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Abstract This paper presents a constructive training algorithm for Multi Layer Perceptron
(MLP) applied to facial expression recognition applications. The developed algorithm is
composed by a single hidden-layer using a given number of neurons and a small number
of training patterns. When the Mean Square Error MSE on the Training Data TD is not
reduced to a predefined value, the number of hidden neurons grows during the neural net-
work learning. Input patterns are trained incrementally until all patterns of TD are presented
and learned. The proposed MLP constructive training algorithm seeks to find synthesis
parameters as the number of patterns corresponding for subsets of each class to be presented
initially in the training step, the initial number of hidden neurons, the number of iterations
during the training step as well as the MSE predefined value. The suggested algorithm is
developed in order to classify a facial expression. For the feature extraction stage, a biolog-
ical vision-based facial description, namely Perceived Facial Images PFI has been applied
to extract features from human face images. To evaluate, the proposed approach is tested on
three databases which are the GEMEP FERA 2011, the Cohn-Kanade facial expression and
the facial expression recognition FER-2013 databases. Compared to the fixed MLP archi-
tecture and the literature review, experimental results clearly demonstrate the efficiency of
the proposed algorithm.
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1 Introduction

Automatic facial expression analysis is becoming an increasingly important research field
from automatic face recognition due to its multiple applications: human-computer intel-
ligent interfaces, video games, human emotion analysis, talking heads or educational
software, among others [24].

Basic facial expressions typically recognized in automatic affect-recognition tasks are
happiness, sadness, fear, anger, disgust and surprise [14]. Several other emotions and many
combinations of emotions have been studied but remain unconfirmed as universally distin-
guishable. Thus, most of the researches up to now have been oriented towards detecting
these basic expressions. Approaches for facial expression recognition from both static
images [62] and videos [17] have been proposed in the literature.

An automatic facial expression recognition system generally comprises three crucial
steps [57]: face detection, facial feature extraction, and facial expression classification. Face
detection is a preprocessing stage to detect or locate the face regions in the input images
[61]. Facial feature extraction attempts to find the most appropriate representation of facial
images for recognition. There are mainly two approaches: geometric features-based systems
and appearance features-based systems. Geometric feature-based methods extract shapes
and locations of facial components information including mouth, eyes, eyebrows, nose to
form a feature vector. Nevertheless, the geometric features-based systems [45]-[43] require
the accurate and reliable facial feature detection. So, it is difficult to realize in real-time
applications where illumination changes with time and images are recorded in very low
resolution.

Alternatively, the appearance features present the skin texture changes of the face. The
appearance features can be extracted on either the whole face or specific regions in a face
image. The most frequently used texture features are Gabor filter [70], pixel intensities [19],
Discrete Cosine Transform (DCT) features [44], skin color information [29], Haar-like fea-
tures [66], Local Binary Pattern (LBP) [27, 69], and Local Phase Quantization (LPQ) [71].
Accordingly, feature extraction methods based on Principal Component Analysis (PCA) [6],
Linear Discriminant Analysis (LDA) [63], Regularized Discriminant Analysis (RDA) [31]
and Independent Component Analysis (ICA) [39], have been used in order to enhance the
performance of texture information.

In the last step of a facial expression recognition system, a classifier is employed to iden-
tify different expressions based on the extracted facial features. The most known classifiers
used for facial expression recognition are the k-nearest neighbor classifier [15], template
matching [64], Hidden Markov Models [7], Adaboost algorithms [46], Support Vectors
Machines [65] and neural networks [11, 25].

This paper proposes to use a biological vision-based facial description, namely Perceived
Facial Images PFI, in the facial expression recognition problem. The proposed PFI simulates
the response of complex neurons to gradient information within a certain neighborhood and
possess properties of being highly distinctive as well as robust to illumination and geomet-
ric transformations [22, 23]. The PFI is an intermediate facial representation to deal with
the face image and the feature extraction vector is obtained using the PCA to reduce the
dimension of the image. This vector is the input of the neural network classifier.
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Due to their superior performance, neural networks have been widely used methods in
facial expression recognition [30, 38]. Especially, Multi Layer Perceptron MLP neural net-
work has shown good performance in emotion recognizing [2]. Many traditional algorithms
fix the neural network structure before training. However, it is difficult to determine a proper
structure in advance, which can both guarantee convergence and avoid over-fitting. Two
approaches have been studied in order to determine the adequate neural network structure
for a given problem. The first one, known as constructive approach, starts with a small struc-
ture and adds hidden neurons when it is necessary. Several constructive learning algorithms
have been proposed in the literature [40, 48]. The second approach, known as pruning one,
starts with a great structure and eliminates hidden neurons during the training procedure
[21, 47].

Constructive algorithms have major advantages over the pruning ones [50]:

– Specifying the initial network is easier in constructive methods, whereas in pruning
algorithms one usually has to decide a priori how large the initial network should be.

– Generally, constructive algorithms are more economical in terms of training time and
network complexity and structure than pruning algorithms. In fact, small networks
have been usually built using constructive algorithms due to their incremental learn-
ing nature. While in the construction of a neural network using the pruning algorithm,
overly large efforts may be spent in pruning the redundant weights and hidden neurons.

