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Abstract This paper introduces a basic frame for rehabilitation motion practice system which
detects 3D motion trajectory with the Microsoft Kinect (MSK) sensor system and proposes a
cost-effective 3D motion matching algorithm. The rehabilitation motion practice system
displays a reference 3D motion in the database system that the player (patient) tries to follow.
The player’s motion is traced by the MSK sensor system and then compared with the reference
motion to evaluate how well the player follows the reference motion. In this system, 3D
motion matching algorithm is a key feature for accurate evaluation for player’s performance.
Even though similarity measurement of 3D trajectories is one of the most important tasks in
3D motion analysis, existing methods are still limited. Recent researches focus on the full
length 3D trajectory data set. However, it is not true that every point on the trajectory plays the
same role and has the same meaning. In this situation, we developed a new cost-effective
method that only uses the less number of features called ‘signature’ which is a flexible
descriptor computed from the region of ‘elbow points’. Therefore, our proposed
method runs faster than other methods which use the full length trajectory informa-
tion. The similarity of trajectories is measured based on the signature using an
alignment method such as dynamic time warping (DTW), continuous dynamic time
warping (CDTW) or longest common sub-sequence (LCSS) method. In the experi-
mental studies, we applied the MSK sensor system to detect, trace and match the 3D
motion of human body. This application was assumed as a system for guiding a
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rehabilitation practice which can evaluate how well the motion practice was performed
based on comparison of the patient’s practice motion traced by the MSK system with
the pre-defined reference motion in a database. In order to evaluate the accuracy of
our 3D motion matching algorithm, we compared our method with two other methods
using Australian sign word dataset. As a result, our matching algorithm outperforms
in matching 3D motion, and it can be exploited for a base framework for various 3D
motion-based applications at low cost with high accuracy.

Keywords Motion analysis - Microsoft Kinect - 3D motion trajectory - Trajectory descriptor -
Similarity of trajectory - Sign word recognition

1 Introduction

3D motion analysis is currently receiving interests from researchers and developers in various
fields due to its potentials for many application domains. Zetu by using the combination of a
laser tracker and a magnetic tracker improved the process performance and add efficiency by
optimizing the actions of process workers in manufacturing environment [18]. In another
similar study, Balteanu provides an efficient monitoring of occupational hazards while han-
dling heavy loads [3]. Other typical applications of 3D motion analysis are biomechanical
analysis, sport motion analysis and physical rehabilitation practice, which were introduced by
Humm [7], Wang [15] and Fitzgenarld [6]. Some other interesting examples of 3D trajectory
analysis in other fields are watermarking for intelligent video authentication [11] and virtual
head mouse implementation [10].

Over recent years, thanks to the development of sensor technology and mobile
computing, trajectory-based object motion analysis has gained significant interest from
researchers. It is now possible to accurately collect location data of moving objects
with less expensive devices. Thus, applications for sign language and gesture recog-
nition, global position system (GPS), car navigation system (CNS), animal mobility
experiments, sports video trajectory analysis and automatic video surveillance have
been implemented with new devices and algorithms.

The Microsoft Kinect (MSK) sensor system is the one that is equipped with a RGB visual
camera, an infrared laser emitter and an infrared camera [9]. It can detect the skeleton positions
without any marker device on the human body. Thus, it can provide the color image, the 3D
depth image and the 3D skeleton data that can be used to build a human body skeleton, which
can be further utilized for applications of 3D motion analysis at a simple way and a low cost. It
can easily extract the human body skeleton with 3D information by the rapid human pose
recognition functions that are developed on the top of the 3D measurement performed by the
infrared camera.

We applied this MSK sensor system for developing a basic frame for rehabilitation
practice system which can evaluate how well practice was performed based on
comparison of the patient’s practice motion traced by the MSK system with the
pre-defined reference motion in a database. This practice system displayed a pre-
defined reference motion in a 3D motion database system, and the rehabilitation
patient followed the reference motion. During this practice, the patient’s motion was
traced by the MSK sensor system and compared with the reference motion by our
matching algorithm. In this situation, 3D motion matching algorithms, which is
generally trajectory-based object motion analysis, is an important feature for accurate
evaluation for how well followed the reference motion.
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The major interest of trajectory-based object motion analysis is the motion trajectory
recognition. The motion trajectory recognition is generally achieved by a matching algorithm
that compares new input trajectory with pre-determined motion trajectories in a database. The
first generation of matching algorithms only used raw data to calculate the distance between
two trajectories, which is ineffective. Raw data of similar motions will appear differently
because of various varying factors such as scale and rotation. To overcome this problem, local
features of trajectory, called signature, were defined for motion recognition [5,16,17]. This
signature performs better in flexibility than other shape descriptors, such as B-spline, NURBS,
wavelet transformation, and Fourier descriptor. Trajectories represented by the signature and
the descriptors are invariant in spatial transformation. However, computing the distances
between trajectories using this signature is not enough for accurate recognition of 3D motion.
To improve the performance, some matching approaches were used to ignore similar local
shapes of different motion trajectories or to ignore outliers and noise.

‘Matching’ is an important process in motion recognition and classification, which have
been studied for years and widely used in many fields. It is achieved by alignment algorithm,
and the famous and efficient ones in motion recognition are dynamic time warping (DTW),
continuous dynamic time warping (CDTW), and longest common sub-sequence (LCSS)
[1,12,13].

