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Abstract Most of conventional object matching methods are based on comparing local
features, which are too computational demanding. Recently, Dominant Orientation Tem-
plates (DOT) were proposed to solve the efficiency issue. Although DOT obtains promising
results, it still suffers the problem of wasting too many bits in representation and fragility
when partial occlusion occurs. As the number of templates increase, the performance will
decrease. Therefore, we propose a compact DOT representation with a fast partial occlusion
handling approach. Instead of using seven orientations in the original implementation, we
employ single orientation of the highest gradients for the proposed compact DOT represen-
tation (C-DOT). Consequently, the size of feature vectors is reduced from 8 bits to 3 bits.
To efficiently tackle the partial occlusion, we introduce the C-DOT similarity map to store
the matching scores of individual grids in each sliding window, which is used to further
infer the occlusion map. The experimental results demonstrate that the proposed method
outperforms DOT.
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1 Introduction

Object matching in large image collections and videos is now the burning issue in the
research on computer vision [9, 22, 23, 25, 29, 33, 40, 41]. Differently from conventional
content-based imagematching, it aims at not only finding images related to the query object,
but also providing actual location information[21, 48, 49].

There are plenty of schemes for object matching, such as sliding window searching [27,
42], branch-and-bound searching [17–19] and so on. Sliding window searching is a simple
scheme, which slides the searching window in the testing image while comparing the fea-
tures in the sliding windowwith the query object. Branch-and-bound is a classical algorithm
for object matching. Specifically, it divides the images into smaller subimages and disposes
those that are impossible to contain the query object. This operation runs recursively and
finally we can find the subimage that is sufficiently small and likely to contain the query
object.

No matter which scheme is chosen, further analysis always works on local patches since
the object is only a part of the whole image. Therefore, the global features, such as color,
shape, texture and so on, do not work very well in such case. On the other hand, local
features are computed at every pixel using its neighborhood [5]. SIFT [24] and SURF [2]
are the most representative feature descriptors, which reveal more representation power than
global features for describing parts of images. Therefore, they are widely used in object
matching [38, 39, 46], and could even achieve free-shape object matching [51] through
combining with edge detection. Moreover, they are usually employed to train classifiers for
the object matching. However, these local feature approaches are based on the statistics of
local structures that typically involve with the heavy computational cost. Thus, it is hard to
achieve the realtime performance for the object matching task [7, 8, 11, 12, 52].

To overcome the above issue, Dominant Orientation Templates (DOT) was pro-
posed [10], which not only retains the merits of statistical methods, but also can take
advantages of the grid representation in the sliding windows with the bitwise operations to
greatly reduce the computational time on extracting the features and matching the object.
However, there still exist some limitations on DOTmethod. First of all, it wastes some bits to
represent the dominant orientations of gradients. A template matching model usually needs
a lot of templates. Therefore, the memory consumption will increase as the number of tem-
plates increase. Moreover, it employs a naive scheme to compute the global score within the
whole sliding window, which results in the reduction of performance when partial occlusion
occurs.

In this paper, we propose an improved DOT descriptor method for object matching,
which focuses on solving the problems mentioned above. Our contribution lies in two-fold.
Firstly, we introduce a compact representation which only uses the orientations of strongest
gradients in each grid. In contrast to the DOT representation, fewer bits are needed for our
presented C-DOT method. We name it as C-DOT. Secondly, we calculate the similarity map
for each sliding window based on the results of comparing C-DOT. This map consists of
the matching score of each grid and reflects the visibility of the object. Therefore, it can be
further employed to handle partial occlusion problem.

The rest of this paper is organized as follows. Section 2 reviews some previous
approaches related to local features and template matching in object matching. In Section 3,
we introduce compact representation of DOT. Section 4 presents our occlusion handling
approach. Section 5 evaluates the effectiveness of our method by conducting the com-
prehensive experiments. Finally, we conclude this paper and prospect the future work in
Section 6.
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2 Related work

Object matching has already received intensive attentions. which is closely related to the
feature extraction and template matching. In the following, we will briefly review the
literature on these topics.