– In constructive algorithms, a smaller number of parameters (weights) is to be updated
in the initial stage of the training process thus requiring less training data for good
generalization, while a sufficiently large training data is required in pruning algorithms.

– In pruning algorithms, several problems depending on parameters need to be properly
specified or selected in order to obtain an acceptable network giving satisfactory per-
formances. This requirement makes these algorithms more difficult to be used in real
life applications.

Due to these reasons, the constructive training approach has been considered in this work.
The constructive training algorithm proposed in this paper is essentially based on the idea

studied in the work by Liu et al. [35]. The main difference between the proposed algorithm
and the one of Liu et al. [35] is the number of examples needed for a successful training
step. Indeed, in the work by Liu et al. [35], patterns are trained incrementally by considering
them one by one. But, in the proposed constructive training algorithm, patterns are trained
incrementally by a subset of each class. In the proposed approach, the recruitment of hidden
neurons is based on subsets of training data and not on each pattern as in Liu et al. [35]. A
disadvantage of the algorithm of Liu et al. [35] is its high training time when a large training
data are under consideration. In the proposed algorithm, huge data training are subdivided
into subsets to reduce the learning time.

Authors of reference [41] have developed a modified version of the algorithm of Liu
et al. [35] to a speech recognition problem. In this work, the problem of facial expression
recognition based on a constructive training algorithm is investigated.

The proposed algorithm starts with a small number of training patterns and a single
hidden-layer neural network using a certain number of neurons. During neural network
training, the hidden neurons number is increased when the Mean Square Error MSE on
the Training Data TD is not reduced to a predefined parameter called ε. Input patterns are
trained incrementally subset by subset until all patterns of TD are learned.

The main contribution in this paper is to adapt the modified constructive training algo-
rithm to expression recognition problem. This work is interested to the determination of
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the MLP structure. Indeed, the proposed MLP constructive training algorithm allows the
determination of the number of training patterns in the subsets of each class, the initial num-
ber of hidden neurons, the number of iterations during the training steps as well as the MSE
threshold ε. This paper presents an exploration of the suitable values of these parameters
which give the best performances of the neural classifier. Therefore, the process of deter-
mining the architecture of the network and the learning process happen simultaneously.
This algorithm is used in the classification stage of facial expression recognition system. In
addition, a method for applying Perceived Facial Images in the feature extraction stage is
presented.

The remainder of the paper is organized as follows. Section 2 introduces the Perceived
Facial Images PFI for facial expression recognition application. Section 3 describes the
facial expression recognition system developed in this study. Section 4 presents the pro-
posed constructive training algorithm. The experimental results obtained on the GEMEP
FERA 2011 database, the Cohn-Kanade database and the FER-2013 database are presented
and analyzed in Section 5. To examine the efficiency of the proposed method, comparisons
with fixed MLP architecture and some other methods in literature are conducted. Finally,
conclusions are drawn in Section 6.

2 Perceived facial images

The feature extraction is an important step of the classification process. In fact, extract-
ing an efficient representation of the face from images contributes to the success of
recognition procedure. The present paper suggests making use of a biological vision-
based facial description namely Perceived Facial Images PFI, which was initially applied
to 3D face recognition [22, 23] and 2D face recognition [3]. As well, the proposed
PFI was applied on facial expression recognition using SIFT matching method [5]. The
obtained results in the study of [5] were competitive with respect to several methods of
the state-of-the art. In order to improve performances, the present paper proposes to use
jointly the PFI and the constructive training algorithm in facial expression recognition
application.

PFI aims at giving a visual representation simulating the human visual perception. The
PFI was inspired from the study of Edelman et al. [13], who proposed a representation of
complex neurons in primary visual cortex. These complex neurons respond to a gradient at
a particular orientation and spatial frequency, but the location of the gradient is allowed to
shift over a small receptive field rather than being precisely localized.

The proposed representation PFI aims at simulating the response of complex neurons,
based on a convolution of gradients in specific directions in a given circular neighborhood.
The precise radius value of the circular area needs to be experimentally fixed. Specifi-
cally, given an input image I, a given number of gradient maps L1, L2, ..., Lo, one for each
quantized direction o, are first computed. They are defined as:

Lo =
(

∂I

∂o

)+
(1)

The + sign means that only positive values are kept to preserve the polarity of the intensity
changes.

Each gradient map describes gradient norms of the input image in a direction o at
every pixel location. Then, the response of complex neurons is simulated by convolving its
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gradient maps with a Gaussian kernel G. The standard deviation of G is proportional to the
radius of the given neighborhood area, R, as in (2).

ρR
o = GR ∗ Lo, (2)

where ∗ denotes the convolution operator.
The purpose of the convolution with Gaussian kernels is to allow the gradients to shift

within a neighborhood without abrupt changes. At a given pixel location (x, y), we collect
all the values of the convolved gradient maps at that location and form the vector ρR(x, y)

thus having a response value of complex neurons for each orientation o.

ρR =
[
ρR

1 (x, y), ρR
2 (x, y), ..., ρR

o (x, y)
]

(3)

This vector, ρR(x, y), is further normalized to unit norm vector, which is called the
subsequent response vector and denoted by ρR .

