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Abstract Due to the huge intra-class variations for visual concept detection, it is necessary
for concept learning to collect large scale training data to cover a wide variety of samples as
much as possible. But it presents great challenges on both how to collect and how to train
the large scale data. In this paper, we propose a novel web image sampling approach and
a novel group sparse ensemble learning approach to tackle these two challenging problems
respectively. For data collection, in order to alleviate manual labeling efforts, we propose
a web image sampling approach based on dictionary coherence to select coherent positive
samples from web images. We propose to measure the coherence in terms of how dictionary
atoms are shared because shared atoms represent common features with regard to a given
concept and are robust to occlusion and corruption. For efficient training of large scale data,
in order to exploit the hidden group structures of data, we propose a novel group sparse
ensemble learning approach based on Automatic Group Sparse Coding (AutoGSC). After
AutoGSC, we present an algorithm to use the reconstruction errors of data instances to
calculate the ensemble gating function for ensemble construction and fusion. Experiments
show that our proposed methods can achieve promising results and outperforms existing
approaches.
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1 Introduction

With the advent of the big data era, the explosive growth of visual contents on the Internet
presents a challenge in how to manage the ever-growing size of the multimedia collec-
tions, particularly in how to extract sufficiently accurate semantic metadata (concepts) to
make them searchable [9, 11, 25]. Visual concept detection is essentially a classification
task in which classifiers are learned with various features extracted from training samples
to predict the presence of a certain concept in a video shot or keyframe (image) [25, 29].
Ranging from objects such as “boat” and “car” to scenes such as “sky” and “sea”, seman-
tic concepts can serve as good intermediate semantic metadata for video content indexing
and understanding [25]. Establishing a large set of robust concept detectors will yield sig-
nificant improvements in many challenging applications, such as image/video search and
summarization [29].

Due to the existence of the well-known semantic gap [18] between the low level visual
features and the users’s semantic interpretation of diversified visual data, concept detec-
tion is a challenging yet essential task that has attracted the attention of many researchers
[25]. The visual content for a given concept often possess huge variations resulting
from diversified visual appearances, camera shooting and video editing styles, etc. Such
huge intra-class variations hinders the performance of most machine learning approaches
[25].

To solve the problem of huge intra-class variations, it may be a promising solution
to collect large scale training data to cover a wide variety of samples as much as pos-
sible. Previous studies on visual concept detection [9] and pedestrian classification [8,
14] indicate that the data matters most; this was highlighted recently by machine learn-
ing researchers who stated that “the quickest path to success is often to just get more
data, and more data beats a cleverer algorithm” [7]. In order to learn effective concept
detectors, a critical step is to acquire a sufficiently large amount of training samples, espe-
cially positive training samples [9]. However, how to collect and label large scale training
data is very challenging since the data collection and manual labeling are laborious and
time consuming. Fortunately, with the explosive growth of visual contents on the Inter-
net, large amounts of training samples have become available through Web searching [5,
29]. Consequently, how to utilize these abundant web images to improve concept detec-
tion has been the subject of intensive research by a large multimedia research community,
since it has offered promising ways to automatically annotate the contents at relatively low
cost [5, 29].

Furthermore, with the increasing of training dataset size, the training may be very time
consuming since the time complexity of most machine learning methods such as Support
Vector Machine (SVM) is betweenO

(
n2

)
andO

(
n3

)
(n is the number of training samples)

[4, 25]. This seems infeasible if the number of training samples is very large, such as over
one hundred thousand, and the feature dimension is very high. Therefore, for large scale
dataset, how to train it effectively and efficiently is also a big challenge.

