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Abstract This paper presents an improved approach to face recognition, called Regularized
Shearlet Network (RSN), which takes advantage of the sparse representation properties of
shearlets in biometric applications. One of the novelties of our approach is that directional
and anisotropic geometric features are efficiently extracted and used for the recognition
step. In addition, our approach is augmented by regularization theory (RSN) in order to
control the trade-off between the fidelity to the data (gallery) and the smoothness of the
solution (probe). In this work, we address the challenging problem of the single training
sample per subject (STSS). We compare our new algorithm against different state-of-the-art
methods.

Keywords Shearlet · Regularized shearlets network · Face recognition

1 Introduction

Face recognition (FR) is a classical problem in computer vision and pattern recognition
and many methods, such as Eigenfaces [42], Fisherfaces [3], SVM [19] and Metaface [45]
have been proposed in the past two decades. One of the standard statistical methods for
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FR is subset selection (L0 regularization) [51], which consists in computing the following
estimator

ŵL0 = argminw‖ Xw − y‖22 subject to ‖w‖0 ≤ δ (1)

where δ is a tuning parameter, y is a normalized test face,X is a matrix representing a gallery
of faces and w is the weight which control the trade-off between the fidelity to the gallery
faces and the smoothness of the test face.

This statistical approach has received renewed interest in recent years due to the notion
of sparse representations, which offers the possibility of recasting the face recognition
problem. For example, the recently proposed Sparse Representation Classification (SRC)
scheme [44] casts the recognition problem as one of classifying among multiple linear
regression and uses sparse representations computed via L1 minimization for efficient fea-
ture extraction. By coding a query image as a sparse linear combination of all the training
samples, SRC classifies the query image by evaluating which class could result in the min-
imal reconstruction error. However, it has been indicated in [52] that SRC actually owes its
success to its utilization of collaborative representation on the query image rather than the
l1-norm sparsity constraint on coding coefficient. Besides SRC, another powerful method
recently proposed is the Regularized Robust Coding (RRC) approach [46, 48], which could
robustly regress a given signal with regularized regression coefficients. By assuming that
the coding residual and the coding coefficient are respectively independent and identically
distributed, the RRC seeks for a maximum a posterior solution of the coding problem. An
iteratively re-weighted regularized robust coding algorithm was proposed to solve the RRC
model efficiently.

In this paper, we propose a method called RSN, which combines sparsity and regulariza-
tion theory. Sparsity, in particular, will be based on the use of the shearlet representation, one
of the systems introduced during the last decade to go beyond classical wavelets. Indeed,
despite their extensive use in image processing, traditional wavelets are known to have a
limited ability to deal with directional information. By contrast, shearlets provide a simple
multiscale framework which is especially effective to capture directional and anisotropic
features with high efficiency, are optimally sparse for the representation of 2D/3D images
and have fast numerical implementations [24]. As part of this work, we will assess the per-
formance of the Regularized Shearlets Network approach for FR and compare it against
competitive algorithms. The main contributions of this paper include:

– A new feature-extraction approach for efficient FR based on directional features.
– A regularization optimization, using those features, based on Lasso method.

The rest of this paper is organized as follows. In Section 2, a description of the related
works regarding regularized sparse coding is presented. In section 3, we briefly describe the
necessary background on shearlets. Section 4 presents the proposed Regularized Shearlet
Network algorithm. In Section 5, we present several numerical experiments to demonstrate
the efficacy of the proposed algorithm and compare it against competing algorithms. Finally,
Section 6 concludes this paper.

2 Related works

The current trend in FR emphasizes biometrics which can be collected on the move, so
that there is significant interest in more sophisticated and robust methods to go beyond
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current state-of-the-art FR methods. One of the most successful approaches to template-
based face representation and recognition is based on Principal ComponentAnalysis (PCA).
However, PCA approximates texture only, while the geometrical information of the face is
not properly captured. In addition to PCA, many other linear projection methods have been
considered in face recognition applications. The LDA (Linear Discriminant Analysis) has
been proposed in [31] as an alternative to PCA. This method provides discrimination among
the classes, while the PCA deals with the input data in their entirety without paying much
attention for the underlying structure.