2.1 Feature extraction

Feature extraction is usually employed as a preprocessing step for most of object
matching methods [5], which can significantly affects the overall performance in the
real-world applications. Being capable of capturing the repeated regions, local feature
is widely used in the various applications. Generally speaking, the common scheme
of the conventional local feature extractors are made of two parts: feature detection
and feature description. Feature detection tries to find the local patches that reflect
the characteristics of regions while feature description distinguishes one region from
other regions.

Scale Invariant Feature Transform (SIFT) [24] is the most successful local feature extrac-
tor, which is mainly based on the Harris corner detector and the 128-dimensional histogram
of orientations. Although the discrimination performance of SIFT is promising, its compu-
tational complexity is far too high. Specifically, it usually takes seconds to extract features
from an image of VGA size (640× 480).

Inspired by the SIFT method, lots of research efforts have been devoted to finding the
feature descriptors with low computational cost. Ke and Sukthankar [13] employ Principal
Component Analysis (PCA) to reduce the dimensionality of SIFT descriptor. PCA-SIFT
obtains even more robust results than the original SIFT implementation, which requires
an extra step to project the extracted SIFT descriptors onto the low dimensional feature
space. Speeded Up Robust Features (SURF) [2] uses Haar wavelet response, and reduces
the dimensionality of feature vector from 128 to 64. Moreover, SURF demonstrates the
good performance with less time and space consumption. Wu [45] took advantage of GPU
hardware and implemented SiftGPU to significantly improve the speed to extract the SIFT
features. Although PCA-SIFT, SiftGPU and SURF improve the speed for extracting the
local features, these methods are still not fast enough to fulfill the requirement of realtime
object matching in video sequences.

Some fast corner detectors are also proposed to facilitate realtime object tracking.
FAST [30] and Faster [31] are extremely fast corner detectors, which are adapted to a real-
time object matching system by Simon Taylor et al. [36]. Unfortunately, they needs an
offline training process.

This work is also related to the spatial-temporal features which are employed in video
analysis. To find the local features in videos, a lot of spatial-temporal descriptors were
proposed [3, 15, 43], which are widely used in action recognition and video copy detec-
tion [20, 26, 44, 47, 50]. They are not designed for the realtime object retrieval, since there
may be very few spatial-temporal features being detected in a static scene containing a
lot of objects.

2.2 Template matching

Being capable of using very simple scheme to deal with different objects [27], template
matching has been proved to be promising for object matching. The key idea of template
matching is to the combine naive brute-force sliding window searching with fast matching.
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It is hard for Branch-and-bound scheme to combinewith template matching since it involves
with the very complicated settings for the templates with the different sizes of the subimages
during the matching process.

According to template matching scheme, the most critical problem is the feature selec-
tion. Early template matching methods are dependent on contours and employ Chamfer
distance as the similarity measure [6]. The major drawback of these methods is that the
performance is greatly affected by the fragile contour extracting methods with the binary
thresholding.

Furthermore, some advanced template matching methods are presented by using the
image gradients [34]. One of the most successful features is Histograms of Gradients
(HOG) [4], which captures the local distributions of image gradients computed on a regu-
lar grid. However, extracting the HOG features involves with the high computational cost.
Moreover, it is not easy to adapt it to the realtime applications. Ouyang et al. [28] com-
puted rectangle sums and orthogonal Haar transform (OHT) based on integral images,
which is faster than the naive brute-force searching methods. Some rotation-invariant fea-
tures, i.e., Rotation-Invariant Fast Features (RIFF) [35] and Fourier Coefficients of radial
projections (Forapro) [14], achieve the good matching performance. As most of them need
a full re-computation of features in a sliding window, such features are too computa-
tional demanding to be integrated into the fast updating scheme of histograms in sliding
windows [42].

Most recently, Dominant Orientation Templates (DOT) reveals the promising direc-
tion [10]. Differently from HOG feature, it quantizes the orientations of gradients by grid
and only keeps the most significant orientations. Benefited from the compact feature rep-
resentation, it utilizes the bit-wise operations and a part updating scheme similar to [42] to
further improve the speed. Therefore, DOT is able to achieve real-time performance on a
regular PC.