In this paper, we propose to an novel web image sampling approach and a novel group
sparse ensemble learning approach to tackle these two challenging problems respectively.
For data collection, in order to alleviate manual labeling effort, we propose a web image
sampling approach based on dictionary coherence to select coherent positive samples from
web images based on the degree of image coherence with a given concept. We propose
to measure the coherence in terms of how dictionary atoms are shared since shared atoms
represent common features with regard to a given concept and are robust to occlusion and
corruption. Thus, two kinds of dictionaries are learned through online dictionary learning
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methods: one is the concept dictionary learned from key-point features of all the positive
training samples while the other is the image dictionary learned from those of web images.
Intuitively, the coherence degree is then calculated by the Frobenius norm of the product
matrix of the two dictionaries. For efficient training of large scale data, in order to exploit
the hidden group structures of data, we propose a novel group sparse ensemble learning
approach based on Automatic Group Sparse Coding (AutoGSC). We first adopt AutoGSC
to learn both a common dictionary over different data groups and an individual group-
specific dictionary for each data group which can help us to capture the discrimination
information contained in different data groups. Next, we represent each data instance by
using a sparse linear combination of both dictionaries. Finally, we propose an algorithm to
use the reconstruction errors of data instances to calculate the ensemble gating function for
ensemble construction and fusion.

The main contribution of this paper is that we propose a novel web image sampling
approach for training data collection and a novel group sparse ensemble learning approach
for efficient visual concept detection.The rest of the paper is organized as follows. We first
review the related work on web image sampling and visual concept Learning respectively in
Section 2. Then we describe our proposed web image sampling approach based on dictio-
nary coherence and our group sparse ensemble learning method respectively in Section 3.
We will describe our experiments and give our experimental results in Section 4. Finally,
we will conclude our work in Section 5.

2 Related work

2.1 Web image sampling

As aforementioned, how to utilize web images to improve concept detection has been the
subject of intensive research by a large multimedia research community due to its relatively
low cost for manual annotation [5, 29]. [29] empirically studied the effect of exploit-
ing tagged images on concept learning by analyzing tag lists. [5] proposed an automatic
concept-to-query mapping method for acquiring training data from online platforms.

However, the online web images are very noisy, often cover a wide range of unpre-
dictable contents, and have quite different data distributions with any close dataset such as
TRECVid dataset [15, 22]. As shown in Fig. 1, for example, the content of web images
searched from Google Image with the keyword “Airplane-flying” varies greatly. Obviously,
the images in the top row of the figure are incoherent from the concept “Airplane-flying”
in the TRECVid dataset. Thus these images can not facilitate the training of the concept
and may even harm it. Only the images in the second row are consistent with the dataset
and hence helpful. Therefore, how to select coherent positive training samples from dif-
fused web images is a challenging problem for training of effective concept detectors [5, 20,
21] due to the existence of cross-domain incoherence resulting from the mismatch of data
distributions.

Existing work on video concept learning using web images has mainly focused on how
to leverage compact features, such as region-based features [21] or image salience [20],
to alleviate the visual differences. Since an image is greatly reduced to a very compact
feature vector, the effect of these approaches is not evident. In this paper, we propose a
novel sampling approach on how to exploit bundles of local key-point features to measure
how coherent a web image is with a given concept, from the aspects of sparse coding and
dictionary learning.
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Fig. 1 Web Image Examples of “Airplane-flying” (the first two rows) compared with the positive examples
of “Airplane-flying” in the TRECVID 2012 semantic indexing task (the last row)

2.2 Visual concept learning

Due to the low efficiency and unscalability of the classical methods based on global clas-
sification such as SVM [6], Gaussian Mixture Model [1], Hidden Markov Model [16],
statistical active learning[27], and various ensemble learning methods such as LDA-SVM
[22–24], multi-kernel ensemble learning [19] and sparse ensemble learning [25], were
developed for visual concept detection; they exploit the “divide and conquer” strategy to
train large amounts of samples both effectively and efficiently.

In particular, [25] proposed an efficient sparse ensemble learning method by exploiting
a sparse non-negative matrix factorization process for ensemble construction and fusion. It
was shown to achieve state-of-art performance on the TRECVid 2008 dataset. However, this
approach adopts traditional sparse coding and so treats each data instance as an individual
and no data group information is considered. It considers each visual feature such as Bag
of Visual Word (BoVW) of an image as a separate coding problem and does not take into
account the fact that the sparse coding of each feature does not guarantee the sparse coding
of all images in the dataset.