The Discrete Cosine Transform (DCT) is also one of the most popular linear projec-
tion techniques for feature extraction like principal components analysis (PCA) and linear
discriminant analysis (LDA) but recently a Discrimination power analysis (DPA) has been
proposed as a statistical analysis combining discrimination concept with DCTCs properties.
Unfortunately there is not a uniform and effective criterion to optimize the shape and size
of premasking window on which the effect of DPA excessively relies. Proper premasking is
an auxiliary process to select the feature coefficients that have more discrimination power
(DP). Dynamic weighted DPA (DWDPA) is proposed in [27, 28] to enhance the DP of the
selected DCTCs without premasking window, in other words, it does not need to optimize
the shape and size of pre-masking window. The experimental results on ORL, Yale and
PolyU databases show that DWDPA outperforms DPA obviously.

Moreover, to deal with the challenges in practical FR system, active shape model and
active appearance model [25] were developed for face alignment; LBP [1] and its vari-
ants were used to deal with illumination changes; and Eigenimages and probabilistic local
approach [33] were proposed for FR with occlusion.

The recognition of a test face image is usually accomplished by classifying the features
extracted from this image. The most popular classifier for FR may be the nearest neighbor
(NN) classifier due to its simplicity and efficiency. In order to overcome NN’s limitation
that only one training sample is used to represent the test face image, the authors in [30]
proposed the nearest feature line (NFL) classifier, which uses two training samples for each
class to represent the test face. In [30] contributors proposed the nearest feature plane (NSP)
classifier, which uses three samples to represent the test image. Later on, classifiers using
more training samples for face representation were proposed, such as the local subspace
classifier (LSC) [23] and the nearest subspace (NS) classifiers [11, 26, 29, 35], which rep-
resent the query sample by all the training samples of each class. Though NFL, NSP, LSC
and NS achieve better performance than NN, all these methods with holistic face features
are not robust to face occlusion.

3 The shearlet transform

The shearlet transform, introduced by one of the authors and their collaborator in [24],
is a genuinely multidimensional version of the traditional wavelet transform, and is espe-
cially designed to represent data containing anisotropic and directional features with high
efficiency. As a result, this approach provides optimally sparse approximations for images
with edges, outperforming traditional wavelets. Thanks to their properties, shearlets have
been successfully employed in a number of image processing application including denois-
ing, edge detection and feature extraction [12, 14, 49]. Formally, the Continuous Shearlet
Transform [22] is defined as the mapping:

SHψ(α, s, t) = 〈f,�α,s,t 〉, α > 0, s ∈ R, t ∈ R2 (2)
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where �α,s,t (x) =| detMα,s |− 1
2 �(M−1

α,s (x − t)) and Mα,s =
(
α s

0
√
α

)
. Observe that

each matrix Mα,s can be factorized as BsAα , where Bs =
(
1 −s

0 1

)
is a shear matrix and

Aα =
(
α 0
0

√
α

)
is an anisotropic dilation matrix.

Thus, the shearlet transform is a function of three variables: the scale α, the shear s and
the translation t. One of the main properties of the Continuous Shearlet Transform is its
ability to detect very precisely the geometry of the singularities of a 2-dimensional function
f. This property is going far beyond the properties of the wavelet transform and explains why
shearlets are so effective at capturing edges and other directional information in images.

By sampling the Continuous Shearlet Transform SHψ(α, s, t) on an appropriate discrete
set we obtain a discrete transform. Specifically, Mα,s is ”discretized” as Mj,l = BlA

j ,

where B=
(
1 1
0 1

)
, A=

(
4 0
0 2

)
are the shear matrix and the anisotropic dilation matrix,

respectively. Hence, the discrete shearlets are the functions of the form:

ψj, l, k(x) = 2
3j
2 ψ(BlA

jx − k), j ≥ 0,−2j ≤ l ≤ 2j − 1, k ∈ Z2 (3)

Frequency support of shearlets is a pair of trapezoids, symmetric with respect to the origin.
This is illustrated in Fig. 1.

