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Abstract In classification problems, many different active learning techniques are often adopted to
find the most informative samples for labeling in order to save human labors. Among them, active
learning support vector machine (SVM) is one of the most representative approaches, in which
model parameter is usually set as a fixed default value during the whole learning process. Note that
model parameter is closely related to the training set. Hence dynamic parameter is desirable to make
a satisfactory learning performance. To target this issue, we proposed a novel algorithm, called active
learning SVM with regularization path, which can fit the entire solution path of SVM for every value
of model parameters. In this algorithm, we first traced the entire solution path of the current classifier
to find a series of candidate model parameters, and then used unlabeled samples to select the best
model parameter. Besides, in the initial phase of training, we constructed a training sample sets by
using an improved K-medoids cluster algorithm. Experimental results conducted from real-world
data sets showed the effectiveness of the proposed algorithm for image classification problems.

Keywords Active Learning - regularization - SVM

1 Introduction

The rapid development of multimedia and network technologies has lead to an explosive growth of
social media in recent years, such as Flickr and Youtube. Such media repositories encourage internet
users to share, evaluate and distribute media information, as well as to annotate the photos with tags
(i.e., keywords). By virtue of user-contributed contextual information, social media have produced
many challenging research problems and many exciting real-world applications. As one of appli-
cations, image classification is to group images with similar objects that they contain, which is
highly useful in everyday life. It is very easy for humans to identify complex natural images
containing animals, buildings, forest, sun, river and etc. however, it is hard for computer to
accurately and rapidly categorize images. To target this issue, some researchers explored a variety
of supervised methods and unsupervised methods. Supervised learing consists of training and
prediction phases. It requires a batch of training samples annotated by semantic labels to establish a
learner of the satisfactory generalization capability. For learner, labeled data always seem very few,

F. Sun (<) - Y. Xu - J. Zhou

School of Electronic and Information Engineering, Liaoning University of Technology, Jinzhou, Liaoning,
China

e-mail: sunwenfriend@hotmail.com

@ Springer



1428 Multimed Tools Appl (2016) 75:1427-1442

while unlabeled data may be abundant or publicly accessible. It is well known that annotating huge
amount of unlabeled samples is a costly work. Therefore, how to obtain a good classifier without
involving much more human labeling efforts has attracted much more attention of researchers.

Recently, active learning has been widely applied to machine translation [12], image
retrieval [1], text classification [3], automatic multimedia tagging [15], etc. The reason is that
it has the ability to automatically select the most informative samples for human labeling so
that the labeling effort can be remarkably reduced. As one of the most representative methods,
active learning support vector machine prefers to select the uncertain ones as the current
classifier’s training samples. In supervised learning, the initial training samples are given in
advance. In this case, once a suitable model parameter is found, the parameter will be reused in
the follow process of learning. However, the number of training samples continues to increase
using active learning in the querying process. Correspondingly, the learning model should also
be changed with respect to the data set. Unfortunately, it is often ignored or neglected. We
address that dynamic model parameter are desirable to boost the performance of classification.

In this paper, we proposed an efficient algorithm, called active learning SVM with regulari-
zation path, in which we use unlabeled samples to choose the best regularization parameter.
Although cross-validation is often adopted to find the proper regularization parameter for SVM
model in supervised learning, it is not applicable to active learning [2]. The most likely reason is
that the relationship between the queried samples and the original samples no longer meet the
independent and identical distribution characteristics [16]. Note that the active learning algorithm
requires a small number of samples for learning the initial model. To give reliable predictions on
new unlabeled samples, the classifier must have a reasonable accuracy. Therefore, it is very
important to make a decision which samples should be selected for labeling at initial stage [5]. In
general, it does not guarantee that the samples in the initial training set, which are collected using
the random sampling method, are the most representative ones [20, 21]. Therefore, we adopt an
improved K-medoids cluster algorithm to choose the most representative samples as the initial
training sets. To the best of our knowledge, this problem is rarely addressed in literatures.

In brief, our main contributions in this paper are summarized below.

(1) We presented an efficient active learning SVM with regularization path, in which the
model parameter is decided by using unlabeled samples. Active learning and SVM
model are heavily correlated with each other. Therefore, it is necessary for SVM model
to adjust the regularization parameter with the increase of the training samples.