Although DOT shows good performance, there are still some limitations on it. We try to
address these issues in this paper. First of all, it takes too many bits to represent the tem-
plates. There are only 8 types of the templates after computing the gradients for each grid
in the image. Generally speaking, 3 bits is enough to represent a number of which the max-
imum value is 8. Therefore, we can reduce the memory consumption by using less bits to
represent the templates. Additionally, it uses SSE2 instructions to compute the similarities of
several templates simultaneously [16]. This improves the speed of template matching while
discards the local scores. Although we could tune the threshold in DOT implementation to
match the occluded regions, this will lead to a lot of false positive detection. Some grids in
the false regions may also match the templates. As a result, these regions may get similar
scores comparing to the occluded regions. The original DOT implementation cannot distin-
guish these two kinds of regions. Therefore, it is hard for DOT to handle partial occlusion.
Differently from DOT method, we retain the local scores to build similarity maps. Thus, the
visible parts are inferred from these similarity maps, which could be further employed to
retrieve the occluded regions.

3 Compact dominant orientation templates

In this section, we present the proposed compact dominant orientation templates method.
Firstly, we briefly review the original DOT method. Secondly, we study the compact rep-
resentation for the DOT feature. Thirdly, we provide some detailed comparisons between
DOT and compact DOT.
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3.1 Review of DOT

We summarize the process of object matching using DOT method in Fig. 1. First of all, the
query target is divided into several grids of the same size during the training process. Note
that the size of the target and the size of sliding window are exactly the same. The size of
grids needs to be set to a proper value, which should not be too large or too small. If the grid
size is too large, the condition of similarity will be too strict. On the other hand, the DOT
feature cannot capture useful information for the small grid size. Usually, the size of each
grid is set to 7 × 7. Then, the orientations of gradients are computed at each grid and the
extracted orientations are quantized into 7 bins. To this end, each grid is represented by an
8-bit unsigned integer. The bits in this integer are set to 1 if the corresponding orientations
are dominant. The dominant orientation is set when the magnitude is larger than a threshold.
If the last bit is set to one, it means that there is no dominant gradient in this grid. These
integers are listed in the pre-defined order to form the template feature for a target. In the
matching process, the whole image is also divided into the grids. Comparing to the DOT
feature extracted from templates, only the orientation with the strongest gradient at each grid
is kept. As the window slides, the histogram in this window will be dynamically assembled
with the pre-computed gradient orientations and compared against the template with an
energy function. Formally speaking, the energy function is represented by:

δ(do(I, c + R) ∈ L(T ,R)) = 1ifL ⊗ D �= 0 (1)

Fig. 1 The matching process using DOT. The orientation histograms in templates are compared with the
histogram in each sliding window. The matched orientations are depicted by the blue arrows while the
unmatched orientations are plotted by the red arrows. If the total number of matched orientation is large
enough, a true detection will be reported in this window. The division of grids and features in this figure are
only for illustration purpose, which do not reflect the actual data
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In this function, do(I, c + R) returns the orientation of the strongest gradient in the region
R shifted by c in the input image I . L and D are features representing dominant gradient
orientations in a grid of templates and sliding windows respectively. ⊗ is the bitwise AND
operation. If L⊗D �= 0, the result of bitwise AND operation is non-zero, which means that
the orientation of a grid in current sliding window matches one of the dominant orientation
of the grid in the corresponding position of templates. In this way, the two grids are similar.
L(T ,R) can be written as follows:

L(T ,R) = o : ∃M ∈ �suchthato ∈ DO(W(T ,M),R) (2)

DO is defined by:

DO(T ,R) =
{
S(T ,R) ifS(T ,R) �= Ø
⊥ otherwise

(3)

with

S(T ,R) = ori(T , l) : l ∈ maxmagk(R) ∧ mag(T , l) > γ (4)

where maxmagk(R) is a set of locations for the top k strongest gradients inR and mag(T , l)

gets the magnitude on location l in target T . In this way, ori(T , l) can get the dominant ori-
entation on location l. Moreover, DO(T ,R) obtains a set of orientations of the strongest
gradients in T . ⊥ denotes that there is no reliable gradient information in the region.
W(T ,M) computes the warped image set � for T with a transformation M , which is used
to achieve the invariance to small translation and rotations. The energy function employs
the bitwise AND operation to obtain the number of matched orientations. The higher the
number, the more similar the two histograms are. Finally, the algorithm sorts the numbers of
different windows. The target is supposed to appear in the window with the highest number.