Facial image can be represented by its perceived values of complex neurons according
to the response vectors. Specifically, given a facial image I , Perceived Facial Images Jo are
generated using complex neurons for each orientation o defined as in (4).

Jo(x, y) = ρR
o (x, y) (4)

Figure 1 illustrates the process applied to a facial image. In this work, eight PFIs cor-
responding to eight directions are computed. Therefore, for each image from the database,
eight images correspond to eight PFIs are obtained. It has been demonstrated that we can
not decide which direction is to be used [3, 5, 22]. The proposed approach which will be
described in the next section, is based on the use of the eight PFI directions independently.

Fig. 1 An illustration of the PFI in eight orientations
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3 Facial expression recognition system

A facial expression recognition system generally consists of three stages: face detection,
feature extraction and feature classification. In this paper, the face detection is based on the
OpenCV face detector. In the second stage, the PFI is used to extract the feature vector of
the faces. In fact, eight PFIs are generated for each image in the database. After that, the
PCA is applied to reduce the dimension of the image. For each direction, a classifier is
developed and the final decision is obtained from the fusion of the ones corresponding to
the eight directions.

Having the extracted feature vector for all the samples in the training and testing sets,
the next step would be to design the classifier. In this study, Multi Layer Perceptron MLP
architecture has been used as a classifier of facial expressions.

Three layer MLP have been used in this study. The number of input neurons is equal to
the size of related feature vector. Similarly, the number of output neurons is equal to the
number of facial expressions to be recognized. In the learning phase, the desired output neu-
ron has 1 for the correct input pattern and 0 for all others output neurons. The hidden layer
is constructed using the proposed constructive training algorithm which will be presented
in the next section.

There are two steps on the realization of the facial expression recognition system using
the MLP architecture: the training step and the testing step. The learning algorithm used
this study is the standard back-propagation [36]. The back-propagation network undergoes a
supervised learning process. The training algorithm is accomplished based on the following
expressions:

�ωji(t) = −η
∂Ep(t)

∂ωji(t)
, (5)

where η is the learning rate and Ep designed the error of the network for the pth pattern
(MSE) and defined as in (6).

Ep = 1

2

∑
(dpk − spk)

2, (6)

where k is the number of output neurons in the MLP. dp and sp are the desired and the
neural computed outputs for pth training vector.

For the testing step, the class of each presented pattern is assigned to the maximal value
of the neuron outputs. The performance of the recognition system has been measured in
terms of recognition rate on testing set.

Three databases have been used to evaluate the proposed approach: FERA 2011 database,
the Cohn-Kanade database and the FER-2013 database. The fera 2011 database is com-
posed by video of facial expressions. The emotion detection concerns five discrete emotion
classes. Each video has a single emotion label e ∈ E, where E = {Anger, Fear, Joy, Relief,
Sadness}. Since the videos do not display any apparent neutral frames at the beginning or
the end of the video, it will be supposed that every frame of a video shares the same label
[59].

The classification rate is first obtained per emotion then the average over all five emo-
tions is computed. The classification rate for emotions is calculated as the fraction of the
number of videos correctly classified divided by the total number of videos for each emotion
in the test set.
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The resulting MLP classifier gives a decision ye,j about the presence of emotion e for
frame j in a test video. To decide the label Y of a test video composed by n frames, we find
the emotion with the largest number of classified frames:

Y = max
e

n∑
j=1

ye,j (7)

For the two other databases, the recognition rate is defined by the ratio between the
number of true classification by the total number of images in the testing sets.

4 Modified constructive training algorithm

Many researchers have studied the neural network training problem and many algorithms
have been reported [36]. Among them, Back-propagation algorithm [36] is one of the most
commonly used method. Multi Layer Perceptron neural network, requires the definition of
the network architecture, prior to training. Generally this method works well only when
the network architecture is appropriately chosen. It is well known that there is no general
answer to the problem of defining neural network architecture for a given application.

In fact, the usual way to determine the number of hidden units in Multi Layer Perceptron
MLP neural network is by a trial and error procedure. An alternative is to use constructive
algorithms [4, 35] which try to solve the problem by building the architecture of the neural
network during its training.

Constructive training algorithm incrementally adds hidden neurons and weights to the
network during training until stopping criterion is satisfied.

The training pedagogy adopted in the proposed MLP constructive training algorithm is
based on the following idea: the presentation of patterns to the classifier is accomplished
by dividing patterns corresponding to each class to a given number of subsets. Each sub-
set contains (N patt) patterns. The training is performed by presenting the first subset of
each class then the second subsets and so on. The proposed algorithm starts with a single
hidden-layer using a (Nh]ini) number of neurons. Over the learning process, the hidden
neurons number is increased when the MSE threshold on the TD does not reach a prede-
fined parameter called ε. Input patterns are learned incrementally subset by subset until all
patterns (N tot) of TD are presented [41]. The pseudo-code for the proposed algorithm is
shown by Algorithm 1.
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As presented in Algorithm 1, the proposed algorithm is constituted by eleven procedures.
It can be detailed by the following steps:

– Step 1: Create a MLP composed by (N hid = Nh ini) hidden neurons.
– Step 2: Initialize the neuron connection and bias weights with random values.
– Step 3: Select N patt input patterns from the TD (N Input = N patt) for each class
– Step 4: By setting the number of iterations by N epochs, train the MLP using the

backpropagation algorithm with N Input input patterns to achieve the predefined
performance .