(2) We addressed the issue of constructing initial training sets by using an improved K-
medoids cluster algorithm to choose the most representative samples. Using representa-
tive samples, it may significantly improve the performance of the classifier.

The rest of this paper is organized as follows. In Section 2, some related works are given.
Besides, we briefly introduce active learning SVM and analyze it in Section 3. Furthermore, in
Section 4, we present how to construct initial training set. Moreover, the description of active
learning SVM regularization path algorithm is introduced in Section 5. In Section 6, we run
experiments for empirical analysis. Finally, in Section 7 we make some conclusions and
discussions for future work.

2 Related work

Formally, the typical active learning system contains two parts: sample selection and model
learning. At initial stage, the learner first begins with a small number of labeled samples. Then,
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unlabeled samples, which may be randomly chosen or active collected, are submitted for
human labeling. Following this, the new labeled samples are added to the labeled sets. The two
parts work alternately until they stop criteria. This process is shown in Fig. 1 (reader may also
see Ref. [13]).

According to different ways of obtaining unlabeled samples, active learning methods are
categorized into three types, which include member query learning, stream-based and pool-
based methods, as shown in Fig. 2 (reader may also refer to Ref. [9]). In member query
learning, the learner provides the samples for labeling. But in most cases, it is difficult for
experts to annotate samples. In stream-based active learning (sometimes called sequential
active learning), each unlabeled sample is obtained one at a time from data sets. Then the
learner must determine whether or not to label it. In pool-based active learning, samples are
selected from the pool for human labeling according to some certain criterions, which are used
to evaluate samples in the pool. Since pool-based active learning has been widely and
adequately studied in many applications, we focus on this method in this paper.

The central idea of active learning is to obtain satisfying performance with a small number
of labeled training samples by choosing the important and representative ones. Obviously, the
key of active learning is the sampling selection strategy. In many real-world situations, there
are many unnecessary and redundant samples. So how to use sampling selection strategy to
choose the important samples becomes a crucial issue. Many approaches have been proposed
for sample selection. Zhu et al. [19] combined expected Error Reduction with graph-based
semi-supervised learning strategy, resulting in a better performance than random or uncertainty
sampling. Although uncertainty sampling is prone to select uncertain samples for current
classifier, this approach may lead to selecting outliers without considering the underlying
distribution of unlabeled samples. To tackle the outlier problem effectively, Zhu et al. also
proposed a density-based re-ranking method [20]. In addition, there are other sample selecting
strategies that consider the sample’s diversity, density and relevant. As different performance
and values are associated with special applications, it is difficult to directly compare the pros
and cons of these sample selection strategies. In most cases, it is rational to combine these
strategies together. Yuan et al. [17] adopted a combination of uncertainty and diversity
sampling strategy in content-based image retrieval, and meanwhile they also proposed to get
more relevant samples by moving the boundary. Zha et al. [18] adopted diversity, relevance
and density criteria in video indexing and showed its better performance. Tian et al.[11]
proposed active ranking information based sample selection strategy to reduce the user’s
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Fig. 1 An illustration of active learning
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Fig. 2 Three methods of active learning

labeling efforts, and the idea of ranking information and low computational complexity are
also reflected in [6, 7].

With different fields having its own characteristics, active learning has developed many novel
algorithms, which differ from the traditional approach, such as semi-supervised learning with active
learning, multi-label learning with active learning and incremental learning with active learning.
These novel algorithms not only retain the advantage of the traditional method but make full use of
other mature leaning methods, thereby making active learning be a good solution to deal with
various practical problems.