By choosing the generator function appropriately, the discrete shearlets form a tight
frame of well-localized waveforms defined at various scales, orientations and locations.

Shearlets are a variant of wavelets with composite dilatation originally introduced in [16,
17] offering a particularly general framework which allows one to derive a variety of power-
ful data representation schemes; many constructions are obtained within this framework and
recently the authors in [6] introduced Gabor shearlets, a variant of shearlet systems, which
combine elements from Gabor and wavelet frames in their construction; another interesting
construction is hyperbolic shearlets [13].

In the spatial domain, a 2D Gabor filter is a Gaussian kernel function modulated by a
sinusoidal plane wave, as illustrated in Fig. 2.

Fig. 1 a Shearlet tiling of the frequency plane. b Frequency support
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Fig. 2 A two-dimensional Gabor filter

4 The proposed approach

The proposed approach, RSN, for FR is defined as a cascade of a feature extraction module
followed by a recognition (recognition or verification) module. Wewill perform this schema
by the use of regularization theory to control the solution (Probe or Test) and its closeness to
the data (Gallery), where the extraction of directional features is controlled by the Shearlet
Network (SN) as shown in Fig. 3.

Analytically, the FR problem can be casted as a regression problem of approximating a
multivariate function from sparse data. This is an ill-posed problem and a classical way to
solve it is though regularization theory [4, 5, 41]. In practice, rather than looking for an exact
solution, one can only find an approximate one. The most popular approximation method is
the L1 regularization method which is often referred to as Lasso [40] and is given by:

ŵL1 = argminw

[
1

n
‖ Xw − y‖22 + λ‖w‖1

]
(4)

Fig. 3 Augmented face recognition schema
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where λ > 0 is an appropriately chosen regularization parameter, y is a normalized test
face and X is an n*d matrix representing a gallery of faces and w is the weight which will
be explained in the paragraph RSN algorithm. The global optimum of Eq. 4 can be easily
computed using standard convex programming techniques. It is known that, in practice,
L1 regularization often leads to sparse solutions, although they are often sub-optimal. The
theoretical performance of this method has been analyzed recently [7, 8, 50].

4.1 SN for modeling and features extraction

Our proposed RSN approach is initialized by training an SN [9] to models the faces. The
Gallery faces are approximated by a shearlet network to produce a compact biometric signa-
ture. One main feature of this approach is that this signature, constituted by the shearlets and
their weights, will be used to match a Probe with all faces in the Gallery. The test (Probe)
face is projected on the shearlet network of the Gallery face and new weights specific to
this face are produced. The family of shearlets remains then unchanged (this is the Gallery
face) as illustrated in Fig. 4.

Recall that the shearlets form a tight frame, meaning that, for any image in the space of
square integrable functions we have the reproducing formula:

f =
∑

j,k∈R,k∈R2

〈f, ψj,l,k〉ψj,l,k (5)

We will use this formula to define the Shearlet Network approach, similar to the wavelet
network [2], as a combination of the RBF neural network and the shearlet decomposition. In
the optimization stage, the calculation of the weights connection in every stage is obtained
by projecting the signal to be analyzed on a family of shearlets. We need the dual family of
the shearlets forming our shearlet network, which is calculated by the formula:

ψ̃ t
j,l,k =

N∑
m=1

(�i,m)
−1ψm

j,l,k with �i,m = 〈ψi
j,l,k, ψ

m
j,l,k〉 (6)

In our approach, the mother shearlet used to construct the family ψj,l,k is the second
derived of the Beta function [18]. Note that the number of shearlets may be chosen by the

Fig. 4 Overview of SN architecture
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user. We construct a library of shearlets with different scales, shears and the translations
which form a shearlet frame and finally calculate the weights by direct projection of the
image on the dual shearlet; details are reported in the following algorithm:

4.2 RSN algorithm

The initial value of the weight in Eq. 4 winit is chosen using the logistic function [50]. In
fact these functions, like exponential functions, grow quickly at first, but eventually grow
more slowly and then level off. The formula for the logistic function is as follow:

f (x) = c

1+ aexp−bx
(7)