Each dataset usually consists of many categories, and is assured of having hidden group
structures [28]. Once a dictionary atom has been selected to represent an image, it may
as well as be used to represent other images of a given category without much additional
regularization cost [3]. Therefore, it makes more sense to learn a group level sparse rep-
resentation [3]. To exploit the group structures hidden in the data set, [3] proposed Group
Sparse Coding (GSC), which learns a sparse representation on the group level as well as a
shared dictionary. However, GSC assumes that the data group identities are pre-given, even
though they are often hidden in many real world applications, and it can only learn a com-
mon dictionary [26]. To discover the hidden data groups, [26] proposed Automatic Group
Sparse Coding (AutoGSC) by learning both a common dictionary over different data groups
and an individual group-specific dictionary for each data group which can help us to capture
the discrimination information contained in different data groups.
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Inspired by the sparse ensemble learning work [25] and the advantages of AutoGSC [26]
in discovering hidden structures of data, in this paper, we propose a novel group sparse
ensemble learning approach based on automatic group sparse coding to exploit the hidden
group structures of data.

3 Proposed approaches

Due to the huge intra-class variations for visual concept detection, it is necessary for concept
learning to collect large scale training data to cover a wide variety of samples as much
as possible. But it presents both great challenges on both how to collect and how to train
the large scale data. In this section, we will elaborate on the details of our proposed web
image sampling approach and group sparse ensemble learning approach to tackle these two
challenging problems respectively.

3.1 Web image sampling

3.1.1 Overview

Inspired by the observation that dictionary atoms representing common features in all cate-
gories tend to appear to be repeated almost exactly in dictionaries corresponding to different
categories, [17] promotes incoherence between the dictionary atoms to improve the speed
and accuracy of sparse coding.

Motivated by this work, since the shared dictionary atoms learned from data can represent
common features with regard to a given concept (represented by the set of positive training
samples) and are robust to occlusion and corruption [13], we propose to use dictionary
coherence in terms of how an image and a given concept share dictionary atoms to measure
the degree of image coherence with the concept. That is, the more atoms they share, the
higher the dictionary coherence is, which means it is more probable that the web image is
coherent with the concept.

In order to compute the dictionary coherence, we learn two kinds of dictionaries through
the online dictionary learning method [13]: one is the concept dictionary learned from key-
point features of all the positive training samples while the other is the image dictionary
learned from those of web images. Intuitively, the coherence degree is then calculated by
the Frobenius norm of the product matrix of the two dictionaries since it reflects the sum of
the absolute values of inner products between dictionary atoms.

On the basis of the dictionary coherence, we propose a novel adaptive sampling
approach to select coherent positive samples from diffused web images for further concept
learning.

3.1.2 Algorithm

As shown in the framework of Fig. 2, for each concept, the algorithm of the proposed
sampling principally consists of the following steps:

(1) Construction of concept set: Select all the positive training samples from a develop-
ment dataset such as TRECVid development set to represent the concept.

(2) Feature extraction of concept set: Extract local key-point features, such as SIFT
[12] or SURF [2], and collect each key-point feature xi ∈ Rd of all the images in the
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Fig. 2 Proposed Framework of Web Image Sampling

concept set to form the data matrix Xc = [x1, . . . , xn] ∈ Rd×n. Here, d is the feature
dimensionality, and n is the total number of keypoints.

(3) Concept dictionary learning: Adopt the efficient online dictionary learning methods
[13] to learn the concept dictionary Dc ∈ Rd×k from the concept data matrix Xc, where
k is the size of the dictionary, i.e., the number of atoms. For the SIFT feature, we set
k = 192 about 1.5 to 2.0 times of the feature size d = 128 [25].

(4) Collection of web image set: After query construction or mapping [5] based on the
concept name, search the web images and crawl the top-ranked ones.

(5) Feature extraction of web image: For each image in the web image set, extract the
same local key-point features as the second step, and form the image data matrix Xi ∈
Rd×m, where m is the number of keypoints in the image.

(6) Image dictionary learning: Adopt the same dictionary learning methods [13] to
learn the image dictionary Di ∈ Rd×k from the image data matrix Xi.

(7) Dictionary coherence computing: Use (2) in subsection 3.1.4 to compute the dic-
tionary coherence Ci between the image dictionary Di and the concept dictionary
Dc.
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(8) Adaptive sampling: Compare the dictionary coherence Ci of the current web image
with the adaptive threshold in subsection 3.1.5 to determine whether to add the current
web image to the training set.