– Step 5: The final connection and bias weights of the MLP architecture are stored.
– Step 6: If the training algorithm can reduce the MSE to ε , go to Step 7; otherwise, go

to Step 9.
– Step 7: While the N Input � N tot : the total number of patterns from TD, go to Step

8 otherwise go to Step 11.
– Step 8: Increase the number of input patterns (N Input =N Input + N patt) and go

back to Step 4.
– Step 9: Increase the number of hidden neurons by one (N hid = N hid+ 1).
– Step 10: Initialize the weights of the new hidden neuron and all connection weights are

replaced by the last stored weights obtained from Step 5 and go back to Step 4.
– Step 11: Take the found architecture corresponding to an appropriate number of

neurons.

The proposed MLP constructive training algorithm has to determine the adequate value
of (N patt), the initial number of hidden neurons (Nh ini), the number of iterations
(N epochs) during the training step as well as the MSE threshold value ε. This paper
presents an exploration procedure to determine the suitable values of these parameters
giving the best performances.

5 Experimental results and discussion

The proposed approach will be experimentally evaluated using three databases which are
the GEMEP FERA 2011 database, the Cohn-Kanade facial expression Database and the
FER-2013 Database. All experiments have been developed using MATLAB (version 2010)
and its Neural Network toolbox.

5.1 Databases description

– GEMEP FERA 2011 database: This database is a partition of the GEMEP corpus [1],
developed by the Geneva Emotion Research Group at the University of Geneva. The
challenge is divided in two sub-challenges that reflect two popular approaches to facial
expression recognition: an action unit detection sub-challenge and an emotion detec-
tion sub-challenge. In this work, the emotion detection is considered, which calls for
systems to attain the highest possible classification rate for the detection of five discrete
emotions: anger, fear, joy, relief, and sadness.

To be able to objectively measure the performance of the participants’ entries, the
database has been divided into a training set and a test set. A total of 288 portrayals
were selected (155 for training and 134 for testing).

The test data is divided in three different partitions. The first one is the partition
where the test subjects are not present in the training data (Person Independent partition
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Table 1 Number of Videos of
Each Emotion used in the
training set, the PS, The PI and
the Overall test set [59]

Emotion Train PS Test PI Test Overall Test

Anger 32 13 14 27

Fear 31 10 15 25

Joy 30 11 20 31

Relief 31 10 16 26

Sadness 31 10 15 25

Total 155 54 80 134

PI). The second partition of the test data consists of videos of subjects that are part of
the training set (Person Specific partition PS). The third partition is simply the entire
(overall) test set [59]. Details about the training and test sets of the GEMEP FERA
database can be found in Table 1.

– The Cohn-Kanade facial expression database:This database is one of the most compre-
hensive database in the current facial-expression-research community [26]. It consists
of 97 classes. For each subject, one neutral face and six expressive faces have been pre-
sented in the database. These facial expressions are happiness, anger, sadness, surprise,
fear, and disgust. Figure 2 shows the samples of six expressions and the neutral for the
Cohn-Kanade Database.

– The FER-2013 database: The dataset of the Facial Expression Recognition FER-2013
Challenge [54] consists of 48 × 48 pixel gray-scale images of faces representing 7
categories of facial expressions: anger, disgust, fear, happiness, sadness, surprise, and
neutral. There are 28709 examples for training, 3589 examples for public testing, and
another 3589 examples for private testing. The faces have been automatically regis-
tered from the web so that each face is approximately centered and occupies about the
same amount of area within each image. The training data may also contain labeling
noise, meaning that the labels of some faces do not indicate the right facial expres-
sion. Another issue is that the images have some variation of poses and the presence of
external occlusions caused by eyeglasses, hand and hair.

Fig. 2 Examples of six facial expressions of the Cohn-Kanade facial expression database
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5.2 Pre-processed database

In this work, the OpenCV face detector is used to extract the face location in each image
[32]. The detected face is scaled to be 200 by 200 pixels. This pre-processed step has been
applied in each image from the FERA 2011 and the Cohn-Kanade databases. For the FER-
2013 database, the face is initially detected for each image. Figure 3 presents the obtained
image when applied the OpenCV face detector.

5.3 Results using GEMEP FERA 2011 database

After pre-processing, the Perceived Facial Image PFI in eight directions is applied for
each frame of a video in training and test data. For each orientation, a MLP network
using constructive training algorithm is developed. After applying the PCA to reduce the
dimensionality, feature vectors of dimension 12 are obtained.

The recognition rates are calculated using the Person Specific partition PS, Person
Independent partition PI and the entire overall test set, respectively.

5.3.1 Experimental setup

The proposed constructive training algorithm is used in order to determine the number of
trained input patterns (N patt), the initial number of hidden neurons (Nh ini), and the
number of epochs (N epochs) as well as the appropriate value of the MSE (ε). The explo-
ration of these parameters has been made for each direction of PFI. So, the next experiments
have been accomplished using the PFI on the first direction.

