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Abstract This paper proposes a tracking system for outdoor augmented reality (AR) on
handheld devices based on an integration of vision tracking and on-device sensor measure-
ment. To deal with the unpredictable and complex visual information in an outdoor environ-
ment, two tracking schemes are proposed for both near-field and far-field tracking scenarios. A
sensor-aided binary descriptor is combined with an intensity-based tracking algorithm to
deliver a 3D tracking system for fronto-parallel planar surfaces in near-field tracking. In far-
field tracking, a sensor-guided panoramic tracking and mapping approach is proposed which
allows a creation of the panorama of distant scenes on the fly with camera rotation motion to
be tracked at the same time. This implementation allows near real-time creation of panoramic
maps on-device; therefore, the users are able to tag information on the training target instantly.

Keywords Mobile augmented reality. Featurematching . Trackingand registration . Panoramic
mapping

1 Introduction

To track the pose of a camera and register the virtual information to the real environment is a
crucial step in an augmented reality (AR) pipeline. The requirements of a convincing tracking
solution for large-scale outdoor applications include efficiency, accuracy, portability and
scalability. Real-time performance and sub-pixel accuracy are the essential requirements. In
addition, light-weighted hardware devices are in demand since outdoor applications are
expected to be carried around easily and scaled up to a certain level.

Solutions for outdoor AR tracking in early days relied solely on the GPS to localize the
camera position and inertial sensors to measure the orientation. However, the precision and
update rate of GPS is not sufficient for accurate tracking. Inertial sensoring also suffers from
the problem of error drifting and measurement distortion due to electro-magnetic fields in the
environment. Systems based on GPS and inertial sensors might achieve acceptable precision
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for registering the position of interest in 2D when the targets are far away from the observer,
but results in large errors when the target to track gets closer and 3D tracking is a requirement.
Advanced computer vision techniques can provide solutions for 3D tracking with sub-pixel
accuracy. However, the challenge in vision-based systems is the uncontrolled condition of the
environment that they are operating in. This requires the vision-based tracking systems to rely
on natural characteristics or visual cues of the environment to perform tracking.

Many recent works propose hybrid tracking solutions combining three types of tracking to
fulfil the requirement of efficiency and accuracy. Smartphones which are integrated with the
on-board Micro-electromechanical systems (MEMS) based sensors, GPS and cameras, have
become a popular platform for mobile AR applications. Its mobility and portability makes it an
ideal platform to be deployed in outdoor applications. However, the embedded hardware
sensors provide poorer performance compared to stand-alone devices. The computational
power of mobile devices also has limitation on the complexity level of the algorithms that
could be run. Exploiting all the sensoring devices on the smartphones to achieve the required
efficiency and accuracy is the main concern of the researchers.

The proposed solution integrates the sensor measurement and the state-of-the-art vision
algorithms to achieve adequate tracking result. The proposed solution attempts to make best
use of the static visual information and provide a possible solution for tracking in large-scale
outdoor area. It takes two types of static visual cues into consideration, namely, fronto-parallel
textured planar surfaces and distant scenes. Fronto-parallel planar surface, such as road signs,
advertisement boards and building facades, are widely distributed and easy to find in the real
world. These objects also contain planar patterns with rich corner features and large intensity
gradient that are favoured by the proposed 3D tracking method. Another type of tracking target
is the distant scenes viewed relatively far away from the users. Distant scenes, such as
landmarks, provide not only the visual cues for tracking but also geographical significance
in some cases. A rotational-only panoramic mapping and tracking solution is proposed to deal
with far-field targets. Mapping of panorama requires a pure-rotational motion of the camera,
which cannot be strictly followed by a handheld device. However, the transitional error is
much smaller than the rotation motion since the target is far enough, so it can be ignored. The
main contributions of this work are (1) a feature descriptor with sensor information generation
for efficient keypoint matching, (2) 3D tracking solution based on illumination-invariant
intensity-based optimization for near-filed scenes, (3) real-time 2D panoramic mapping and
tracking for far-field scenes, and (4) a complete implementation of the tracking solution on a
handheld device for outdoor augmented reality.

The remaining of the paper first reviews some related work in the area. Next, a discussion
of the design of the tracking solution is presented in details in Sections 3, 4, and 5. Section 3
introduces a novel approach of feature detection and matching by integrating the sensor
measurement with an efficient binary descriptor at the algorithmic-level to deliver a descriptor
matching algorithm. Section 4 discusses the 3D tracking approach by building on top of the
proposed descriptor matching algorithm, a direct intensity-based tracking module. Section 5
details the design of the panoramic mapping and tracking approach for distant scenes.
Experimental results and discussion are given in Section 6. A final conclusion is presented
in Section 7.

