in the first column is selected into
the model. Model 1 is the best univariate model with wl

c. Model 2 has both wl
c and wl

cmse

covariates. In addition to these, Model 3 has channel SNR. Model 4 adds the first interaction
between wl

c and channel SNR, and Model 5 includes all the factors in Table 2.

Table 2 Final Model Factors and Coefficients

Covariate(Factor) Coeff. for Final Model Model Deviance

γ −0.0193 167.18

wl
c 1.3240 12.2

wl
cmse 5.37 × 10−5 11.7

channel SNR 0.0028 11.7

wl
c× channel SNR −0.0564 9.75

wl
cmse× channel SNR 9.521 × 10−5 9.7
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5.2.3 Normalized predicted CMSE (ŵl
cmse)

Computing wl
cmse for frame l is not feasible in real-time since it requires the decoding of

the current and all other subsequent frames of the GOP which is computationally intensive
and introduces about one GOP time delay. Therefore, we use the scheme proposed in [35] to
predict the CMSE value of each slice i, D̂l

p(i) in frame l. But, the predicted slice CMSE val-
ues of the future frames in the GOP will not be available during real-time transmission. We
therefore use the sum of the predicted CMSE of all the slices of the previous GOP to com-
pute the normalized predicted CMSE of the frame l, ŵl

cmse in the current GOP using (12).
It is reasonable to use the predicted CMSE of the previous GOP because for most GOPs
there is a high correlation between the CMSE of adjacent GOPs. The predicted overhead
bit budget for the frame l, ŵl

ovh uses the ŵl
cmse instead of wl

cmse and other factors shown in

Table 2. The predicted channel bit budget for the frame l is estimated as ŵl
ovh × RCH LG

fs
. The

proposed joint optimization in Section 4 is then used to compute the optimal packet sizes
and RCPC code rates for the slices of frame l.

5.3 Computational complexity of DP-UEP(frame)

On a Core 2 Duo 2.6 GHz Intel processor with 4GB RAM, we observed that the average
computation time across all test videos and channel SNR from -1 dB to 6 dB, is 75 ms for
the IDR frame, 10.5 ms for the P frame, and 1.5 ms for the B frame. Since IDR frames
have considerably more slices than P and B frames, and P frames have more slices than B
frames, the computation time also varies accordingly. These low computational delays are
acceptable in live streaming applications.

In this paper, we have used a GOP structure of IDR B P B P... with a length of 20 frames.
Each GOP has one I-frame, nine P and 10 B-frames. The total time to process all the frames
of a GOP in our scheme is 75 + 10.5 × 9 + 1.5 × 10 = 184.5ms, which is much lower
than 667 ms available to transmit these 20 frames at a frame rate of 30 frames/second. Also
streaming applications buffer the frames at the decoder before starting the decoding process.
This initial delay (known as the pre-roll delay) typically varies from 1-2s as mentioned in
the literature [4, 10, 24, 48]. This process of smoothing the video transmission allows frame
deadlines at the transmitter, which are way higher than the time required for the optimization
process in our schemes.

6 Performance evaluation

6.1 Reference approaches

We compare our proposed DP-UEP(GOP) and DP-UEP(frame) schemes, with two reference
schemes Dual15 [29], and EEP-slice-ENH. The Dual15 scheme is a representative of UEP
schemes which use RCPC codes, and EEP-slice-ENH is a representative of the payload
adaptation schemes. In the Dual15 scheme, every row of macroblocks in a H.264/AVC
video frame is arranged in a slice. These slices typically have different sizes and CMSE
values based on the spatial and temporal dependency of their macroblocks and frames. For
example, the slice of an intra-coded frame typically has much larger size and higher CMSE
value than that of a predicted frame. The Dual15 scheme treats every slice as a packet and
does not carry out the payload adaptation. It finds the optimal RCPC code rates to protect
the variable-sized packets based on their CMSE (i.e., using UEP), in order to minimize the
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expected received video distortion over an AWGN channel. It was shown in [29] that the
Dual15 scheme outperforms other UEP schemes because it includes two additional options
‘not sent’ (i.e., using code rate of ∞) and ‘not coded’ (i.e., using code rate of 8/8) in
the RCPC set. Another interesting result in [29] was that the SortMSE scheme, which is
derived from [18] and uses EEP with two additional options ‘not sent’ and ‘not coded’ in
the RCPC set, also outperformed the UEP scheme which used the optimized RCPC codes
without those two options in the set, for lower channel SNRs. The Dual15 thus represents
the state-of-the-art in the class of UEP schemes.