In the first step, the number of input patterns (N patt) for each subset corresponding
to each class used in the training step is varied and the other parameters are fixed. In this
work, 30 videos for each face expression are used and each video is formed by 20 frames.
Therefore, in this experiment 600 images are used in each face expression. Then the training
set is formed by 3000 images.

For ε equal to 0.01, we chose to start the algorithm with 20 hidden neurons (Nh ini =
20), 1000 epochs (N epochs = 1000) and the learning rate η is equal to 0.01. The perfor-
mances are measured by determining the recognition rate on each partition of test set (PS,
PI and Overall), the final number of hidden neurons ( Nh end), which has been obtained at
the end of learning step and the training time.

Fig. 3 The original face image and the detected face image
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Some simulation studies have been done by varying the value of N patt which is equal
to 50, 100, 150, 200 and 300. For each value of N patt , the performances have been
calculated. So, the appropriate value of the number of input patterns presented for each
class has determined, so N patt = 300. The obtained recognition rates are PS = 85.18 %,
PI = 64.55 % and Overall = 72.93 %. At the end of training procedure, the algorithm
converges to 38 hidden neurons (Nh end = 38).

In the second step, the variation of the initial number of hidden neurons (Nh ini) is
considered. The algorithm starts with 300 input patterns (N patt = 300) for each class
and 1000 epochs (N epochs = 1000). Different values of Nh ini have been presented to
the MLP network. The value of Nh ini is varied from 10 to 40 neurons and for each value
the performances have been computed. To conclude, the best performances (PS = 81.48 %,
PI = 73.41 % and Overall = 76.69 %) have been obtained when (Nh ini = 21). At the end
of training procedure, the proposed constructive algorithm converges to 36 hidden neurons
(Nh end = 36).

The last procedure is to determine the number of epochs (N epochs) using in the train-
ing. The proposed algorithm is trained using 300 input patterns for each class and an initial
number of hidden neurons equal to 21. Several sets of experiments have been made with
different values of N epochs which are varied from 100 to 1000. The best rates have
been obtained when (N epochs = 450). At the end of training procedure, the algorithm
converges to 29 hidden neurons (Nh end = 29).

To conclude, for ε equal to 0.01, the best performances are obtained for 300 input patterns
for each class in the training step, 21 initial hidden neurons and 450 epochs: N patt = 300,
Nh ini = 21 and N epochs = 450. Table 2 illustrates the confusion matrix for Overall
partition test using the PFI 1.

Based on these results, the obtained rates are PS = 100 %, PI = 98.45 % and Overall =
99.25 %. The classification rate on the person specific partition PS is better than the rate on
the Person Independent partition PI.

This is can be explained by the difficulty of the facial expression recognition of a subject
who has not been used in the training set.

It is to be noted, that the chosen value of ε has been done based on several simulations.
For (ε < 0.01), the training algorithm could not converge. This is due to the trade-off that
should be respected, between the number of examples which is limited in the database and
the structure of neural network.

5.3.2 Results evaluation

Previous results are made using the PFI on the first direction. Then, the same procedure
is repeated with the eight orientations. Subsequently, the proposed constructive training

Table 2 Confusion matrix for
Overall emotion Recognition
using the PFI 1 and the proposed
constructive training algorithm

Anger Fear Joy Relief Sadness

Anger 27 0 0 0 0

Fear 0 25 0 0 0

Joy 0 0 31 0 0

Relief 0 0 0 26 1

Sadness 0 0 0 0 24
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algorithm is applied on eight directions separately. Table 3 presents the classification rates
for emotion recognition using the PFI on eight directions and the proposed algorithm with
(ε = 0.01).

The obtained parameters corresponding to the training algorithm are illustrated on the
Table 4. These parameters are the number of patterns presented for each class N patt ,
the initial number of hidden neurons Nh ini, the number of epochs used in the training
N epochs, the final number of hidden neurons Nh end achieved at the end of learning and
the training time.

Observing Tables 3 and 4, the best rates are PS = PI = Overall = 100 %. These rates have
been obtained using the PFI on direction 3. At the end of learning procedure, the algorithm
converges to 39 hidden neurons.

After that, fusion which is the sum of the obtained results of each neural network corre-
sponding in each orientation of the PFI, is computed. The obtained rates using fusion are
PS = PI = Overall = 100 %.

Table 3 Classification rates for emotion recognition on the PS, PI and Overall test set using the proposed
constructive training algorithm and the PFI on eight directions separately.