2 Related work

Tracking is a popular sub-domain in AR research. One of the pioneer research works is the
“Touring Machine” by Feiner et al. [5]. This tracking system integrates various types of
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sensors, including GPS and magnetic compasses, for navigation and registration of tracking
objects. With the advance of computer vision-based tracking algorithms, several vision-based
tracking solutions have been reported [11, 14, 19], which have been demonstrated to be more
accurate than sensor-based tracking. The advantage of vision-based tracking is its high
adaptability to unprepared environments. For example, the point cloud-based tracking system
presented [19] is able to build multiple 3D maps for an unknown environment online and the
marker-less tracking schemes [11] can perform 3D registration based on image visual cues
extracted from camera frames. However, vision algorithms have a higher requirement for
computational power, which prevents their use in low-power and portable devices for outdoor
applications. Hybrid approach that combines various types of sensing techniques is a prom-
ising approach to achieve efficient and accurate tracking results, and yet can run on devices
with limited computational power. Some research works on hybrid tracking schemes and
mobile-platform implementations are reviewed in detail in the remaining of this section.

In hybrid tracking, systems that combine various types of sensing techniques, inertial
sensors have been demonstrated to benefit feature detection and matching in terms of speed
and accuracy in some cases. Bleser and Stricker [3] explored several visual-inertial fusing
models and developed a sensor-fused 3D model-based tracking system. Schall et al. [17]
presented their outdoor AR system using a multi-sensor fusion approach. Both their works
require vision tracking and sensor measurement to be performed separately. The data from the
two approaches are fused using filters. In some other researches, the inertial measurements are
tightly coupled with the feature tracking algorithms. The system developed by Hwangbo et al.
[8], uses instantaneous rotation obtained from inertial sensors to update the parameter of a
tracking motion model. The approach is based on the Kanade-Lucas-Tomasi (KLT) feature
tracking algorithm. Since KLT-based tracking converges only in a small convergence region, it
fails easily when the camera motion is too large. Measurements from gyroscopes are used to
update the template warping so that the chance of convergence is increased. Kurz [9] proposed
to align the orientation of local feature descriptors with the gravity. Their approaches are
effective for detecting and matching of congruent and near-congruent features in static scenes.
Calonder et al. [4] proposed an efficient binary descriptor Binary Robust Independent Ele-
mentary Features (BRIEF), which is sufficiently light-weight to run real-time on devices with
low computational power. The main problem with the BRIEF descriptor is that it is not
rotation-aware. This paper proposes a feature descriptor extended from the BRIEF descriptor
that is rotated accordingly with the device orientation to achieve a rotational-invariant
performance.

Some research works have demonstrated the tracking for AR on mobile devices based on
efficient computer vision algorithms [10, 21]. In [10], a point-and-shoot tagging system is
introduced for vertical and horizontal surfaces on a mobile phone. The approach is based on
perspective patch recognition instead of feature matching. The system utilizes the sensors on
the mobile device to recognize the orientation of the surface as well as rectify the captured
image into a fronto-parallel view. Users are allowed to add and insert virtual objects on-device
by simply pointing the phone to the target. In [21], Scale-invariant Feature Transform (SIFT)
[12] and Fern [13] feature matching algorithms are modified to run on mobile devices. The
feature matching approach is further integrated with a patch tracker in their work to achieve an
efficient and accurate tracking result. To achieve sub-pixel accuracy and robust tracking
performance, a direct-intensity based tracking method is proposed in this paper. The efficient
second-order minimization (ESM) [2] method is used to solve the optimization problem. In the
authors’ approach to accelerate the performance of the optimization process, a sub-grid model
is proposed. A fast and easy-to-operate reference image selection and training process allows
the user to tag information on a suitable target on-device instantly.
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To track the scenes in a reasonable distance, six degrees-of-freedom (DoF) tracking is not
strictly required. Gammeter [7] proposed an AR tracking system that tracks the camera motion
in 2D translation and in-plane rotation only, with the assumption that the tracking target’s
relative movement to the camera is orthogonal to the camera’s view direction. Working
together with a server-side recognition method, this tracking system is able to track city
landmarks with acceptable errors. Another scene-based tracking method by Wagner restricted
the motion of the camera in pure rotations and performs the tracking and the panoramic
mapping at the same time [20]. Tracking against the map created on the fly results in high
accuracy. The authors’ approach adapts the idea of panoramic mapping and tracking. The
sensor information is used to guide the user to create the map. In tracking the camera motion
against the map, the abovementioned descriptor is used for matching before a motion
refinement step by minimizing the reprojection errors of the features.

3 Sensor-aidied feature matching

Local feature detection and matching is an essential step in a vision-based tracking system. A
sensor-aided BRIEF descriptor is proposed for the feature detection and matching in the
authors’ algorithm. BRIEF descriptor is created as a binary vector based on the intensity
difference test of a set of paired pixels with a predefined distribution around the detected
feature point. The distribution of the test pairs can be random or with a designed sampling
pattern. Experiments in [4] indicate that an isotropic Gaussian distribution around the centre of
the patch can give the best result in terms of recognition rate. In comparison to some other
popular fast-to-compute descriptors as Speeded-Up Robust Features (SURF) [1] and SIFT
[12], BRIEF is demonstrated to be more efficient. In addition to efficiency, BRIEF descriptor
yields higher recognition rates in the cases where invariance to scale change and in-plane
rotation are not required.