This involves three positive parameters a, b and c. One best choice of winit is:

winit = 1

1+ 1
exp(−μe2init+μδ)

(8)

where μ and δ are positive scalars.
In our experiments we choose μ as:

μ = 0.6

δ
(9)

As in [46] we set δ as:

δ = ϕ(einit )l (10)

where ϕ(einit)k is the kth largest element of the set e2init(j )j = 1, 2, ...., n and einit is the
initial residual given by:

einit = (y −mean(X))2 (11)
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X is the aligned gallery faces (an n*d matrix) and y a normalized test face (an n*1
matrix). Note that, after optimization, we can update the residual e using the following
formula:

e = (Xwi − y)2 (12)

Where wi is the solution given by the Lasso optimization.
How to classify? The query sample y is classified to the class which gives the minimal:

error(y) = ‖w 1
2 (y −Xkwk)‖22 (13)

Below we present the algorithm of RSN, where X represents the reconstructed gallery
faces after extraction of the features by training SN, y is the reconstruct test face with the
features extracted after projection of the real test face on the frame of shearlets produced
by the gallery faces.

5 Experimental results

An emerging tendency in FR is to use STSS [32]. In our experiments, we applied STSS,
using standard benchmark face databases to evaluate the performance of the proposed
approach.
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Fig. 5 A subject from Gallery and Probe with different face databases a FRGC b ORL c FEI d CK+ e GT f
AR g FERET

5.1 Datasets

We used the Extended Cohn-Kanade (CK+) [15] (123 images), Georgia Tech (GT) [39] (50
images), FEI [34] (200 images), AR [37] (100 images some of them with occlusions like in
figure), FRGC v1 [36] (152 images), FERET [21] (with different dimension 100, 150 and
200 images) and ORL (40 images) face databases. All the images are resized to 27×32. The
pre-processing of the different images are released by commercial face alignment software
[43]. In this paper, we chose to select randomly the face image both for Gallery and Probe
database. Samples from the used databases are illustrated in Figs. 5 and 6.

In this paper, we chose to select randomly the face image both for Gallery and Probe
database. We compare our approach with NN (nearest neighbor) SVM-OAA (one against
all), SVM-DAG (Directed Acyclic Graph) [21], BHDT [10], MetaFace [45], RKR [47],
RRC [48], CRC [52].

5.2 Experimental protocol

An emerging tendency in FR is to use Single Training Sample per Subject (STSS) which is
a challenging problem.

By applying to the images from the databases indicated above, we obtain a similarity
matrix of 123×123 comparisons for Extended CohnKa-nade (CK+), 152×152 comparisons
for FRGC v1, 200 × 200 comparisons for FEI, 50 × 50 comparisons for Georgia Tech,
100 × 100 comparisons for AR, 40 × 40 comparisons for ORL and three different matrix
for FERET for three tests (100× 100 comparisons, 150× 150 comparisons and 200× 200
comparisons) which significantly reduce the computational complexity of the algorithm
compared to traditional multiple training samples per subject. Hence, the similarity values

Fig. 6 Subjects from AR database with occlusions
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Table 1 Recognition accuracy on the FRGC V1, ORL, CK+, FEI, GT and AR databases

Method FRGC v1 ORL CK+ FEI GT AR

NN − 0.6994 − − − 0.4810

SVM-OAA 0.5921 0.8750 0.9837 0.9600 0.2800 0.8800

SVM-DAG 0.6053 0.8750 0.9837 0.9600 0.2800 0.8200

BHDT 0.2697 0.7500 0.9187 0.6250 0.2000 0.6371

MetaFace 0.6842 0.8750 0.9837 0.9700 0.2800 0.8528

RKR 0.6316 0.8250 0.9837 0.9750 0.2400 0.9286

RRC 0.7105 0.8500 1 0.9800 0.2800 0.9571

CRC 0.6316 0.8500 0.9837 0.9750 0.2800 0.8900

RSN (our) 0.7171 0.8750 0.9919 0.9750 0.3800 0.9500

located in the diagonal of the matrix are intra-class (the same person) and the others are
inter-class (different persons) or imposter access.