As shown in Fig. 2, after adding the selected coherent positive web samples (a manual
check is advised to ensure it is positive) to the training set, we can do further concept learn-
ing for training more effective concept detectors. We will detail the key procedures in the
following subsections.

3.1.3 Dictionary learning

In our study, we use the efficient online learning methods [13] to learn the dictionary. Due
to the advantage of non-negativity constraints in learning part-based representations [25],
which is helpful for object-oriented concept learning, we impose the positivity constraints
on both dictionary D and sparse code αi in solving the optimization problem as below:

min
D,αi

n∑

i=1

(
1

2
‖ xi − Dαi ‖2 +λ ‖ αi ‖1

)
, s.t., D ≥ 0, αi ≥ 0. (1)

while restricting the atoms to have a norm of less than one. The optimization is achieved
through an iterative approach consisting of two alternative steps: the sparse coding step on a
fixed D and the dictionary update step on fixed αi [13]. As mentioned above, we learn two
types of dictionaries: (1) a concept dictionary Dc; (2) an image dictionary Di.

3.1.4 Dictionary coherence computing

The natural way to measure the degree of coherence Ci between the image dictionary Di

and the concept dictionaryDc, is to inspect the product matrix:DT
i Dc , where the superscript

T denotes the matrix transposition. This is because the element dij of the product matrix
represents the inner product between a pair of the two dictionary atoms, i.e., dij = di · dj ,
here, di ∈ Di, dj ∈ Dc. Therefore, as shown in (2), we compute dictionary coherence Ci

through a Frobenius norm defined as the square root of the sum of the absolute squares of
the matrix’s elements dij :

Ci =‖ DT
i Dc ‖F=

√√
√√
√

k∑

i=1

k∑

j=1

|dij |2 (2)

where the subscript F denotes the Frobenius norm.

3.1.5 Adaptive sampling

After computing the dictionary coherence Ci between the current web image and the con-
cept, we can easily determine whether to add the current web image to the training set by
simply comparing the Ci with a pre-given thresholdCth. If Ci ≥ Cth, meaning that the web
image is coherent with the concept, then we accept it. Otherwise, we discard it.

Here, we propose an adaptive off-line method through automatic calculation of the
threshold Cth from the distribution of the coherence degrees of all the positive train sam-
ples. According to the theory of hypothesis testing, the threshold Cth can be adaptively
determined by:

Cth = μ− ησ, (3)
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where μ and σ are the mean and standard deviation of all the coherence degrees CPos

between each positive training sample and the concept, and η is an empirical parameter that
can be determined universally. In our experiments, we set η = √

3.

3.2 Group sparse ensemble learning

3.2.1 Problem formulation

Ensemble learning refers to the process of combining multiple classifiers to provide a sin-
gle and unified classification decision [25]. Recent research has demonstrated that a good
ensemble of localized classifiers can outperform a single (best) classifier learned over the
entire dataset [7, 25]. Additionally, learning a set of “smaller” localized classifiers is usu-
ally more efficient in terms of algorithmic complexity than a global classifier, which has
motivated researchers to adopt the ensemble learning approach for concept detection [25].
[7] advocates to “learn many models not just one”.

In visual concept detection, an image or a keyframe of a video shot is processed to detect
the presence of a set of predefined concepts. Without loss of generality, we assume that the
data instances are represented as vectors, such as the visual feature vectors of keyframes.
Mathematically, we denote the observed data matrix as X = [x1, x2, . . . , xn] ∈ �d×n,
where xi ∈ �d represents the i-th data instance vector with dimensionality d . For each
concept, we have the label Y = {yi ∈ ±1, i = 1, 2, . . . , n} for the training set matrix
X. Consequently, with the binary classification in the framework of SVM, the ensemble
discriminant function F(xt) for a given test sample xt is [25]:

F(xt) =
k∑

c=1

Ψc(xt) ·
( ∑

i∈πc
βiyi〈Φ(xt ),Φ(xi)〉 + bc

)
(4)

where k localized classifiers are built on instance localities πc , and Ψc(xt ) are the gating
functions that govern how localized classifiers are coordinated for the final classifica-
tion of test sample xt . Learning the ensemble discriminant function F(xt ), i.e., ensemble
construction, can be decomposed into two steps [25]: (1) learning the instance locali-
ties πc and gating function Ψc(xt ), and (2) training the individual classifiers to estimate
the kernel classifier parameters such as the optimal classification hyperplane parameters
βi, bc.