In the outdoor AR scenario, the keypoint features are assumed to be static – from fronto-
parallel planar surfaces. In this case where the coarse orientations of the camera are predicable
with inertial sensors, the binary test patterns can always be aligned with the gravity through a
simple in-plane rotation. The Oriented FASTand Rotated BRIEF (ORB) descriptor is designed
to be rotational-aware [16]. It estimates the orientations of the Features from Accelerated
Segment Test (FAST) keypoint features [15] from the intensity centroids of the features.
Instead of estimation from image intensity, the orientation could be measured from the sensors
on device as proposed in this paper. The BRIEF binary test pairs are obtained simply from a
randomly generated Gaussian distribution instead of trained from a large binary test pool. The
approach of utilizing sensor measurements simplifies the implementation of the feature
descriptor. In this section, the formulation of the BRIEF descriptor is revisited. Based on that
the rotation of the test pattern using a given rotation angle and rotation estimation from
hardware sensors on a mobile device are discussed.

3.1 Platform and sensor measurement

An Android device is chosen as the host platform. The device has built-in MEMS sensors,
including accelerometer, gyroscope and magnetometer. Although the low-cost sensors in the
devices suffer from noise and drift when functioning individually, a sensor fusion scheme could
provide a sound estimation of the orientation of the device. Android SDK provides an orientation
estimation function from the fusing of the accelerometers and magnetometer (Ac/Mg). The
drawback of using combined accelerometer-magnetometer measurement is the jittering noise
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mainly because that the magnetic field is highly affected by the devices in the environment. The
orientation estimation from the Ac/Mg is fused with the gyroscope measurement using a simple
complementary filter so that non-jittering and drift-free orientation measurement can be obtain-
ed. Figure 1 shows the comparison of the Ac/Mg sensor measurement and the filtered measure-
ment during themeasurement period when the device is hand held. Rapid orientation changes are
deliberately added. The orientation measurements about three axes are plotted separately in
Fig. 1. In Fig. 1, the horizontal axis is the time interval and the vertical axis is the orientation
change measured with respected to a pre-defined reference. The filtered motion indicated by the
red line exhibits a smoother performance than the non-filtered motion as shown in Fig. 1.

The global and local coordinates of the device adopted are shown in Fig. 2; the X-Y-Z
coordinate system indicates the world coordinates attached to the earth, while the x-y-z
coordinate system indicates the body coordinates attached to the device. The orientation of
the device in the world coordinate is described by the azimuth (rotation about Z), pitch
(rotation about X) and roll (rotation about Y). The rotations are set as zero when the two
coordinates are coincident.

The device is constrained to be working in the landscape mode as illustrated in Fig. 2. To
best utilize the gravity information of features from vertical surfaces, the camera is expected to
be held such that the screen plane is roughly perpendicular to the x-axis. Therefore, the rotation
angle with respect to the gravity is the pitch angle (rotation about X-axis), which is passed to
the vision-tracker to rotate the test pattern.

3.2 BRIEF Descriptor with rotation-awareness

The BRIEF descriptor is constructed from a set of binary intensity test τ on a smoothed image
patch p. A single binary test can be defined in Eq. (1) where p(a) and p(b) are the intensities of
the pixel at position a and position b in the image patch p.

τ p; a; bð Þ :¼ 1 : p að Þ < p bð Þ
0 : p að Þ ≥ p bð Þ

�
ð1Þ

Fig. 1 Comparison of sensor measurement in motions about 3-axis
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A feature descriptor for a keypoint is a bit string as the response to the intensity difference
of these n pairs of binary tests. The n tests are sampled from an isotropic Gaussian distribution,
which is denoted as matrix G. G is formed of 2n test points (n test pairs, x and y denote the
position of the pixel in the image plane coordinate).

G ¼ x1; x2… …; x2n
y1; y2… …; y2n

� �
ð2Þ

To steer the BRIEF test pattern to the orientation of the camera detected by the inertial
sensors, a rotation is applied to each point in G. The rotated test set is Gθ=RθG. The feature
descriptor at an image patch p, constructed at a particular rotational angle θ, from the test setG
is formulated as:

f n;θ pð Þ :¼
X
1≤ i≤n

2i−1τ p; Gθ½ �2i−1 ; Gθ½ �2i
� � ð3Þ

Descriptor for each keypoint extracted from the input images is presented as feature fk,θ. k
represents the dimension of the binary descriptor, usually 128, 256 or 512, and θ is the detected
rotational angle as mentioned earlier. FAST keypoints are first extracted from images and a set
of rotated binary descriptors is generated for the extracted keypoints. Brute-force search based
on Hamming distance between descriptors generated from two images is used for image
matching. Figure 3a depicts the rotations of the test pattern at θ of 40° and of 80°. Each line
segment indicates a pair of binary tests with the ends representing the location of the test points
a and b on the image patch p. The purpose of rotating the test pattern is essentially to align the
pattern to the image patch as close to the alignment at zero in-plane rotation as illustrated in
Fig. 3b. As the BRIEF descriptor has modest tolerance to affine transformation, the in-plane
rotation angle is not strictly constrained.