Anger Fear Joy Relief Sadness Average

PFI 1 PS 100 100 100 100 100 100

PI 100 100 100 100 90 98.45

Overall 100 100 100 100 96 99.25

PFI 2 PS 100 100 100 100 100 100

PI 100 100 100 0 100 81.01

Overall 100 100 100 40 100 88.72

PFI 3 PS 100 100 100 100 100 100

PI 100 100 100 100 100 100

Overall 100 100 100 100 100 100

PFI 4 PS 100 100 100 100 90 98.14

PI 100 100 100 0 100 81.01

Overall 100 100 100 40 96 87.96

PFI 5 PS 100 100 100 100 100 100

PI 42.85 100 100 100 53.33 81.01

Overall 70.37 100 100 100 72 88.72

PFI 6 PS 100 100 100 100 100 100

PI 100 100 100 80 0 77.21

Overall 100 100 100 88 40 86.46

PFI 7 PS 100 100 100 100 100 100

PI 100 100 100 60 100 92.40

Overall 100 100 100 76 100 95.48

PFI 8 PS 100 100 100 100 100 100

PI 0 100 100 100 100 82.27

Overall 48.14 100 100 100 100 89.47
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Table 4 The obtained parameters from the proposed constructive training algorithm for each orientation

PFI 1 PFI 2 PFI 3 PFI 4 PFI 5 PFI 6 PFI 7 PFI 8

N patt 300 300 300 300 300 300 300 300

Nh ini 21 20 27 20 21 20 21 20

Nh end 29 38 39 27 37 36 27 25

N epochs 450 400 400 100 300 200 100 250

T raining 0.45 0.68 0.33 0.24 1.47 1.01 0.28 0.44

T ime mn mn mn mn mn mn mn mn

5.3.3 Comparison with a fixed MLP architecture

In order to show the advantage of the proposed approach, a fixed MLP architecture is
applied on facial expression recognition using the PFI 3. The MLP is trained using the same
number of neurons in the hidden layer (Nh end = 39) obtained at the end of the proposed
constructive training algorithm. The learning rate η is equal to 0.01. The stop criterion is the
value of MSE which is equal to 0.01. The fixed MLP architecture needs a high number of
iterations to converge to ε. Should be noted that the initial weights values used in the con-
structive training algorithm have been considered in the training of the fixed structure MLP
neural network. The confusion matrix for Overall partition test is presented on the Table 5.

The obtained classification rates are PS = 98.14 %, PI = 55.69 % and Overall = 72.93 %.
To compare to the proposed training algorithm results presented on Table 2, the best rates
have been obtained using the constructive training algorithm. Also, it can be noted that a
large portion of anger, fear and sadness are mis-classified to fear, anger and relief respec-
tively with the fixed MLP architecture and but they are successfully classified with the
proposed method. This is explained by the fact that the fera-2011 database is particularly
difficult to treat due in particular to the existence of a strong intra-class confusion (between
joy/relief on one side, and anger/fear/sadness of the other), which makes it particularly dif-
ficult recognition even for a human [59]. Despite these difficulties, the proposed algorithm
gives good performances.

Next, a fixed MLP architecture using the PFI on eight orientations is developed. The
classification rates are computed on the PS, PI and Overall test set. Table 6 presents the
obtained results on each direction separately.

The obtained number of hidden neurons at the end of the learning of the proposed
algorithm is considered in the structure of the fixed MLP neural networks (N hid =
Nh end).

The learning of the fixed MLP neural network has been ended when the MSE value
reaches ε. Comparing the obtained results in Table 6, the best rates (PS = 100 %,

Table 5 Confusion matrix for
Overall emotion recognition
using the PFI 3 and the fixed
MLP architecture

Anger Fear Joy Relief Sadness

Anger 16 15 0 0 0

Fear 11 10 0 0 0

Joy 0 0 31 0 0

Relief 0 0 0 26 10

Sadness 0 0 0 0 15
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Table 6 Classification rates on the PS, PI and Overall test set using the fixed MLP architecture and the PFI
on eight orientations separately.

N hid N epochs PS PI Overall Training Time (mn)

PFI 1 29 1800 87.03 44.03 62.90 0.87

PFI 2 38 2200 75.92 50.63 60.90 1.03

PFI 3 39 2100 98.148 55.69 72.93 0.92

PFI 4 27 3500 87.03 44.30 61.65 1.34

PFI 5 37 6000 57.40 62.02 60.15 2.02

PFI 6 36 3500 90.74 43.03 62.40 1.44

PFI 7 27 6500 100 75.94 85.71 1.71

PFI 8 25 6000 59.25 43.03 49.62 1.47

PI = 75.94 % and Overall = 85.71 %) have been obtained using the PFI on direction 7.
Also, the fixed MLP architecture requires more number of iterations than the proposed
constructive algorithm so that it can converge to ε.

For each orientation, it is clear that the obtained rates using the proposed algorithm are
better than those obtained by the fixed MLP. Moreover, the training time for the constructive
training algorithm is lower than the one of the fixed MLP architecture. So, the achieved
results show the effectiveness of the proposed constructive training algorithm compared to
the fixed MLP architecture.

5.3.4 Comparison with the literature

FERA database has been used for automatic facial expression recognition by many
researches [12]–[67]. Table 7 gives performances obtained by the proposed constructive
training algorithm and the existing systems on emotion recognition using GEMP FERA
database.