Both active learning and semi-supervised learning involve unlabeled samples. It is therefore
natural to think about combining them with each other to enhance the sampling strategy so that
much more help can provide to the learner. Presently, the new approach has been applied in
various fields [14]. A direct approach to deal with multi-label active learning is to translate
multiple labels into a set of independent binary problems [4]. In other words, a binary active
learning algorithm is adopted to solve each label independently. But this approach does not
take into account the correlations between the labels due to consider each label to be
independent. Strong relationship usually occurs in multiple labels. To solve this problem, Qi
et al. [8] proposed a two-dimensional active learning strategy, which selects sample-label pairs
for labeling. For the selected samples, it is reasonable to label just several special concepts, and
the others can be inferred through the relationship among multiple labels. For example, “tiger”
and “grass”, these two labels often occur simultaneously, so labeling one of them will
remarkably reduce the uncertainty of the other label. Multi-instance active learning (MIAL)
is a novel approach that studies active learning algorithms based on multi-instance framework.
A direct way to deal with MIAL problem is to adopt the existing criteria of supervised
learning. Settles et al. [10] proposed to label samples in positive bags and meanwhile adopted
uncertainty and expected gradient length sampling to select samples in positive bags. In
MIAL, some bags are labeled and some are not, so the learner can query for labels of unlabeled
bags, selected instances from positive bags and selected positive bags.

Up to now, there are still remaining problem in active learning to be solved, the description
is summarized as following:

1) Usually labeling different samples with different concepts even with the same ones may

be cost different efforts, so it is worthwhile to consider how the active learning method
choose samples or annotators.
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2) The efforts of labeling samples may be different due to the degree of recognizing objects
in samples. Under this occasion, how to select samples with high recognizability is still to
be handled.

3) In order to achieve a trade-off between labeling cost and computational efficiency, how
many samples should be selected in iteration for labeling is another problem to be solved.

In some special fields, there are many samples with missing category and attribute, so it is
another challenge to respond.

3 Active learning and SVM
3.1 SVM

For classification problems, the central idea of the soft margin SVM is to find the maximum
margin hyperplane f{x)=w’o(x)+b by solving optimization problem:

I A u
min o ] +C; &
y,(wT«g@(x,-) +b)>1-¢ (1)

§20,0<i<n

where C is a trade-off parameter that controls the amount of overlap, &; is a slack variable
allowing points to be on the wrong side of the margin, and ((x) is the mapping function. The
above optimization problem can be formulated using the Loss and Penalty criterion:

min ) L/ (v) + 5 [l @
i=1

Here, regularization parameter A corresponds to % , hinge loss function L(y,f(x;)) =max(1—
yf(x;)). The optimal solution of SVM can be expressed as

S0 =53 awK () +b o)
i=1

In SVM, seeking the best classifier model can be converted into a regularized parameter
optimization problem. The formulation (2) emphasizes the important role of regularization. In
essence, model selection can be formulated as selection of a best value of \. Selection of the
regularization parameter is vital important in training a satisfying classifier model. That is to
say, we should dynamically adjust the regularization parameter to guarantee a satisfactory
learning result according to the current training dataset.

The role of regularization (reader may see Ref. [2]) is illustrated in Fig. 3. From Fig. 3, we
can see the results of two SVM models on the same dataset. The radial kernel function K(x,x)=
exp(—llx—x11)* is used with v=1. The model with C=10000 is less regularized than the left
model with C=2, and suffers a larger test error.

3.2 Active learning SVM
In active learning SVM, the goal of the active learner is to select the support vector, which is

the most informative sample in unlabeled samples pool. The most informative and uncertain
sample can be selected by
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Fig. 3 Illustration of the need for regularization

i = arg min |f™(x;)| (4)

ieU

where f*(x;) is decision function (namely classifier) in item (3). After a certain query, most of
the support vectors can be selected. The role of training samples is to find the optimal
classifier, which is expected to make accurate judgment on unlabeled samples. Under this
circumstance, active learning and SVM model are heavily correlated with each other.
Therefore, it is necessary for SVM model to adjust the regularization parameter with the
increase of the training samples. SVM model selection problems are mainly affected by two
factors: the training samples and the regularization parameter. Undesirable regularization
parameter will lead to querying useless samples, which will affect classifier update and mislead
next query for new samples.