4 Near-field 3d tracking solution

A robust tracking solution requires that image registration errors are within sub-pixel level. The
feature-based detection-and-tracking approach is sensitive to noise and can often cause jittering.

Fig. 2 World coordinates X-Y-Z and body coordinates x-y-z adopted by the device
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In the proposed near-field tracking system, the estimation of the camera pose from feature-
based tracking is used as an initial guess of an iterative image alignment method. In this case,
the pixel intensities of the template image and that of the camera are required as the input.

Figure 4 illustrates the proposed tracking scheme. When tracking starts, the system extracts
keypoints from every input frame and matches them against the reference image using the

Fig. 3 Rotation of the test pattern applying over the image patch

Detection / Re-detection

Continuous tracking

Tracking Lost?

No

Yes

Sensor-aided Feature Matching

Sub-grid ESM Tracking

OpenGL Rendering

Rendering

Fig. 4 Steps in the proposed textured planar surface-based AR tracking system
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sensor-aided feature matching method. After a successful match is observed, the ESM tracking
method starts to serve its role to continue tracking. In the situation of tracking loss, the system
goes back to the detection stage and performs detection again.

Image alignment is modelled as a non-linear optimization problem to minimize the sum of
squared differences between the intensity of the template image and the one of the warped
camera images. It can be solved iteratively providing a rough estimation of the warping
parameters as an initial guess. A recently developed algorithm ESM is used to solve the
non-linear optimization problem. Compared to the widely used iterative methods, such as
Gauss-Newton and Levenberg-Marquardt (LM), the ESM has been shown to have a higher
convergence rate. The sub-grid ESM Tracking approach with a proposed illumination model to
counter illumination variance in the outdoor lighting condition is discussed in the remaining
part of this section.

4.1 Sub-grid ESM tracking

The formation of the intensity-based tracking problem is first discussed. Let I* denote the
template image and I is the frame image that needs to be warped with a transformation to the
template. Suppose pixel pi from the frame image can be warped to the pixels pi

* in the template
image by a warping function W. If the points in the template image form a planar surface, a
homography transformation H(x) can be used to represent the warping. The homography
transformation contains eight parameters denoted by a vector x. For a set of n pixels p* from a
selected region of the template image, a vector y(x) of the image different from the template
image and the warped frame image can be defined as:

y xð Þ ¼ y1 xð Þ y2 xð Þ … yn xð Þ½ �T ð4Þ
where

yi xð Þ ¼ I W 〈bH〉∘W〈H xð Þ〉 p*i
� �� �

− I* p*i
� � ð5Þ

Here the warping transformation is defined as an initial estimation W〈H xð Þ〉 composited

with an incremental warping W〈bH〉.
Given the initial estimated homography H(x), the template image I*, the frame image I, and

the set of pixels from the selected region p*, the compositional incremental warping Ĥ can be
solved iteratively through minimizing the image difference y(x). To address this problem, the
ESM is developed as a non-linear optimization procedure with a convergence rate similar to
the second-order methods, but with an efficiency of the of the Hessians. The image difference
is approximated as (for x=x0):

y x0ð Þ≈y 0ð Þ þ 1

2
J 0ð Þ þ J x0ð Þð Þx0 ð6Þ

J(0) and J(x0) are the current Jacobian and the reference Jacobian respectively. Using the
homography Lie algebra parameterization, an approximated Jesm matrix can be used to replace
the current Jacobians:

Jesm ¼ 1

2
J 0ð Þ þ J x0ð Þð Þ ¼ 1

2
JI þ JI*ð ÞJw JG ð7Þ

The Jacobian for ESM tracking update is based on the gradient of the template patch JI�

and the warped patch of the current image JI and two constant matrices Jw and JG. The
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gradient of the image patch is obtained using the Sobel filter. Let J x and J y be the average of
JI� and JI with respect to x and y in 2D image plane. The Jacobian Jesm is parameterized as:

Jesm ¼ J x J y J x x J y y J x x− J y y −J x x−J y 2y −J x x
2−J y xy −J x xy−J y y

2
h i

ð8Þ
The update for the Homography x0 can be calculated by solving the non-linear least square

optimization problem formulated as

Δx ¼ Jesm
T Jesm

� �−1
Jesm

Tyi xð Þ ð9Þ
Iteratively x0 is estimated and used to update the homography Ĥ. Formulated with Lie

Algebra, the homography update is obtained using the matrix exponential function:

bH←bHe∑
8
k¼1xkAk ð10Þ

where A is a basis of the Lie Algebra. Detailed formulation is stated by Benhimane and Malis
[2]. In the actual implementation, the selected region of the template image is divided into sub-
grids for tracking, instead of using all the pixels in the image. Tracking of the image is based on
a 144×144 pixels square area positioned at the centre of the template image. This large square is
divided into 6×6 sub-grids, which is 24×24 pixel each. The average image gradient within each
sub-grid is computed, and only sub-grids with gradients above 10 grey levels per pixel are used
in tracking. The criterion is selected because the image gradient is used to compute the Jacobian
matrices in ESM. Experiment shows that image regions with low gradients do not contribute
much to ESM convergence, therefore these regions are not considered.