To further improve the matching speed, DOT takes advantage of three SSE2 instructions.
Specifically, AND operation is employed to check whether two DOTs are similar. Moreover,
it compared the results of checking similarity with zero. In addition, it fetches the most
significant bits and gets the number of similar grids by looking up the table. Although DOT
is quite simple, it is still powerful and achieves the promising results in practice.

3.2 Compacting DOT

In the object matching process, the performance heavily depends on templates. Therefore,
the implementation artificially creates a lot of templates in order to account for various
translations and rotations. For the DOT method, it aims at handling small translations and
rotations by synthesizing the artificial templates using the original templates. With the
default setting, it creates templates using the translations within [−21,21] and rotations for
every 10◦ in 360◦. Thus, there will be around 1,500 templates generated. Even with a clus-
tering scheme, the total number of templates is still a few hundreds, which costs lots of
memory to store these templates. Therefore, a compact representation for DOT is needed.

Although DOT is a kind of very simple representation, it still wastes too much mem-
ory space. As mentioned in the previous sub-section, only one bit is used in each byte of
the DOT representations for the scanned images in the matching process. This is shown in
Fig. 1. Consequently, there are only 8 types of DOT for these 1-orientational representa-
tions. Only 3 bits are actually needed to represent them. In this paper, we propose to just
use 3 bits instead of 8 bits to represent the dominant orientations. Therefore, the new rep-
resentation can compact DOT in order to reduce the memory requirement. We name this
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compact representation as C-DOT. The corresponding representations of DOT and C-DOT
are shown in Table 1.

This idea seems quite straightforward. However, there are some issues to be solved for
C-DOT representation:

– The DOT of the query target could contain 7 gradient orientations at most. That means
the number of possible DOTs for the query target is 28. They cannot be compacted into
3 bits.

– Even if the DOT of the query target uses only one orientation, AND operation will not
work when comparing the new histograms. Counting the total number of 1’s in AND
results will not lead to the correct similarity score.

– Differently from 8-bit representation, 3-bit representation cannot fill the whole byte. In
this way, both a new bit alignment strategy and a new look-up table are needed.

For the first problem, we could maintain only one orientation for the DOT of the query
target. This may reduce the chance that the orientations in the sliding windowmatch the ori-
entations in the templates. Therefore, the performance of DOT will be affected. According
to our experimental results, 1-orientation templates approach may reduce the performance,
and such reduction is not that significant. We will study it throughly in Section 5.

To solve the second problem, we use bitwise XOR operation instead of bitwise AND
operation. When initializing the DOT of the query target and computing gradients of the
images, we calculate their complementary values. For example, if we get a DOT on zero
degree, the DOT for the query target will be ’000’ and the gradient of the image will be
’111’. If two DOTs match, we will get ’111’. Thus, we can compute the similarities between
templates and sliding windows by counting the number of consecutive three 1’s. According
to the definition of C-DOT, (1) could be rewritten as:

σ(do(I, c + R) ∈ L(T ,R)) = 1ifL ⊕ D = 111 (5)

⊕ is bitwise XOR operation. Counting the number of consecutive three 1’s is very time-
consuming. Therefore, all the possible values of counting results are stored in the look-up
table. This table will be computed beforehand. In this way, we could fetch the similarities
instantly with the XOR results.