3.3 Regularization path algorithm

Hastie et al. proposed a method called SVMpath algorithm to efficiently adjust SVM regular-
ization parameter [2]. For every regularization parameter, we can trace all paths of SVM
solution by SVMpath, with the same computational complexity as tracing one SVM model.
The optimization problem of the soft margin SVM in item (1) can be formulated within the
regularization framework as item (2). Then based on (2), we construct the Lagrange primal function:

L= 6oty w3 alonf (6063w
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along with the KKT conditions
ai[l*yi(<w-xi> + b)*SI} =0i=1.n
& = (1=ai)§; = 0 i=1l.n

According to different values of yf(x;) (see Fig. 4 in Ref. [16]), we can define the following
three sets:

(6)

E={i:yf(x) =1,0<5,;<1}

L={i:yf(x;) < L, =1}

R={i:y/f(x;) >1,0; =0}

Regularization paths algorithm takes advantage of the piecewise linear relationship
between Lagrange Factor o and the regularization parameter A. In this algorithm, we
attempt to construct the entire regularization path after analyzing the change of the set
E, L and R. The X is updated when points move from L or R to E and vice versa. At
initial stage, we set A=\"", and with change of the points, \ is estimated recursively
until the stop criterion.

3.4 How to select the model parameter

As mentioned above, model selection is quite important for active learning. In
supervised learning, cross-validation is often adopted to find the most suitable param-
eter for SVM model. Commonly, in cross-validation, we divide the labeled samples
into a training set and a validation set. The training set is utilized to construct the
SVM classifier and the validation set to select the most suitable model parameter.
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Fig. 4 Hinge loss and negative binomial log-likelihood
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However, this issue is not suitable to active learning. The reason is that the query
samples are not independently and identically distributed when selected from the
original data distribution [16]. If we use such samples as validation set, it will result
in severe over-fitting and affect the following query process. In active learning
process, the labeled samples are scarce while the unlabeled samples are enriched.
Therefore, we use unlabeled samples to build the validation set. Then the model
selection criterion can be given as follows:

A= argmaxzu max (0, 1-|f(x;)]) (7)
i1

AeA

where A is the candidate set of the model parameter, u represents the number of
unlabeled samples, and [f(x;)| denotes the margin.

4 Construct the initial training set

A small number of samples are required to train the initial model in active learning algorithm.
This is because the classifier needs to have a reasonable accuracy in order to give reliable
predictions on new unlabeled samples and decide which samples ought to be labeled [5].
Generally, the initial training set is generated by random sampling. However, it cannot
guarantee that the selected sample is more representative, while using representative samples
may significantly improve the performance of the classifier. Therefore we take advantage of K-
medoids cluster algorithm to collect training samples utilized to construct the initial training
set.

The procedure of the K-medoids cluster algorithm can be described as follows:

Algorithm 1K-medoids cluster algorithm

input Number of cluster

1. Choose k samples randomly as cluster centers ¢{j=1,2,"- k) for initial clusters ©(j=1,2,"" k)
repeat

2. Choose the next sample and calculate the distance of the selected sample to k cluster centers

by using the distance measure. Here, take Euclidean distance measure. Then distribute the

samples U= {x},x,,"""x,} into k cluster v;, where ;= {x,|d(x;, $;)<d(x;, ;) }

3. Re-calculate the cluster center (; for each cluster v; according to the following item:

m
;=5 2 Xi,then replace the cluster center ; with

m .
i=1x€;

¢j’ = {xi‘d(xi,¢>j) < d(xl\l¢i7¢j)}

until p;#¢;'
output Cluster result

Although the K-medoids cluster algorithm has been applied to many areas, it has some
shortcomings. Adjacent samples can be easily selected as initial k cluster centers. In this
situation, it requires much iteration to achieve high accurate cluster, reducing the
efficiency of the clustering algorithm. We give an example to illustrate the above
issue in Fig. 5.