3.2.2 Framework of group sparse ensemble learning

Here, we propose to construct the ensemble through AutoGSC [26] to take advantage of the
hidden group structures of data. The overall framework is illustrated in Fig.3.

Specifically, as shown in the figure, after feature extraction, we use AutoGSC to learn
both a common shared dictionary DS over different data groups and the k individual group-

specific dictionaries
{
DI
c

}k
c=1 which can help us to capture the discrimination information

contained in the different data groups. We then represent each data instance xi by using
a sparse linear combination of both dictionaries, i.e., get the shared sparse code matrices
{
GS

c

}k
c=1 from the common shared dictionary DS and the individual sparse code matri-

ces
{
GI

c

}k
c=1 from the individual group-specific dictionaries

{
DI
c

}k
c=1 for data matrix X.

Finally, we compute the reconstruction errors of the group sparse coding for each data
instance, and use them to calculate the gating functions Ψc(xt) which are used for instance
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Fig. 3 Proposed Framework of Group Sparse Ensemble Learning

grouping during ensemble construction and individual classification result fusion during
testing.

The following subsections will detail the gating function calculation with AutoGSC,
ensemble construction and fusion, and complexity analysis.

3.2.3 Gating function calculation with autoGSC

AutoGSC tries to discover the hidden group structures of data by solving the optimization
problem under the following non-negativity constraints [26]:

min
k∑

c=1

∥
∥Xc − DSGS

c − DI
cG

I
c

∥
∥2
F
+

k∑

c=1

[
γIφ

(
GI

c

) + γSφ
(
GS

c

)]

s.t.DS ≥ 0,∀c = 1, 2, . . . , k,DI
c ≥ 0,GI

c ≥ 0 (5)

where the normalized matrices DS and
{
DI
c

}k
c=1 to be solved are the common shared dic-

tionary and k individual group-specific dictionaries on each group locality πc respectively.

The matrices
{
GS

c

}k
c=1 and

{
GI

c

}k
c=1 to be solved are the sparse code (i.e., reconstruction

coefficient) matrices decoded by the two dictionaries correspondingly. In order to achieve
group sparsity, the second term is introduced to impose some regularization on the sparse
code where function φ is used to compute the �1-norms of the row vectors of the input
matrix.

After merging the two kinds of dictionaries and corresponding sparse codes by:

Dc =
[
DS,DI

c

]
(6)

Gc =
[
GS

c ,G
I
c

]
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the objective function Ĵ0 of the optimization problem (5) can be rewritten as:

Ĵ0 =
k∑

c=1

[∥
∥Xc − DcG


c

∥
∥2
F
+ γ φ (Gc)

]

=
k∑

c=1

∑

xi∈πc

⎡

⎣

∥∥
∥∥
∥
xi − ∑

j

GcijDc·j

∥∥
∥∥
∥

2

F

+ γ
∑

j

∣
∣Gcij

∣
∣

⎤

⎦ (7)

where Dc·j is the j -th column of Dc, and Gcij is the (i, j)-th entry of Gc.
AutoGSC uses a Lloyd style algorithm [26] to solve to the problem by alternating

between the dictionary and sparse code.
Since AutoGSC searches each locality πc to obtain the group identity of a data instance

xi with the minimum reconstruction error, we propose to use the reconstruction error to cal-
culate the gating function vectorΨ (xi) = {Ψc(xi)}kc=1 in the four steps shown in Fig.4. This
makes our proposed algorithm very different from the gating function calculation method
proposed in [25], which uses the sparse code to obtain the gating function directly.

To achieve high efficiency, especially testing efficiency, we adopt the Instance-Locality
Assignment Algorithm proposed in [24, 25] in our proposed algorithm to detect sharp
decrease in the two adjacent elements and remove the rest small elements of the descending
membership vector. In this paper, we restrict the maximum number of groups to which data
instance xi can be assigned with the input replication parameter l, i.e., an instance can only
be allocated to at most l group localities. After calling the algorithm, the returned gating
function Ψc(xi) has only r (r ≤ l � k) non-zero elements, which means xi can be allocated
into only r groups at the same time.