The EEP-slice-ENH aggregates the pre-encoded slices for packet size adaptation by con-
sidering their priority, i.e., to form packets with more important ones having smaller sizes
and error probabilities and also some least important packets being discarded (i.e., not sent)
to meet the channel rate constraint. All packets in EEP-slice-ENH are equally protected with
the best possible EEP code rate. This scheme is broadly similar to other packet (or payload)
size adaptation schemes in literature [5, 18, 22, 30, 34]. The EEP-slice-ENH scheme, which
incorporates the slice aggregation in SortMSE outperformed the latter.

The objective of EEP-slice-ENH is to minimize the expected received video distortion
and this can be formulated in a manner similar to (4) [21]:

minr ε R

{

∑np−npd

i=1

[

1 − (1 − pb(SNR, r))

(

h+Sp(i)

r

)]

Dp(i) + K1

}

= K1 + minr ε R

{

∑np−npd

i=1

[

1 − (1 − pb(SNR, r))

(

h+Sp(i)

r

)]

Dp(i)

}

subject to
∑np−npd

i=1
h+Sp(i)

r
≤

(

RCH LG

fs

)

(15)

Constraint 2 in (4) is not valid here since r is no longer a vector. As in (4), K1 is the
permanent distortion caused by the discarded packets and is constant for a given value of
npd . Apart from the change that only a single λ and r value needs to be determined, the
same DP-based approach described in Section 4 is used to solve the optimization problem
in (15).

6.2 Simulation setup

CIF (352 x 288) resolution (i) low motion sequences Akiyo and Container, (ii) medium
motion sequences Foreman and Hall Monitor, and (iii) high motion sequences Stefan and
Whale Show are used in our experiments. They are encoded using H.264/AVC JM reference
software [14] at an encoding rate of 720 Kbps, frame rate 30 frames per second (fps) and
transmitted over a 2 Mbps discrete-time AWGN channel. The GOP structure is IDR B P
B P B, ..., P B, IDR with a length of 20 frames, and the slice size is 300 bytes. Error
concealment, including both temporal concealment and spatial interpolation, is enabled for
all the schemes evaluated in this paper. For this, the motion copy option provided in the
JM [14] decoder is used. The error concealment in a frame depends on the frame type
and the type of losses encountered. If an entire frame is lost, first the motion vectors and
reference indices of the co-located macroblocks in the previously decoded reference frame
are copied and motion compensation is used to reconstruct the lost frame based on the
copied motion information [2]. If some slices of a predicted (P or B) frame are lost, the
decoder verifies the availability of motion vector information for the lost macroblocks. If
the motion vectors are available, the motion copy is performed else co-located macroblocks
of the previous reference frame are directly copied. If some slices of an IDR frame are lost,
the corresponding macroblocks are concealed using spatial interpolation.
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The total network protocol header size is 54 bytes per packet as discussed in Section 3.2.
The mother code of the RCPC code has rate 1

4 with memory M=4 and puncturing period
P=8. Log-likelihood ratio (LLR) is used in the Viterbi decoder. The initial RCPC rates avail-
able are {(8/9), (8/10), (8/12), (8/14), (8/16), (8/18), (8/20), (8/22), (8/24), (8/26), (8/28),
(8/30), (8/32)}. Two additional rates, 8/8 corresponding to no coding and ∞ corresponding
to discarding are also included. The performance evaluation of the schemes is based on a
bit-level simulation of the compressed videos using the derived packet sizes and FEC code
rates over 100 realizations of every AWGN channel SNR.