Table 7 Comparison with the
literature: classification rates for
emotion Recognition using
FERA 2011 database

Systems Recognition rate (%)

PS PI Overall

Dhall et al. [12] 83.8 64.9 73.4

Dahmane et Meunier [8] 87 57.9 70

Littlewort et al. [37] 83.7 71.4 76.1

Meng et al. [42] 83.7 60.9 70

Srivastava et al. [52] 73 63.6 67.2

Tariq et al. [56] 100 65.5 79.8

Yang et Bhanu [67] 96.2 75.2 83.8

Baseline [59] 73 44 56

Boughrara et al. [5] 100 60 76.11

Proposed approach 100 100 100
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Using the proposed constructive training algorithm, the best obtained rates (PFI 3) are
considered on Table 7. To conclude, the obtained classification rates on the PS, PI and
Overall test set using the proposed approach are better than other methods.

5.4 Results using Cohn-Kanade database

The second database used in this study is the Cohn-Kanade database. In this experiment, we
evaluate the proposed algorithm for the person-independent expression recognition, which
requires that the same persons with the same expressions should not simultaneously appear
in both the training set and the testing set.

The classification performance has been evaluated using a 10-fold cross validation
method and the average recognition results were reported. In this work, 2700 images have
been selected from the database corresponding to six expressions. So, 450 images have been
presented in each expression.

After pre-possessing step applied in each image from the database, the PFI on eight
orientations has been computed. PCA algorithm has been executed to reduce the dimension-
ality. The proposed constructive training algorithm has been developed for each orientation
separately.

5.4.1 Results evaluation

The same procedures applied in the first database (FERA 2011) have been repeated. The
value of ε has been chosen by the experiences which is equal to 0.001. After some exper-
iment studies, the appropriate value of the number of input patterns initially presented for
each subset N patt , the adequate number of hidden neurons Nh ini used initially and the
number of epochs N epochs have been determined. For each PFI, the recognition rates
using the constructive training algorithm have been calculated and illustrated in Table 8.
The obtained parameters of the proposed algorithm have been also presented in the table.

Table 8 demonstrates that the best recognition rate is obtained for the PFI on direction 6.
When fusion has been calculated, the recognition rate reaches 96.66 %.

Next, the fixed MLP architecture has been developed in each direction separately.
The MLP network is constructed using the same number of neurons in the hidden layer
(Nh end) obtained at the end of the proposed learning algorithm. The number of epochs is

Table 8 Classification rates on the Cohn-Kanade database using the proposed constructive training
algorithm for each orientation

N patt Nh ini Nh end N epochs Recognition Rate Training Time

PFI 1 200 32 35 350 94.07 % 0.52 mn

PFI 2 200 28 29 450 90.74 % 0.40 mn

PFI 3 200 21 23 300 90 % 0.34 mn

PFI 4 200 37 43 200 91.11 % 0.54 mn

PFI 5 200 39 40 400 89.25 % 0.30 mn

PFI 6 200 28 38 250 95.18 % 0.86 mn

PFI 7 200 39 43 150 94.81 % 0.30 mn

PFI 8 200 25 25 450 90 % 0.55 mn
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Table 9 Classification rates on the Cohn-Kanade database using the fixed MLP architecture and the PFI on
eight orientations separately.

N hid N epochs Recognition Rate (%) Training Time (mn)

PFI 1 35 1400 82.53 0.67

PFI 2 29 2500 79.25 0.78

PFI 3 23 1200 76.46 0.56

PFI 4 43 3000 85.55 1.03

PFI 5 40 3500 82.59 1.11

PFI 6 38 3500 86.66 1.12

PFI 7 43 4000 89.62 1.38

PFI 8 25 3500 80.64 1.02

determined by the experiment when the fixed MLP network reaches the convergence. The
results using the fixed MLP architecture are presented in the Table 9.

Observing the Table 9, the best result (89.62 %) has been achieved using the direction 7.
The training time of the fixed architecture is higher than the one of the proposed algorithm.
By carrying out the fusion, the recognition rate is equal to 82.78 %. To conclude, the con-
structive algorithm is better than the fixed MLP architecture in terms of recognition rate and
the training time.

5.4.2 Comparison with the literature

The proposed framework is compared with the other references using the same database
(Cohn-Kanade database) and the obtained results are presented in Table 10. The obtained
rate when applying fusion is presented in Table 10.

Seeing Table 10, the proposed approach gives a best recognition rate compared to the
other methods in the literature such as the works in [28, 51, 60, 69]. This demonstrates the
efficiency of the proposed constructive training algorithm. But the obtained rate is somewhat
lower than the one of Khan et al. [27].

Table 10 Comparison with the
literature: classification rates
using CohnKanade database

Systems Recognition rate (%)

Zhao et al. [69] 95.85

Villegas et al. [60] 88.5

Shan et al. [51] 92.6

Gu et al. [20] 91.51

Liu et al. [38] 82

Fan et al. [16] 86.28

Bejani et al. [2] 71.8

Khan et al. [27] 96.7

Lajevardi et al. [28] 91.9

Proposed Approach 96.66
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Table 11 Classification rates on the Public and the Private testing set using the proposed constructive
training algorithm for each orientation

N patt Nh ini Nh end N epochs Public Private Training

Test (%) Test (%) Time (mn)

PFI 1 500 28 36 250 81.01 79.63 1.23

PFI 2 500 29 36 150 77.45 78.30 0.69

PFI 3 500 25 37 200 79.79 79.14 1.48

PFI 4 500 29 36 250 75.26 76.97 1.08

PFI 5 500 29 32 200 79.63 76.77 0.49

PFI 6 500 28 36 150 80.97 78.58 0.73

PFI 7 500 30 44 200 78.75 76.17 1.85

PFI 8 500 26 33 200 79.92 79.43 1.02

5.5 Results using FER-2013 database

The last database used in this work is the FER-2013 database. In this study, 1000 images
have been used for each expression in the training set, 200 images for each expression have
been selected in the public and private testing set.