4.2 Illumination model

The image alignment based on the minimization of intensity error as formulated in Eq. (5) is
based on the validity of the assumption that the image intensity of the frame image is
consistent with one of the template images, such that the intensity error is purely due to object
pose change. In the practical situation, illumination is rarely constant especially in an outdoor
environment. Silveira and Malis proposed an illumination model to validate the intensity
constancy assumption [18]. In their work, the parameters are estimated together with the
motion parameters within the ESM iterations, such that the number of parameters is greatly
increased. For an efficient implementation on a mobile device, the illumination model is
proposed to estimate the parameters directly from the warped and reference images. This is
feasible as the pose in the previous frame is close to the current image at the start of ESM.
Suppose pi, j is the i

th pixel in the sub-grid j in the frame image, I(pi, j) denotes its intensity as
stated above. Let mj and dj be the mean and standard deviation of the pixel intensities in the
sub-grid j in the warped frame image, and mj

* and dj
* be the corresponding values for the

template image, the modified pixel intensity I ′(pi, j) is computed as:

I 0 pi; j

� �
¼ d*j

.
d j

� �
I pi; j

� �
−mj

� �
þ m*

j ð11Þ

Therefore, Eq. (5) is modified as

yi; j xð Þ ¼ I 0 W bHD E
∘W H xð Þh i p*i; j

� �� �
− I* p*i; j

� �
ð12Þ
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4.3 Reference image selection

To select a valid reference image as the template for tracking, two criteria need to be fulfilled.
The first criterion is that a minimum number of sub-grids with sufficient intensity gradient
should be guaranteed. To guide the user in selecting surfaces with good image gradients, only
sub-grids with sufficient gradient are rendered during the selection process. This provides an
indication of the suitability of a surface for ESM tracking. The second requirement is the
movement of the camera with respect to the surface. This is because the homography
decomposition method adopted here results in two possible solutions for the normal. As the
normal vector is defined in the reference camera frame in the formulation of homography, the
correct normal vector that remains constant when the sideway motion is greater than 0.5 % of
the perpendicular distance between the camera and the plane is selected as the correct normal.
Since it is assumed the planar surfaces to be tracked in the outdoor environment are vertically
distributed, it is convenient for the user to hold the camera parallel to the surfaces and move
sideways. As a further check, tracking is continued with a virtual 3D object augmented onto
the planar surface after the normal vector is determined. This allows the user to check the
accuracy visually.

5 Far-field panoramic mapping and tracking

A panoramic mapping and tracking approach is proposed to track and tag information
efficiently on the far-field scenes. In the outdoor scenario where the user holds the handheld
device to point at the targeted scenes, the translation of the handheld device is very small
compared to the distance between the camera and the scene. Therefore, it can be assumed as a
rotational-only motion of the camera by ignoring the parallax error. This approach is first
explored by Wagner [1]. Similar to this approach, the map into sub-grids is divided for real-
time tracking and pose recovery. The difference is that the proposed sensor-aided feature
matching algorithm is used to perform the pose estimation, and the sensor measurement from
the device to guide the mapping and tracking process. In this section, the sensor-aided
mapping and tracking algorithm is first explained, followed by a detailed discussion of the
projection surface selection, motion estimation and map rendering.

5.1 Sensor-aided mapping with grids

In the proposed system, a 180° panoramic map with size of 960 in width and 300 in
height is rendered. The input camera frame is taken as 320×240. The map is divided
into grids with size of 180×150 as shown in Fig. 5a. It is assumed that the user holds
the device in such a way that the image plane is aligned with the gravity direction. The
first input frame is placed at the centre of the map, with its orientation information
from the sensor recorded. The orientations of the following camera frame input are
calculated relative to this first measurement. Since the orientation is measured in each
frame, the camera heading can be calculated in the map coordinate. As shown in
Fig. 5b and c, the camera heading is highlighted with a dark blue dot. This is a rough
indication of the camera heading on the map which provides guidance for users to
move the device as close as to a pure-rotational motion.