Let k=2, and select two samples (A and B) randomly as the initial cluster centers. Then
perform the K-medoids cluster algorithm. The results are as follows:
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(1) Cluster centers: {4,B}; cluster result: {4} and {B,C,D,E,F,G}; new cluster centers: {4,D}

(2) Cluster centers: {4,D}; cluster result: {4,B,C} and {D,E,F,G}; new cluster centers: {B,F}

(3) Cluster centers: {B,F}; cluster result: {4,B,C} and {D,E,F,G}; new cluster centers: {B,F}

(4) No change in cluster center and the algorithm stops. The cluster result is: {4,B,C} and
{D,E,F,G}

If we select sample A and G (sample G is the farthest one to sample A among
all samples) as the initial cluster centers. The process of cluster is detailed as
follows:

(1) Cluster centers: {4,G}; cluster result: {4,B,C} and {D,E,F,G}; new cluster centers: {B,F’}

(2) Cluster centers: {B,F}; cluster result: {4,B,C} and {D,E,F,G}; new cluster centers: {B,F}

(3) No change in cluster center and the algorithm stops. The cluster result is: {4,B,C} and
{D,E,F,G}

The computational complexity of the K-medoids cluster algorithm is o(ndkt), where
n denotes the number of samples, d is the number of features, £ is the number of the
clusters and ¢ is the number of the iterations. From the above analysis, the second
occasion requires a few iterations and reduces the computational complexity.
Therefore the latter is adopted in this paper.

5 The description of active learning SVM regularization path algorithm

In order to dynamically adjust the regularization parameter to guarantee a satisfactory
learning result, we propose an active learning SVM algorithm with regularization path
that can fit the entire solution path of SVM for every value of model parameters. This
algorithm traces the entire solution path of the current classifier and subsequent finds
a series of candidate model parameters, then uses unlabeled samples to select the best
model parameter.

Based on the analysis given in Section 3, we present the process of selecting
regularization parameter and training model in Fig. 6, and we also summarize the
active learning SVM regularization path algorithm as follows.

Algorithm 2 active learning SVM regularization path algorithm

repeat

1. Use K-medoids cluster algorithm to select m samples for constructing initial training set
§= {x15x25“.xm}'

2. Use labeled sample set S={x;,xp,"'x,,} to train SVM classifier and construct SVM
regularization path for every candidate parameter .

GO

FO
C E
O O

B bo
O

A
(@)

Fig. 5 Data points for cluster

@ Springer



1436 Multimed Tools Appl (2016) 75:1427-1442

—{ Unlabeled samples ]

K-mediods cluster Uncertain sampling [€
Select v y
proper { Training samples ] [ New labeled samples ]
A7 Traini
| raining Retraining f,a .
L4
l SVM
Each candidate
v A
CfD
Stopping?
A 4
‘f‘ﬂ*
(a)The process of selecting regularization parameter (b) The process of training model

Fig. 6 The process of the active learning SVM regularization path algorithm. a. The process of selecting the
regularization parameter. b. The process of training model

3. Use the unlabeled samples to select the most suitable regularization parameter utilizing
Eq. 7, and train the current classifier.

4. Based on the current classifier, use Eq. 4 to select the most uncertain samples to re-train
the current classifier.

until Stop criterion is met.

6 Experimental results

In this section, we first compare the active learning SVM regularization path algorithm with
active learning SVM. And we also give results on random query (RSVM). Meanwhile
uncertain sampling is implemented to query samples. Besides, at initial stage, K-medoids
cluster algorithm is used to select samples for constructing training set. Then, we compare the
K-medoids cluster sampling with random sampling at initial stage in order to evaluate our
proposed K-medoids cluster algorithm.

Table 1 UCI benchmark

Data set Instance Attribute Class
Heart 270 13 2
Pima 768 8 2
Tonosphere 351 34 2
Australian 690 14 2
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Table 2 NUS-WIDE
Data set Instance Attribute Class
A-G 400 73 2
S-H 400 144 2
G-P 400 64 2
M-W 400 73 2

6.1 Experiment setting

We use four data sets from the UCI benchmark to evaluate the SVM regularization path
algorithm and the K-medoids cluster algorithm. Meanwhile, a real-world web image database
from National University of Singapore (NUS-WIDE) is also adopted to evaluate the SVM

regularization path algorithm.