5.3 Recognition accuracy

The recognition accuracy (RA) is defined as:

RA = (1− EER) (14)

where ERR is the Equal Error Rate.
The recognition accuracy of the proposed method is evaluated on test databases and

compared to state of the art methods. Obtained results are given in Tables 1 and 2.
From the table we can notice that RSN and RRC lead to much improvement in FR rate

compared with the other methods with FRGC v1, ORL and CK+ databases. We can see
also using FEI, GT and AR, that RSN and RRC work much better than other methods.
RRC gives a 0.98 of recognition while RSN achieves 0.9750 with others methods using FEI
database. RSN gives the best accuracy, 0.38, using GT database; while with AR database,

Table 2 Recognition accuracy
on the FERET databases Method 100 150 200

NN − − −
SVM-OAA 0.7700 0.7200 0.6850

SVM-DAG 0.7700 0.7333 0.7150

BHDT 0.5000 0.4200 0.3350

MetaFace 0.8900 0.8933 0.8950

RKR 0.8900 0.8533 0.8500

RRC 0.8800 0.8800 0.9050

CRC 0.8700 0.8400 0.8750

RSN (our) 0.9000 0.8733 0.8950
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Table 3 The average running time in seconds on FRGC V1, OR, CK+, FEI, GT and AR databases

Method FRGC v1 ORL CK+ FEI GT AR

NN − 0.7703 − − − −
SVM-OAA 0.6415 0.0133 0.1146 0.1516 0.0212 0.1680

SVM-DAG 0.0610 0.0113 0.0473 0.0786 0.0138 0.0433

BHDT 0.0109 0.0019 0.0046 0.0057 0.0022 0.0055

MetaFace 0.5042 0.6500 0.5238 1.0325 1.0684 0.3153

RKR 0.0160 0.0160 1.2e-004 7.5e-005 0 0.0150

RRC 0.0867 0.0102 0.1443 0.1758 0.1178 0.0405

CRC 0.0027 7.7e-04 0.0017 0.0031 0.0012 0.0038

RSN (our) 0.0784 0.0094 0.1954 0.2341 0.1600 0.0419

Table 4 The average running
time in seconds on FERET
databases

Method 100 150 200

NN − − −
SVM-OAA 0.1692 0.6996 0.5001

SVM-DAG 0.0397 0.0794 0.1074

BHDT 0.0053 0.0121 0.0120

MetaFace 0.4781 0.6991 0.9191

RKR 1.5e-004 1.1e-004 1.6e-004

RRC 0.1366 0.1564 0.1751

CRC 0.0014 0.0076 0.0037

RSN (our) 0.2486 0.2505 0.2519

RSN achieves the second best value; In fact RSNwork better when the chosen faces contains
a different head pose like the faces with GT database. RSN gives the best recognition using
100 images from FERET database, using 150 and 200 images RSN is competitive compared
to the others methods.

5.4 Running time comparison

The average running time of all methods, is evaluated using STSS based FR experiments.
We use Matlab version 7.0.1 environment with Intel core 2 duo 2.10 GHz CPU and with
2.87Go RAM. All the methods are implemented using the codes provided by the authors
using STSS. In fact, in practical applications, training is usually an offline stage while recog-
nition is usually an online step so that the recognition time is usually much more critical
than the training time. Results are summarized in Tables 3 and 4.

RKR and CRC gives the best results.

6 Conclusion

The objective of this paper is to present a new method for face recognition called Reg-
ularized Shearlet Network. This approach has the ability to capture face features very
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efficiently thanks to the use of the shearlet representation, which promotes sparsity
and is especially able to extract directional and anisotropic features. In our approach,
these features are used to control the trade-off between the fidelity to the gallery and
the smoothness of the probe faces in context of regularization theory. The experimen-
tal results using single training sample per subject on several face databases show that
our new approach is very competitive against several state-of-the-art methods for face
recognition.
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