PFI in eight directions is applied for each image in training and testing data. Then, PCA
algorithm has been applied to reduce the dimensionality. Next, a neural network has been
built based on the constructive training algorithm in each direction.

5.5.1 Results evaluation

For the value of ε equal to 0.01, appropriate values of the number of input patterns initially
presented for each class N patt , the adequate initial number of hidden neurons Nh ini

and the number of epochs N epochs have been identified based on exploration. For each
PFI, the recognition rates using the constructive training algorithm have been calculated and
illustrated in Table 11.

Comparing the obtained results for each orientation, the best recognition performances
(Public test = 81.01 % and Private test = 79.63 %) are obtained on direction 1. At the end

Table 12 Classification rates on the Public and the Private testing set using the fixed MLP architecture and
the PFI on eight orientations separately.

N hid N epochs Public test (%) Private test (%) Training Time (mn)

PFI 1 36 600 77.06 76.30 0.35

PFI 2 36 450 77.15 74.21 0.29

PFI 3 37 500 76.78 74.83 0.31

PFI 4 33 600 71.89 72.74 0.37

PFI 5 32 600 76.01 74.43 0.35

PFI 6 36 500 75.92 74.34 0.29

PFI 7 44 750 77.06 74.67 0.5

PFI 8 33 600 76.87 77.98 0.35
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Table 13 Comparison with the
literature: classification rates
using FER-2013 database

Systems Recognition rate (%)

Public Test Private Test

RBM [55] 69.769 71.162

Unsupervised [54] 69.072 69.267

Maxim Milakov [54] 68.153 68.821

Radu + Marius + Cristi [58] 67.317 67.484

Proposed approach 84.58 82.76

of training procedure, the algorithm converges to 36 hidden neurons (Nh end = 36). By
computing the fusion, the recognition rates are (Public test = 84.58 % and Private test =
82.76 %). So, these rates are better than those obtained using the eight directions.

On the other hand, the fixed MLP architecture is applied on facial expression recognition
using the PFI on eight directions. The fixed MLP is trained used the same number of neu-
rons on the hidden layer (Nh end) obtained at the end of the proposed learning algorithm.
Table 12 presents the results using the fixed MLP architecture.

Based in the Table 12, it can be concluded that the achieved rates using the proposed
constructive training algorithm for each orientation are better than the ones obtained by the
fixed MLP architecture. So, the suggested algorithm is more efficient.

5.5.2 Comparison with the literature

Compared to the literature review, Table 13 gives performances obtained by the proposed
constructive training algorithm and the existing ones using FER-2013 database on public
and private testing set. The existing systems have used all the images in the database. Then,
the obtained scores are computed on all the images in the test set.

The recognition rates obtained by the proposed approach on public an private sets are
slightly better than the one obtained in literature. It should be noted that obtained results
have considered reduced training and testing sets. Due to training time, we cannot use all
the images in the FER-2013 database. This objective will be under consideration as a future
work.

6 Conclusion

The MLP neural network based on backpropagation algorithm is one of the most popu-
lar neural networks topologies. One of the difficulties of using the MLP neural network
is to determine the optimal number of hidden neurons before the training process. Two
approaches have been developed in the literature to solve this problem which are the
constructive and the pruning algorithms.

In this paper, a constructive training algorithm for MLP neural networks has been pro-
posed. Starting with a neural network containing a given number of hidden neurons and
a small number of training patterns, the MLP neural network using the back-propagation
algorithm is trained. The hidden neurons grow during the training when the MSE on the
TD is not reduced to a predefined value. Input patterns are trained incrementally until all
patterns of TD are selected and learned.
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The suggested constructive learning algorithm for MLP neural networks has been applied
in the classification step for the facial expression recognition system. A biological vision-
based facial description, namely Perceived Facial Images PFI is applied in the feature
extraction stage. This paper uses the PFI on eight directions applied to extract features from
facial expression images. Suitable parameters for the training of the neural classifier for
each direction are determined. The final decision the facial expression recognition system
is computed by the fusion of those obtained by the neural networks corresponding to the
eight directions.

The GEMEP FERA, the Cohn-Kanade and the FER-2013 databases have been used for
the experiment. Compared to the fixed MLP architecture, the best recognition rate has been
obtained using the constructive training algorithm.

The importance of the proposed constructive algorithm is explained by the fact that
learning patterns are presented sequentially to the neural network. Adopting this training
procedure allows to reduce considerably the training time. Therefore, the obtained results
have been compared favorably with those obtained from the fixed MLP architecture and
with other state-of-the-art works that prove the effectiveness of the proposed method.
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