As for the third problem, we could put the new 3-bit representation in different size of
units and have to leave the last few bits unused. In this way, the 3-bit C-DOT feature for one
grid may appear in two consecutive byes. Due to the setting of SSE2 instructions, the size
could be a byte (8 bits), a word (16 bits), a double word (32 bits) or a quadruple word (64
bits). The size affects the size of the look-up table (LUT) and the utilization rate of bits. The

Table 1 The Correspondence of
DOT and C-DOT DOT C-DOT

00000001 000

00000010 001

00000100 010

00001000 011

00010000 100

00100000 101

01000000 110

10000000 111
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utilization rate of bits further affects the processing speed. If the utilization rate is higher,
the length of the bit vector will be reduced and the speed will be improved. We demonstrate
this effect with a 128-bit vector which could be processed by SSE2 instructions. The effect
is shown in Table 2. The size of LUT is not equal to 2bits since the last few bits are wasted.
Inserting the results of XOR into the lookup tables, we can get the number of similar grids
in each unit.

3.3 Analysis of C-DOT

In contrast to the original DOT method, our proposed C-DOT approach has several advan-
tages. The most important merit of the C-DOT representation is that the vector length of
C-DOT is shorter than the original DOT. Therefore, the memory requirement is reduced.
Moreover, the total number of bit-wise operations is greatly reduced in the energy function
of C-DOT. The reduction of memory requirement may be not so ideal. Take C-DOT with
8-bit units as an example. Theoretically speaking, it costs only half of the memory required
by DOT. However, we need to realign the bytes to fit the length that could be concurrently
computed in the SSE2 instructions. The length is 128/8 = 16. In this way, the last few bytes
are wasted. In DOT, if 1 byte is wasted, the space for 1 feature is wasted. In C-DOT, if 1
byte is wasted, the space of 2 features is wasted. Therefore, C-DOT may waste more space
in byte realignment.

Another advantage of C-DOT is that such compression is totally lossless. According to
Table 1, the one-to-one correspondence between DOT and C-DOT does not lose any infor-
mation during the compression process. It means that the effect on performance brought by
C-DOT actually comes from the usage of templates with only 1 gradient orientation.

Comparing to DOT, C-DOT also loses the advantage of parallel computing the similari-
ties of multiple grids. The bits in C-DOT representation are not well-aligned to fill the whole
byte. The operations of retrieving the most significant bits in bytes make no sense. There-
fore, we cannot make use of SSE2 instructions as DOT, and the results of looking up tables
will be more than that in DOT. In this way, we have to use more ADD operations to get the
number of similar grids after XOR operations and looking up tables. This will increase the
computational cost since ADD costs more computational time than DOT. Fortunately, this
issue can be avoided in the occlusion handling scheme introduced in the following section,
in which we don’t need to sum the scores of individual grids.

4 Occlusion handling

In this section, we present the occlusion handling method for the C-DOT representation.
We first illustrate the key idea of the proposed occlusion handling approach, and then
introduce the similarity map to detect occluded areas. Finally, we address the details of
our implementation.

Table 2 The influence of unit
sizes Bits Size of LUT Contained Grids Wasted Bits

8 26 2 × 16 = 32 2 × 16 = 32

16 215 5 × 8 = 40 1 × 8 = 8

32 230 10 × 4 = 40 2 × 4 = 8

64 263 21 × 2 = 42 1 × 2 = 2
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4.1 Proposed occlusion handling approach

Generally speaking, there are always a lot of objects in the real-world scenes and the layout
of these objects is very complicated. Moreover, occlusion among the objects commonly
occurs in the object matching task, which severely deteriorates the performance of object
matching systems. Therefore, there is a need of the effective occlusion handling schemes to
deal with this issue in order to improve the performance of object matching.

The proposed occlusion handling approach is inspired by the idea of HOG-LBP [37], in
which Wang et al. constructed an occlusion likelihood map for each ambiguous scanning
window by utilizing the response of each block of the HOG feature to the global detector. As
this map indicates the visibility of each block, it is then segmented by mean-shift clustering
algorithm to estimate the occluded regions and the un-occluded regions. Finally, the part
detectors are applied to obtain the final classification on the current scanning window. This
method depends on the classification scores of SVM, which is typically very computational
expensive.