Fig. 4 Gating Function Calculation Algorithm
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3.2.4 Ensemble construction and fusion

For ensemble construction, we useΨc(xi) to allocate each training data instance xi into mul-
tiple r group localities πc among all k hidden groups, and use SVM to train the individual
classifiers for estimating the kernel classifier parameters such as the optimal classification
hyperplane parameters βi, bc.

Whereas for ensemble fusion, with (4), we use Ψc(xt) to coordinate the classification
results of the related r group localities to obtain the ensemble discriminant function F(xt)

for a given test sample xt .

3.2.5 Complexity analysis

Similar to the computational complexity analysis in [25], since the theoretical computational
complexity of SVM training is between O

(
n2

)
and O

(
n3

)
(n is the number of training

samples) depending on the value of the hyper-parameter C [25], we can greatly improve
the training efficiency after we use AutoGSC by partitioning a given training sample into
at most l hidden groups. Specifically, the number of training samples in a given group
locality πc is nl/k on average, and we need to train k individual classifier in the ensemble.
Therefore, the complexity is greatly reduced to only l2/k to l3/k2 (l � k) times that of
global classification. While for testing, since we only invoke at most l individual classifiers
in the ensemble for a given test sample, and the classifiers are very compact with many
fewer support vectors than those used by a global classifier, the testing efficiency can be
greatly improved compared with global classification. Thus we conclude that our proposed
group sparse ensemble learning method is very efficient in both training and testing.

4 Experiments and results

4.1 Experiment setup

To evaluate the performance of our proposed web image sampling and group sparse ensem-
ble learning methods, we selected the same TRECVid 2008 video benchmark collection [15]
as [25] to conduct our experiments. TRECVid is now widely regarded as the actual standard
for evaluation the performance of concept based video retrieval systems [25]. The number
of positive training samples for each concept in the TRECVid 08 development set is shown
in the column “#DPos” of Table 1 [25]. Refer to [15, 25] for more details about the dataset.

4.2 Web image sampling

First, we used the Google API to search and download the top 1000 web images for each
concept by constructing a query with the concept name. Then we annotated the images
manually; the number of positive samples for each concept in the initial web image set is
shown in the column “#WPos” of Table 1. Finally, we used our proposed sampling method
to select the positive samples for each concept; the number of positive samples for each
concept selected from the web images is shown in the column “#SPos” of Table 1. To test
the effectiveness of our proposed method, we performed three runs for each concept:

– [Baseline]: Use only positive training samples in the TREC-Vid 08 development set
(“#DPos” in Table 1).
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Table 1 The number of positive samples for 20 concepts in TRECVid 08

ID Concept #DPos #WPos #SPos

1001 Classroom 241 790 347

1002 Bridge 186 420 235

1003 Emergency-Vehicle 103 151 11

1004 Dog 136 795 123

1005 Kitchen 289 537 174

1006 Airplane-flying 80 395 113

1007 Two-people 4140 729 458

1008 Bus 106 902 312

1009 Driver 302 489 157

1010 Cityscape 331 879 623

1011 Harbor 217 261 76

1012 Telephone 203 557 412

1013 Street 1799 693 508

1014 Demonstration-Or-Protest 159 68 25

1015 Hand 1879 384 302

1016 Mountain 265 507 284

1017 Nighttime 490 594 229

1018 Boat-Ship 506 783 215

1019 Flower 620 948 513

1020 Singing 441 646 187

Note: The column “#DPos” denotes the number of positive training samples in the TRECVid 08 development
set, “#WPos” in the initial positive web image set, “#WPos” in the final web image set after sampling.

– [AddWeb]: Use positive training samples of the TREC-Vid 08 development set and the
initial positive web image set (“#DPos+#WPos” in Table 1).

– [Sampling]: Use positive training samples of the TREC-Vid 08 development set and
the web image set after the proposed sampling(“#DPos+#SPos” in Table 1).

In the above runs, we used the SIFT features [12] for dictionary learning during sampling,
and the well-known BoW feature [10] based on soft-weighting of SIFT, due to its widely
reported effectiveness [25].