The NUS-WIDE database includes 269,648 images and the associated tags, and six types of
low-level features extracted from these image. In our experiments, we choose three types of
features, including 64-D color histogram, 144-D color correlogram and 73-D edge direction
histogram. NUS-WIDE contains three lite versions (including NUS-WIDE-LITE, NUS-
WIDE-OBJECT and NUS-WIDE-SCENE) and each version cover a general sub-set of the
whole dataset. We only focus on the NUS-WIDE-SCENE (covering 33 scene concepts). In our
experiments, we use eight concepts for training, including airport, grass, sunset, mountain,
window, house, plant, and glacier. The eight concepts consist of four datasets, including
airport-glass (A-G), sunset-house(S-H), mountain-window (M-W) and glacier- plants (G-P).
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The details of the data sets are listed in Table 1 for UCI benchmark and Table 2 for NUS-WIDE
data sets. All algorithms run 10 times for each dataset, and then the average results are given.

In classification problems, a certain number of labeled samples should be used to construct
a base classifier. So in this experiment, training samples are selected by using K-medoids to
train a classifier. Here, we set K=2 (The number of clusters is equal to the classes of the
dataset). In each iteration, 10 samples are selected (cluster center and its neighbor samples) as
the initial labeled samples, and in each query, only one sample is chosen to be labeled. The
process stops when there are a certain number of samples labeled.

In active leaming SVM regularization path (ASVMpath), we use radius basis function as the
kernel function. As for active learning SVM (ASVM), we provide proper values Ce {5,20,50,90}
(on NUS-WIDE database, we set C< {1,5,20,50,90}) for regularization parameter in advance.

In order to evaluate the effectiveness of the K-medoids, the cluster sampling is compared with
random sampling. We first random select some labeled samples as the initial labeled samples, and other
samples compose the unlabeled sample sets. Then random sampling and K-medoids cluster sampling
are adopted to select the training samples. The process stops when there are 200 labeled samples.

6.2 Comparison with ASVM on UCI benchmarks

In this subsection, we compare the ASVM with our ASVMpath on UCI benchmarks. The
learning accuracy curves during the active learning are shown in Fig. 7. From Fig. 7, we can
see that ASVMpath performs better than ASVM in most cases. Meanwhile, the results show
that the SVM regularization path algorithm is very effective to select the model parameter. But
when we conduct experiments on the ionosphere data set, we see that ASVMpath performs
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Fig. 8 The learning accuracy curves
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worse than ASVM. The reason may be that it is not suitable to select the model parameter by
using the unlabeled samples in the former algorithm.

6.3 Comparison with ASVM on NUS-WIDE

In this subsection, we compare the ASVM with our ASVMpath on NUS-WIDE database. The
learning accuracy curves are illustrated in Fig. 8. We can see from Fig. 8 that ASVMpath
performs better than ASVM in most cases. We also see that all methods get high accuracy with
a small number of labeled samples. For the M-W (mountain-window) dataset, the two methods
yield similar performance. The most likely reason is that the SVM methods are not very
sensitive to the regularization parameter in this case. Note that some curves are not fully
observed in Fig. 8 because the curves are covered by other curves.

6.4 Training samples selection from UCI benchmarks

In this subsection, we compare K-medoids cluster sampling with random sampling. Figure 9
compares the accuracy of the classifiers, which are obtained by using the training data
collected by our K-medoids cluster method and by random selection method, respectively.
K-medoids cluster method can clearly outperform random selection for most training data sets.
But for pima dataset, the cluster sampling is less better random sampling. This may be due to
the reason that the number of cluster predefined unreasonable.
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7 Conclusions

In classification problems, model selection is a quite important problem. In this paper, regularization
path algorithm is adopted to select the most suitable model parameter. At first, we find a series of
candidate model parameters by tracing the entire solution path of the current classifier. Furthermore,
we use the unlabeled samples to select the best model parameter. In addition, at initial stage of
training, we select the training samples using the K-medoids cluster algorithm. Finally, we carry out
experiments on UCI benchmark and NUS-WIDE dataset with the active learning SVM regulariza-
tion path (ASVMpath) and the active learning SVM (ASVM) respectively, and then make a
comparison between the two methods. The experiment results showed that the ASVMpath has an
advantage over ASVM among most data sets. Besides, we also compare the K-medoids cluster
sampling with random sampling, and the results show that K-medoids cluster method can clearly
outperform random selection for most training data sets. In future work, we will focus on how to
make full use of the misclassified samples to optimize the algorithm further.
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