In contrast to HOG-LBP, the proposed occlusion handling approach makes use of the
energy function of DOT to reduce the computational cost. There is a flow in the original
implementation of energy function. The energy function of DOT performs AND operation
on 128 bits in parallel and counts the total number of 1’s using two other operations. There-
fore, the similarities of 16 grids are computed with the lookup table at the same time. It
improves the speed of the matching process, however, the local scores are lost and only a
global decision will be made. Although we can loose the detecting threshold to make DOT
tolerant to some partial occlusions, it may increase the chances of false detections. Thus,
we have to adapt it to improve the performance in the case of the partial occlusions.

4.2 Occlusion handling with dot similarity maps

Based on the above idea of occlusion handling, we try to modify the results of lookup tables
for C-DOT. Instead of matching targets and sliding windows by summing the similarity
scores of individual grids, we compute the similarity for each grid separately. As a result, we
not only know how many grids are similar, but also can obtain the list of similar grids. Take
8-bit C-DOT as an example. If we get 00111111 after XOR operation, we will get 2 after
looking up tables without occlusion handling while we will get [0, 1] with occlusion han-
dling. By the similarity score for each grid, we construct a similarity map for the scanning
window. We name this map as a DOT similarity map.

HOG-LBP employs mean-shift to segment the likelihood map. With proper settings,
mean-shift could cluster the grids with relatively high scores and relatively low scores. In
this way, HOG-LBP is able to distinguish occluded regions and un-occluded regions. Such
scheme does not work with our DOT similarity map. The situation of DOT is different
from it since the DOT similarity map is a binary image. In DOT representation, the energy
function only indicates whether two grids are similar rather than how similar they are. If
there exist some noises, two similar grids may not be matched. On the other hand, some
different grids may fortunately matched. In these situations, 0 or 1 will be returned and
no intermediate values between 0 and 1 will be returned. If they are shown on the simi-
larity map, we could see some small holes. To fill these small holes, we apply the median
filter on the DOT similarity map to remove these noisy grids. Median filter is defined
as:

m(x, y) = M(f (x + i, y + j))|i| < w, |j | < r (6)
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Based on intensive experiments, matched grids are usually dispersed in false windows
while they are usually concentrated in true windows. From this observation, we can employ
a very fast connected component detector to find the largest connected component in
this map, which manifests the largest visible part of the query target. If the size com-
ponent is above an empirical threshold, we determine that the query target exists in this
window.

4.3 Implementation details

We summarize the details of the proposed occlusion handling approach in Fig. 2. In the
training process, artificially templates are created with variations on target images. Tem-
plates are represented by C-DOT according to the previous section. In the matching process,
testing images are are also represented by C-DOT. Amatching window slides in each testing
image to find candidate positions of the target. To reduce the processing time, we adopt the
same detection threshold as the original DOT, which is defined as Tw. Moreover, we only
construct the DOT similarity maps for the windows of which the overall scores are larger
than Tw. Therefore, lots of windows that are apparently not similar to the query target will
be disposed directly. In our experimental settings, Tw is usually smaller than the one used in
the original DOT implementation in order to avoid missing some true regions with the small
global scores. Then, we retrieve and refine the similarity map step by step according to the
idea described in the previous subsection. With the similarity map, we propose two crite-
ria to measure whether a connected component should be a good detection. One is the area
ratio of this component, which computes the ratio between the area of the component and
the total area of the window. We denote it as the area score. The other is the similarity per
grid inside this component, which calculates the ratio between the sum of similarities inside
the component and the area of the component. We denote it as the valid score. Both of them
are dependent on the thresholds Ta and Tv . Ta reflects how much occlusion the system can
handle. Moreover, Tv reflects how much noise the system can handle. If they are larger than
Ta and Tv respectively, we determine that there may be a good detection in this window.

Fig. 2 The flowchart of the proposed occlusion handling approach. A: All sliding windows in the tested
image are filtered by Tw ; B: The sliding windows that pass the step A are chosen as candidate windows. The
similarity maps are computed for them. After this step, the similarity maps are still coarse since they may be
affected by noises; C: The coarse maps are filtered by Median Filter to get rid of some noises; D: The filtered
maps are further processed with a connected component detector. E: The candidate windows are selected
with criteria Ta and Tv . We can get the final decision by sorting them with the matching scores
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This window is considered to be a candidate window. Finally, the decision is made by sort-
ing the scores of candidate windows. The candidate window with the top score is supposed
to be the position of target. We have evaluated the different scores during the detection pro-
cess. In the proposed approach, we employ the valid score while the global score is use in
the original DOT implementation.