6.3 Performance of DP-UEP(GOP)

Figure 5 shows the video quality performance of DP-UEP(GOP), DP-UEP(frame), Dual15,
and EEP-slice-ENH schemes in terms of PSNR and a perceptually based Video Quality
Metric (VQM). VQM is reported as a single number for the entire sequence and has a
nominal output range from zero to one, where one represents the worst quality [36]. The
error-free PSNR values of Akiyo, Foreman, and Stefan compressed at 30 fps and 720 Kbps
are 46.5 dB, 37.3 dB, and 29.7 dB, respectively. We observe that as the channel SNR
increases to 6 dB, all the schemes are able to achieve the error-free PSNR values of the indi-
vidual sequences. This is because the channel errors are few and with motion concealment
at the decoder, the best possible video PSNR value is achievable.

EEP-slice-ENH does not perform as good as other schemes in Fig. 5. Though it adapts
the packet size to the video priority by aggregating the slices and also discarding lower
priority packets, it is still limited to providing equal protection to all the packets formed.

The lowest and highest optimal EEP code rates derived across GOP’s were
[

8
20

8
14

]

.

Dual15 does not consider packet size adaptation and only performs optimal (UEP) RCPC
code rate allocation to the slices (considered as individual packets) of each GOP, also dis-
carding some least important slices [29]. Our proposed DP-UEP(GOP) takes advantage of
both the priority-adaptive packet sizes and optimal RCPC packet code rate allocation. It
assigns optimal code rates as low as 8

32 to the high priority packets with small packet sizes
and higher code rates to the lower priority packets with larger packet sizes within every
GOP. However, all packet sizes are restricted by the network MTU size of 1500 bytes. At
a channel SNR of 3 dB for Foreman, EEP-slice-ENH, Dual15 and DP-UEP(GOP) achieve
average PSNR values of 28.3 dB, 30 dB, and 33.5 dB, respectively and average VQM val-
ues of 0.38, 0.32, and 0.2, respectively. DP-UEP(GOP) achieves maximum PSNR gains of
3.3 dB for Akiyo, 3.5 dB for Foreman, and 2.9 dB for Stefan over Dual15 at channel SNRs
of 2 dB, 3 dB, and 2 dB, respectively. DP-UEP(GOP) also achieves maximum gains of 4.6
dB for Akiyo, 5.2 dB for Foreman, and 4.4 dB for Stefan over the EEP-slice-ENH scheme at
channel SNRs of 3 dB, 2 dB, and 3.5 dB. Similar performance was observed for Container,
Hall Monitor, and Whale Show sequences.

The considerable improvement in video quality achieved by our DP-UEP(GOP) can be
explained by the following two factors: (i) the lower number of slices discarded per GOP
shown in Fig. 6, and (ii) the composition of the final transmitted bits in terms of the com-
pressed source bits, network protocol headers, and FEC bits shown in Fig. 7. Balancing the
overhead due to the FEC parity bits allows Dual15 to discard fewer slices per GOP as com-
pared to EEP-slice-ENH. DP-UEP(GOP) further reduces the number of discarded slices as
compared to Dual15 by balancing both the overhead due to FEC parity bits as well as the
network protocol headers attached to the packets formed by aggregating slices. For exam-
ple in Fig. 6, at a channel SNR of 3 dB, DP-UEP(GOP) does not discard any slices whereas
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Fig. 5 Average Video PSNR (dB) and average VQM comparison computed over 100 realizations of each
AWGN channel for Akiyo: (a),(b), Foreman: (c),(d) and Stefan: (e), (f). The error-free PSNR values are:
46.5 dB for Akiyo, 37.3 for Foreman and 29.7 for Stefan
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Fig. 6 Average number of slices discarded per GOP in EEP-slice-ENH, Dual15 and DP-UEP for Foreman

20 and 35 slices are discarded per GOP by Dual15 and EEP-slice-ENH, respectively. This
shows that though we encode the video at a target bit rate of 720 Kbps, every scheme
adjusts this bit rate by discarding some low-priority slices in order to minimize the expected
received video distortion under the given channel SNR condition and bit budget constraints.