To ensure an accurate mapping, the input frame is matched against the nearest map grids
that have already been filled. The spatial adjacency between the input frame and the generated
map grids are first estimated using sensors. For frame which overlapped area on the filled map

3208 Multimed Tools Appl (2016) 75:3199–3220



grids is large enough, an accurate orientation is computed using the matched features and
refined by LM optimization. The algorithm is summarized as follows:

Sensor-aided Mapping

1) The map is divided into grids with each grid assigned an orientation information
2) First frame input: set as the centre image
3) Input frame: compared orientation measured by inertial sensors with the pre-defined

orientation of each grid to decide the nearest grids

& If the nearest grids are filled and the overlapping area is large enough, proceed to step 4)
& Otherwise continue to run step 3)

(a) 

(b) 

(c) 

First image is placed at the centre, the map is divided into grids.

 Light blue highlights the view of the current camera tracked, dark blue indicates 

the sensor-measured camera heading.

 When tracking is lost, the camera view is frozen at the last tracked view and 

highlighted red. The sensor continues to update the heading.

Fig. 5 Screenshots in real-time performance of panoramic mapping and tracking. a First image is placed at the
centre, the map is divided into grids. b Light blue highlights the view of the current camera tracked, dark blue
indicates the sensor-measured camera heading. c When tracking is lost, the camera view is frozen at the last
tracked view and highlighted red. The sensor continues to update the heading
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4) Match the input frame with the nearest grid and calculate the orientation of the frame
5) Warp input frame and render on the map, update the map

5.2 Projection surface

The cylindrical projection surface is selected in the design. Cylindrical mapping allows a full
360° variation of the horizontal rotational angle. However, it limits the pitch angle variation
because the map becomes more compressed at the top and the bottom. In the proposed system,
the range of pitch angle constraint is acceptable because vision cues in the sky or on the ground
are not vital. As shown in Fig. 6, (x, y) denotes the point on the frame image, and (u, v) the
point on the projection surface. (x,y) indicates the pixel position in width and height-direction
respectively, while (u, v) indicates the pixel position in angular direction and the longitudinal
axis respectively. The mapping between them can be formulated as either forward projection
(Eq. (13)), i.e., project the point on the frame image point forward onto the cylindrical surface,
or backward projection, Eq. (14), i.e., project the point on cylindrical surface backward onto
the frame image, where f is the focal length and s is the radius of the cylinder that can be set to
s=f to minimize the distortion of image warping

u ¼ stan−1
x

y
; v ¼ s

yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ð13Þ

x ¼ f tan
u

s
; y ¼ v

s
f sec

u

s
ð14Þ

5.3 Motion estimation

The motion is assumed to be a fixed-position three DoF rotation. In this case, the rotation of
the camera R can be estimated directly from the homographyH between two images providing
the camera intrinsic matrix K:

R ¼ K−1HK ð15Þ

(u, v)

(x, y)

Fig. 6 Project frame image onto the cylindrical projection surface
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The rough estimation of homography is based on the aforementioned sensor-aided
BRIEF descriptor matching. To accelerate the matching process, the estimated pose of
the previous frame is used to filter out some keypoints since it is assumed that the
camera is not moving too fast. To filter out the non-matched keypoints, first the
detected keypoints in the coming frame are warped back to the reference image using
the inverse of the previously estimated H. A matching mask is created with a
predefined search area for each keypoint in the reference image. If the warped
keypoints reside inside in the search area, matching between them is conducted,
otherwise the keypoint is discarded. This approach not only reduces the matching
time, but also increases the correctness of Random Sample Consensus (RANSAC)
estimation [6].

When the camera undergoes a fixed-axis rotational motion R, the current frame can be
related to the previous frame using the homography transformation H, which can be extracted
using Eq. (15). To achieve sub-pixel accuracy, the rotational angles are refined by minimizing
the sum of the squared distance errors of all the visible feature points that are re-projected to
the backward projection of the nearest sub-grid of the map. The origin is pre-assigned at the
centre sub-grid of the map. Next, let Rj be the rotation of the camera from the origin to the

orientation where the backward projection of the jth sub-grid of the map is obtained, and bR be
the rotation of camera from the origin to the orientation where the input frame image is taken.
The re-projected pixel coordinates p ′ j on the sub-grid image of the featured pixels pi on the
frame image is formulated as:

p0 j ¼ KRjbRT
K−1 ð16Þ

The sum of squared re-projection error is:

e ¼
X

p j−p
0
j



 

2 ð17Þ

In this case, only feature points that are visible to the sub-grid image after the re-projection
are considered. This is a non-linear least squares problem which is solved using the LM

algorithm. The resulted bR is used in the next compositing step as well as in the tracking of the
camera heading.