In the above occlusion handling scheme, We only compute local scores while global
scores of comparing features will not be calculated. Therefore, we could reduce the com-
putation of a large number of ADD operations in C-DOT. On the other hand, the proposed
occlusion handling scheme is highly portable. We could also extend the original DOT
implementation a little bit to make it suitable for occlusion handling.

5 Experimental evaluation

In this section, we present the details of our experimental implementation and report the
results of performance evaluation on object matching. We demonstrate that the proposed
approach is effective to handle the partial occlusions in the object matching.

5.1 Experimental setup

To evaluate the efficacy of the object matching system, we evaluate it on several recent
datasets, such asMILtrack [1] and PROST [32]. There are three QCIF (320×240) sequences
in MILtrack dataset and four CIF (640×480) sequences in PROST dataset. The information
on these datasets is summarized in Table 3. In these sequences, the ground truths of only
one in five frames are given. All the experiments are performed on a regular PC with Intel
i7-2640M CPU and 4GB RAM. Unless it is expressly stated, we create templates using the
translations within [−21, 21] and rotations for every 10◦ in 360◦. In this way, the number of
templates is 1548. In our experiments, we always turn on SSE2 optimization for the original
DOT.

Additionally, we take advantage of the evaluation tool developed in PROST testbed [32],
which provides two evaluation metrics. One is the distance score that calculates the mean
distance of the tracking rectangle to annotated ground truth. The smaller the distance score
is, the better the performance is. The other is the PASCAL score which is defined as follows:

score = area(ROID ∩ ROIGT )

area(ROID ∪ ROIGT )
(7)

The PASCAL score mainly measures the overlap of the detected bounding box ROID

and the ground truth bounding box ROIGT . The larger the PASCAL score is, the better

Table 3 The sequences in the
datasets Name Number of Frames Size of the Target

Board 698 185 × 153

Box 1161 86 × 112

Dollar 328 62 × 98

Lemming 1336 69 × 113

Liquor 1741 72 × 209

Tiger1 354 38 × 42

Tiger2 366 34 × 39
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Fig. 3 The performance comparisons of 1-orientation templates and 7-orientation templates
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Fig. 4 The performance comparisons of 1-orientation templates and 7-orientation templates

Fig. 5 The comparison of computational time between 1-orientation templates and 7-orientation templates
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Fig. 6 The performance comparisons of with/without the proposed partial occlusion handling approach. The
result with occlusion handling is labeled as “occ” and the result without occlusion handling is labeled as
“origin”
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the performance is. Beside these two metrics, we introduce detected rate to compare the
performance of different methods. Detected rate is defined as:

drate = f ramedetected

f rametotal

(8)

5.2 Experiments on compact DOT

Before using C-DOT instead of DOT, we should know whether the performance is signifi-
cantly reduced. As shown in Fig. 3, we find that the presented C-DOT is effective through
comparing the performance using the above sequences. It can be seen that the performance
of 1-orientation templates is quite close to the result of 7-orientation templates at most of
the cases. In addition, the performance of 1-orientation templates is even better than 7-
orientation templates in some cases. Take the Box sequence as an example, the performance
of 1-orientation templates is better than 7-orientation templates between the 60th frame and
the 80th frame. For the Tiger1 sequence, 1-orientation templates outperform 7-orientation
templates. In the cases that C-DOT outperforms DOT, the targets are with complex textures.
In these cases, false matches are likely to occur with DOT. Therefore, we can adopt the DOT
representation with only the dominant orientations of regions.