Figure 5 shows the comparison results of AP for each concept and mean AP (MAP)
of the three runs. As shown, the proposed run [Sampling] achieved the highest MAP of
0.144, which is 9.92 % higher than the run [Baseline] (MAP 0.131), and 6.67 % higher than
the run [AddWeb] without sampling(MAP 0.135). In particular, the proposed method out-
performed the others on 9 out of 20 concepts, including Airplane-flying, Dog, Telephone,
Demonstration-Or-Protest, Hand, and Flower, which had been selected with sufficient
visually-coherent positive samples, while little was gained with the concepts such as Harbor,
Kitchen, Bridge, and Emergency-Vehicle because these concepts on the old documentary
TRECVid videos may be too outdated for enough positive web samples to be obtained. On
the other hand, the run [AddWeb] achieved only a 3.05 % improvement in MAP compared
with the run [Baseline].
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Fig. 5 Comparison results of web image sampling

Compared with the best runs in TRECVid 2008 [10], significant improvement was
obtained in handling concepts with few TRECVID positive training samples. The experi-
mental results show that the proposed approach can achieve constant overall improvement
despite cross-domain incoherence.

4.3 Group sparse ensemble learning

To test our proposed group sparse ensemble learning method, we conducted comparison
experiments with the sparse ensemble learning (SEL) method proposed by [25] we used
the same VIREO-374 BoVW features released by [10] as [25] to train and test our system.
Additionally, we used the same parameters such as number of locality k = 800, replication
parameter l = 20, RBF kernel of SVM, and same evaluation criteria InfAP as [25] for direct
comparison.

First, to verify the effectiveness of our ensemble fusion method based on the proposed
gating function calculation algorithm, we compared it with average fusion. InfAP of each
concept and MAP yielded by the two fusion schemes are shown in Fig.6. It shows that our
fusion method, based on the proposed gating function calculation algorithm, yields MAP
of 0.147, 6.5% higher than average fusion (MAP=0.138). We can also see that the pro-
posed method clearly outperforms average fusion on most of the concepts, such as “Dog”,
“Airplane-flying”, “Cityscape”, “Street”, “Hand”, “Mountain”, “Nighttime”. This superior-
ity does not extend to rare concepts with too few positive training samples such as “Bus”
and “Emergency-Vehicle”; their detection rates are low and unstable. Thus we can conclude
that our fusion method is effective.

Next, we compared our method with the SEL method [25], global SVM classification
(Single-SVM). Ours yielded a MAP of 0.147, an improvement of 4.3 % and 12.2 % over
SEL (MAP=0.141) and Single-SVM (MAP=0.131), respectively. Figure 7 compares InfAP
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Fig. 6 Fusion comparison with average fusion

for each concept. From the figure, we can see that the proposed method clearly outper-
forms SEL and single SVM on 11 out of 20 concepts, including both scene concepts like
“Cityscape”, “Harbor”, “Street”, “Mountain”, “Nighttime” and object concepts like “Dog”,
“Airplane-flying”, “Two-people”, “Telephone”, “Hand”, “Flower”. For the remaining con-
cepts such as “driver” and “Demonstration-Or-Protest”, SEL performs better, this is due to
the diversified patterns of these concepts. Our conjecture is that the instances of these con-
cepts in which our proposed method performs best are not too diversified, and often have
good tendency or consistence on being well grouped. This reflects the advantages of group
sparse coding in discovering the hidden group structures.

Fig. 7 Comparison with Single-SVM and SEL
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Additionally, our experiments also shows that the time complexity of ours is almost
equivalent to that of SEL method.

The above results show that the ensemble learning proposal has achieved promising
results and can outperform existing approaches.

5 Conclusion

In this paper, we propose a novel web image sampling approach and a novel group sparse
ensemble learning approach to tackle the two challenging problems of large scale data col-
lection and training respectively. For data collection, in order to alleviate manual labeling
efforts, we propose a web image sampling approach based on dictionary coherence to select
coherent positive samples from web images. For efficient training of large scale data, in
order to exploit the hidden group structures of data, we propose a novel group sparse ensem-
ble learning approach based on Automatic Group Sparse Coding (AutoGSC). Experiments
show that our proposed methods can achieve promising results and outperforms existing
approaches.
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