5.4 Efficient image composition

Given the rotation of the camera, the camera frame could be forward projected to the
projection surface and blended with the panoramic map. To blend the coming frame image
to the map efficiently, an image composition approach is proposed to ensure real-time
performance. In the compositing step, two image masks are updated. The first image mask
is a mask of the generated map on the cylinder surface and the second mask is a forward
projected mask of the current processing frame to the surface using the estimated rotations.
Since the masks are stored as binary images, the nearest-neighbour interpolation can be used
for image warping. Only the pixels outside the overlapping area of the two masks need to be
filled. These pixel positions on the projection surface are backward projected on the camera
frame to an inter-pixel position. Their colour values are evaluated through bilinear-
interpolation of the neighbouring pixels on the frame image. No blending technique is applied
to save computational power. The experimental results show that lighting change has little
effect on the compositing result if the camera is moved slowly.
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6 Experimental results

6.1 Sensor-aided feature matching evaluation

To evaluate the matching performance of the rotated BRIEF descriptor, images with synthetic
in-plane rotations were tested. The textured image in Fig. 7a is transformed with in-plane
rotations ranged from −90° to +90° with an interval of 10°. Each rotated image is matched
against the original image. 500 keypoints are extracted from each of them. The matching rate is
calculated using the method stated in [4]. As shown in Fig. 7b, the matching rate for the
BRIEF descriptor remains acceptable at rotation change of ±10 degrees but decreases dramat-
ically when change is beyond ±20 degrees. The pre-known rotation is shown to be able to
facilitate the matching process to guarantee a matching rate above 70 % over the rotation range
from −90 to +90°.

6.2 Evaluation of surface detection robustness

Real-time performance on mobile devices is evaluated using four video sequences with the
following characteristics: (i) camera motion with rotation and tilt, (ii) occlusion, (iii) camera
pointing away and back, and (iv) scale change and noise data.

A feature-rich textured map is selected as a target for detection so that a wide variation in
feature appearance is introduced in the test. Each video sequence contains 400 frames at size of
320×240 pixels. The frames are scaled at a level of 2 and targeted keypoints are constrained to
below 300 per scale to guarantee a real-time processing rate. Pose estimation is assumed to be
successful when more than 15 inliers are detected using RANSAC estimation. The test is
executed on a mobile phone with a quad-core 1.5 GHz CPU and 1 GB RAM. For all four
video sequences, the processing time and the pose estimation result for each frame are
recorded. Figure 8 shows the sample frames from each video sequence and the recognition
rate, which is the ratio of the successful-detected frames over the total frames.

For sequence (i) and (ii), the performance of the tracker is relatively good. The tracking is
interrupted only for a small number of frames. The processing time is shorter for sequence (ii)
because the most time-consuming process is matching using a brute-force search, which
depends heavily on the number of keypoints. Fewer number of keypoints are available in
sequence (ii) in the case of occlusion. Test for sequence (iii) shows that tracking could be
picked up quickly when the camera is moving to the target. When the camera is moving away,
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-90 -70 -50 -30 -10 10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

In-plane Rotation (Degrees)

M
at

ch
in

g 
R

at
e

Rotation-
aware BRIEF

BRIEF

Fig. 7 Matching rate of rotation-aware BRIEF and BRIEF under synthetic rotations
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tracking is lost while the processing time drops accordingly. The performance of the tracker for
sequence (iv) is not very good as the target number of keypoints is constrained to 300 for
efficiency, which reduces the discriminative capability of the tracker. The overall performance
of the matching algorithm based on the four tests is efficient, maintaining a frame rate between
20 and 30 fps. The tolerance for camera rotation and tilt, scaling and occlusion is high, and
detection is high when a clear target is presented.

6.3 3D tracking performance evaluation

The robustness of 3D tracking is evaluated and compared with an approach that is similar to
the tracking method proposed in [20]. The Patch Tracker method in [20] uses a reference
image as the only data source similar to the ESM-based method proposed in this paper. Instead
of using pixel intensities, keypoints are used for optimization. Optimization is performed to
minimize the re-projection error of keypoints extracted from the reference image to the current
frame. The patch size of the Patch Tracker is selected at 15 pixels and the search window is set
at 41 pixels, so as to achieve similar frame rate for the tracker as the proposed intensity-based
tracking approach.

Four video sequences are used for evaluation in this test. Video sequences with different
surfaces and properties are used for tracking evaluation. These surfaces include (i) feature-rich
poster, (ii) logo with noisy background, (iii) building facades, and (iv) reflective surface. A few
frames from these sequences are shown in Fig. 9. The robustness of the tracking is evaluated as
the ratio of successful tracked frames over total frames in the sequence. To simulate fast
motion of the camera, the test video sequences are sped up in the experiments. Figure 10
shows the robustness of the proposed intensity-based tracking with the feature-based tracking

Fig. 8 Sample frames from the video sequences for evaluation of recognition rate a sequence (i), b sequence (ii),
c sequence (iii), and d sequence (iv)
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using the Patch Tracker tested over four video sequences with five different speeds. Overall,
the ESM-based tracking out-performs the feature-based Patch Tracker. For sequence (i) in
which the features are rich and with high distinctiveness, both methods perform well. The
Patch Tracker performs well because of the good feature information available. For sequence
(iv) in which reflective surface is detected, the intensity-based method performs better than the
feature-based method.