Furthermore, we investigate the advantage of C-DOT by comparing the memory require-
ment and computational time. In this experiment, we employ both 8-bit unit and 16-bit unit
to compact DOT templates. 8-bit unit wastes the most bits among the choices in Section 3
while it has the smallest look-up table. 16-bit unit wastes fewer bits than 8-bit unit. The
look-up tables of 32-bit units and 64-bit units are too large to be used. Using the Dollar
sequence, we demonstrate the results of memory requirement and computational time vary-
ing with the number of templates, which are shown in Figs. 4 and 5 respectively. It can
be observed that the memory consumption is reduced with C-DOT representation. We also
notice that the time consumption of C-DOT is higher than DOT, which is coincided with
our previous discussion in Section 3. This phenomenon happens to all the sequences.
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Fig. 7 The comparison of detected rates for all video sequences
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5.3 Experiments on partial occlusions

In this subsection, we evaluate the proposed occlusion handling approach. In our experi-
ments, we employ the presented C-DOT representation, and the parameters mentioned in
Section 4 are listed as follows:

⎧⎨
⎩

Tw = 0.6
Ta = 0.3
Tv = 0.8

(9)

It means that the visible area of the target should not be less than 30 % and the noisy
part in this visible area should be less than 20 %. For the median filter, we set the radius
w = r = 3.

First of all, we study the effectiveness by comparing the object matching perfor-
mance. The comparison results are plotted in Figs. 6 and 7. Among these videos, Liquor

Fig. 8 Examples of the detection results. Four groups from four sequences are shown. In each group, the
images in left columns show the detecting results with the proposed partial occlusion handling approach while
the images in the right columns show the detecting result with original DOT and without partial occlusion
handling. With the proposed occlusion handling approach, we could find the occluded targets successfully.
If no occlusion handling scheme is applied, false regions are found. In the Box and Liquor sequences, some
false regions which look similar to the target are located. In the Lemming sequence, the original DOT only
finds some randomly false regions
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Fig. 9 The comparison of computational time with and without the proposed partial occlusion handling
approach. The result with occlusion handling is labeled as “occ” and the result without occlusion handling is
labeled as “origin”

and Tiger1 contain more occlusion cases than the Box sequence, and the improve-
ments on both scores and detected rates are more significant. Box contained less occlu-
sion cases and the improvement is marginal. Although the detected rate for Lemming
is not significantly improved with occlusion handling, we could find the locations of the
target more exactly. Therefore, we get higher distance scores and PASCAL scores. Due to
the wide performance gap between DOT and C-DOT for Lemming, the performance of C-
DOT is still below DOT even with occlusion handling. Although there are few occlusions
in Board and Dollar, the performance is still almost the same as the original DOT imple-
mentation. Additionally, some occluded regions that are successfully detected, as shown in
Fig. 8.

Also, we investigate the efficiency of the proposed occlusion handling approach, as
shown in Fig. 9. The computational time with occlusion handling is usually higher than that
without occlusion handling. Since occlusion handling gets rid of some false regions before
the sorting operation in the final decision stage, it reduces the computational time on sort-
ing. Therefore, the influence on the processing time is not very significant. For the Box
sequence, occlusion handling scheme even improves the speed. It is worthy of mentioning
that the speed of DOT is greatly dependent on the value of Tw. Significant speedup could be
achieved by choosing a proper value for it. The experimental results demonstrate that DOT
can achieve realtime performance even with the proposed occlusion handling approach.

6 Conclusion

In this paper, we have presented a novel method to match objects with low computa-
tional cost and high robustness. It offers several distinct advantages over the state-of-the-art
approach. The presented method reduces the memory requirement for DOT feature vectors
using only the dominant orientation of the highest gradient in the grids and compact it with
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less bits. Moreover, we tackled the partial occlusions problem by calculating and analyzing
the similarity maps to obtain the connected visible parts of the query object in sliding win-
dows. The encouraging experimental results showed that our method performs better than
the original approach, especially on the occluded cases.

In the future, there will be plenty of work to do. As DOT is likely to stuck with the small
edges, it indicates that the last bits will always be set to one in templates for images with the
complicated textures. This may lead to lots of false positive detections. Moreover, the pro-
cessing time increases significantly when the total number of templates grows. Therefore,
we will explore the efficient indexing scheme.
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