Figure 7 shows the bit contribution of the source, network protocol headers, and FEC to
the total bits transmitted over a 2 Mbps channel at 3 dB channel SNR for Foreman. DP-
UEP(GOP) transmits more source bits (i.e., a relatively higher bit rate) than the other two
schemes by reducing the network protocol overhead as well as allocating optimal RCPC
code rates based on packet priority. It also uses only 5.5 % bits for the network protocol
overhead, compared to 8.5 % and 11.5 % overhead bits for EEP-slice-ENH and Dual15,
respectively. Further 61.3 % bits are allocated for FEC overhead in DP-UEP(GOP) com-

Fig. 7 Distribution of the final output bits for Foreman at 3 dB channel SNR in EEP-slice-ENH, Dual15,
and DP-UEP schemes
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pared to 57.3 % in Dual15, thus providing better FEC protection. Although EEP-slice-ENH
uses 64.1 % FEC bits, it uses EEP which ignores packet priority. The DP-UEP(GOP)
scheme sends the highest percentage of source bits (i.e., 33.2 %) which also correlates to no
slices being discarded at 3 dB channel SNR, shown earlier in Fig. 6. A similar trend is also
observed for other sequences and at other channel SNRs.

6.4 Performance of DP-UEP(frame)

DP-UEP(GOP), Dual15, and EEP-slice-ENH schemes use the measured CMSE values and
perform optimization over the slices of the entire GOP. On the other hand, DP-UEP(frame)
uses the predicted CMSE and frame overhead bit budget values, and the joint packet size
and code rate optimization is carried out over slices of each frame. Thus, DP-UEP(frame)
enables real-time packet formation and transmission of videos for live streaming applica-
tions which is not possible with the other three schemes. The DP-UEP(frame) still achieves
considerable PSNR and VQM gains over Dual15 and EEP-slice-ENH schemes. For exam-
ple, the maximum PSNR gains achieved by DP-UEP(frame) over Dual15 are 1.8 dB for
Akiyo at 1 dB channel SNR, 2.1 dB for Foreman at 1 dB channel SNR, and 1.7 dB for Ste-
fan at channel SNR of 2.5 dB. Similar trends are also observed in the VQM performance of
the three test videos in Fig. 5. Further, simulation results of Whale show, Hall Monitor, and
Container also showed trends similar to those in Fig. 5. The performance of DP-UEP(frame)
is, however, still lower than DP-UEP(GOP) because the latter uses the measured values of
CMSE and performs optimization over all slices of a GOP. So, optimization over slices of
each frame in DP-UEP(frame) is suboptimal compared to the DP-UEP(GOP) scheme.

7 Conclusion

An efficient joint optimization algorithm for packet formation and optimal RCPC code rate
allocation was proposed to improve the quality of H.264/AVC bitstreams transmitted over
noisy channels. The proposed algorithm used a cross-layer information exchange between
the APP, MAC, and PHY layers. A dynamic programming approach (DP-UEP(GOP)) was
used where packets were formed through slice aggregation and the optimal RCPC packet
code rates were determined recursively over a GOP. The options of not coding or discarding
some less important packets were exploited to reduce the expected received video distortion
by increasing protection to more important packets. The dynamic programming approach
was also extended to work on each video frame (DP-UEP(frame)) instead of the entire
GOP. It has very low computational complexity and can be used in live streaming applica-
tions. The frame bit budget prediction used a GLM model developed using three factors -
normalized compressed frame bit budget, normalized frame CMSE and channel SNR over
a database of videos. Both proposed schemes outperformed contemporary state-of-the-art
schemes, providing significantly better video quality for different video sequences. Our pro-
posed schemes can work well with current wireless network standards such as IEEE 802.11n
with MTU packet size restrictions.
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