The proposed tracking method experiences less jittering in real-time as compared to feature-
based tracking. The x, y position estimation over time for a portion of sequence (iv) is plotted
in Fig. 11 for both methods. This test video clip starts with a slow motion of the camera,
followed by an introduction of a larger pose change and faster movement. It can be observed
from the plots that the proposed method experiences smoother changes over time than the

Fig. 9 Sample frames from the test video sequences

Fig. 10 Tracking rates comparison for ESM-based tracking and patch tracker on video sequences in Fig. 9 with
five speeds
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feature-based method. There are jitters in the estimation of the x, y position using the Patch
Tracker when a faster movement of the camera is encountered. However, it is observed that the
ESM-based method also fails to perform well during a faster movement of the camera.

To evaluate the proposed illumination model against the discrete illumination model [18],
the model accuracy is used for evaluation. The model accuracy is measured using the Root-
Mean-Square (RMS) pixel intensity error obtained after ESM has converged. The pixel
intensity errors reported are relative to the 256 grey levels of the images process, and are
not normalized. The RMS pixel error, average processing time and sub-grids used per frame
are shown in Fig. 12. It can be observed that the RMS pixel error of the proposed illumination
model is lower and shows less variation.

6.4 3D tracking efficiency evaluation

The performance of the near-field 3D tracking is evaluated on the set of video
sequences as shown in Fig. 9. These surfaces, which have a rich set of corner features
and large intensity gradient, are commonly found in the real world. To enable the scale-

Fig. 11 Position estimation at X/Y-directions using ESM-based tracking and patch tracker
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Fig. 12 Comparison of the RMS pixel error for the discrete and proposed illumination models on video
sequences in Fig. 9
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awareness of the feature tracking approach, a set of descriptors for the referenced image

is computed on two scales with a downsizing factor of
ffiffiffi
2

p
. 300 keypoints are targeted

in each scale, which is empirically decided to be a good trade-off between the
efficiency and the recognition performance. To train a reference image on the device
takes around 50 milliseconds, which allow instant creation of target on-device. The
speed for detection and tracking is summarized in Table 1. The number of keypoints to
be detected and matched strongly affects the processing time. In practice, the frame rate
of the tracking system is guaranteed at 15–30 fps.

6.5 Panoramic mapping and tracking evaluation

Tests in outdoor environment are conducted around the campus. With sufficient keypoints to
be detected, mapping and tracking can be performed efficiently. Two examples are shown in
Fig. 13. The results show that illumination variation can be handled well with the slow motion
of the camera. The errors accumulate and become visible when the camera moves farther from
the centre images. The resulted map could not compete in quality with panoramic images

Table 1 Efficiency evaluation of the tracking system

Time in milliseconds (300 keypoints, 2 levels of scales)

Mean Standard deviation Min Max

Detection 69.07 33.82 10.35 163.67

Tracking 32.33 18.11 2.68 101.68

(a)

(b)

Fig. 13 Results of mapping and tracking in outdoor environment
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generated offline. However, it can be used as a preview of a map that can be generated later
using more robust stitching algorithms.

The efficiency of this tracking approach is evaluated as shown in Fig. 14. During the
mapping and tracking stage, it takes an average of 65 milliseconds to process a frame. Map
rendering takes a relatively longer time due to warping of image masks. When the map is
completed, only tracking needs to be performed. The processing time is reduced to around 40
milliseconds. Matching is still the most time consuming step. With a good initial estimation
from the matching result, rotation optimization (R estimation) using the LM algorithm can
converge in a few milliseconds as indicated in Fig. 14.

7 Conclusion

In this paper, a sensor-aided tracking and tagging system is proposed for outdoor augmented
reality on a handheld device. A novel approach is proposed to achieve visual detection by
integrating the sensormeasurement with binary descriptors. Experiment conducted in this research
demonstrates that sensor measurement on-device is able to facilitate the BRIEF descriptor
matching in a restricted condition. The feature matching algorithm is combined with an
intensity-based image alignment algorithm, named ESM tracking to deliver a near-field 3D
tracking system, which can track the camera orientation based on fronto-parallel planar surfaces.
The proposed sub-grids illumination model gives the tracking method the ability to handle
occlusion and illumination variance. A tracking and mapping system is introduced for far-field
scenes in outdoor environment. This method is developed based on the assumption that the
handheld device moves in a rotation-only manner, based on the fact that the scene is relatively far-
away from the view point. The system is able to create the panoramic map of the environment at
the same time to track the position and orientation of the camera with respect to the generatedmap.

The system is tested on a campus environment with various real-world tracking targets. One
of the limitations is that since the pose estimation stage in both the near-field and far-field
tracking approaches is based on the feature detection and matching algorithm, the tracking fails
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when there are insufficient features to be extracted from the camera view. The frame rate of the
system is at 15–30 fps on average as discussed in Section 6. In order to boost the speed of the
algorithm, GPU and SIMD optimization on the mobile device could be adopted in the future.
For further development, the tracking system is expected to be connected to a large database
server, and a real-time outdoor augmented reality system for large-area outdoor application is
to be built on top of this research work.
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