Recent researches use the full length of trajectory data for motion recognition [5,9,16,17].
However, many points of the trajectory have similar signatures because they lie on a straight
line, thus computing task for signatures can be useless. To eliminate this drawback, we
developed a new method that computes the signatures only from the region of ‘elbow points’
to gain advantage of computing speed. Besides, we also present a set of descriptors and
normalization process for invariant motion recognition. For accuracy evaluation for our 3D
motion trajectory matching algorithm, we compared our method with two other methods,
PCA-based Gaussian mixture models (GMM) and global Gaussian mixture models [4], using
Australian sign word dataset [2].

2 3D motion practice with MSK sensor system

The Microsoft Kinect (MSK) sensor system that used for our low cost 3D motion analysis
system is depicted in Fig. 1. It is a composite device consisting of a stereo infrared camera as
3D depth sensor, an RGB camera and multi-array microphone. The depth sensor consists of an
infrared laser projector combined with a monochrome CMOS sensor, which captures video
data in 3D under any ambient light conditions. The RGB camera, which is similar with other
normal camera in the market, captures color images associated with depth images at the same
moment.

Fig. 1 The feature extraction process
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MSK attracts researchers by the capability to track the skeleton image of one or two people
moving within the Kinect field of view. The MSK sensor system provides the joint information
for the human body, which includes 20 joint points for each skeleton frame as presented in
Fig. 2. Roughly speaking, each part of the human body listed in the diagram of Fig. 2
corresponds to a joint, which gives its position and other useful data. The connection of the
joints in some way based on the position information obtained from the MSK system can build
the skeleton of the body.

All information about skeleton joints from the MSK system is recorded and saved in a data
file. Depth data for all joints also can be saved, and can be used for the case of a special
algorithm that needs full depth data of human body. Figure. 3 shows the visual image (actually
in RGB mode) overlapped with the joints and the body skeleton. Note that all information
needed to generate this figure is obtained from the MSK sensor system, and manipulated and
saved by the 3D motion analysis system we developed.

In practice for matching the 3D motion trajectories, the motion analysis system first recalls
a 3D reference motion data which is saved in a 3D motion database and plays it on the screen,
which the payer (rehabilitation patient) tries to follows. In this practice, the MSK captures the
skeleton and joints of the player, and then overlaps those two skeletons of 3D motion. An
example of practice corresponding to the Fig. 3 is presented in the Fig. 4. In those figures, the
green-colored skeleton is the reference motion, and the red-colored one is the practice motion.
Note that, beside this visual presentation, it also performs 3D trajectory matching algorithm on
those two trajectories, which is described in detail in the following sections.
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Fig. 2 Joint positions from the MSK (obtained from internet public images)
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Fig. 3 Human body image overlapped with the joints and skeleton obtained from the Microsoft Kinect system
3 Preprocessing for 3D trajectory data

Due to the system noise, measurement noise or both, trajectory data may not be accurate.
‘Smoothing’ process is an important task because it enhances the signature’s computational
stability by reducing the noise and vibration of motion. However, trajectory shape may be
affected by the smoothing process. To cope with the effect of noise, the derivatives of a smooth
version of data using a smoothing kernel () are considered, i.e. x(/)(t):(x(t)*@(t))(’). By the
derivative theorem of convolution, we can have x(")(t)=x(t)>x< gp(j)(t). For this paper, a B-spline
B(?) is taken to be the smoothing kernel (7). An odd degree central B-spline of degree 24—1
with the integer knots —/,—h+1,..,0,h—1, & is given by

h—1
B6) = gy o0 (2 )t 0

I==h
where the notation f.(s) mean f{(s) if f{s)>0 and 0 otherwise. For a quantic B-spline, 2=3 [8].

Fig. 4 Anexample of two overlapped trajectories: the green is the reference motion and the red is the practice one
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Next, we normalize the location and the scale of a 3D trajectory so that all trajectories are
transformed to a common domain. Trajectory normalization makes scale, rotation and trans-
lation invariant, which can produce better performance for the following processes. We applied
the continuous principal component analysis (PCA) to the trajectory points [14], where we
assume that three distinct nonzero eigenvectors can be computed from the 3D trajectory
coordinates. The continuous PCA ensures the invariance of the translation, the rotation, the
reflection, and the scale.

4 Signature as trajectory descriptor

For trajectory matching, we need a descriptor that can well describe the shape of the trajectory.
In our study, we use the signature for the descriptor. For a point ¢, the signature S(7) is defined
by five values x(7), 7(t), h(?), e(t) and c(?). (?) is the ‘curvature’ that is a measurement for the
turning amount of the contour, and 7(?) is the ‘forsion’ that presents its twist amount out of the
tangent-normal plane. Other three values A(?), e() and c(f) are the ‘Euclidian distances’ from
the point ¢ to the start-point, the end-point, and the center-point of the trajectory, respectively.
Note that the center-point is computed by the continuous PCA which is performed at the
normalization process. Thus, for a motion trajectory in 3D space with N points I'= {x(7),)(?),
z(f)|te[1,N]}, the signature set D* for the entire trajectory is defined in the following form

D" = {i(t), 7(0), h(2) (), c(0)|eel1, M1} )
where
s = ||P@ < P/ e o)
w(0) = (1) x 1'0)-F(0) /|| ) = f(z)H2 (4)
h(t) = |1 ()= ()] (5)
e(r) = |11 (@) =T (V)| (6)
c(t) = [T (7)

An elbow point is a point on the trajectory which has the curvature value x(7) larger than a
threshold ¢. If we know the coordinates of the elbow points and their sequential order, we can
rebuild an approximated trajectory by connecting the elbow points with the straight lines of
points. Consequently, information about the elbow points is good enough to align two
trajectories for matching task. Therefore, a new literal set of signature only with the elbow
points can be described as

’

D = {n(t),T(t),h(t),e(t),c(t) te[l,N], 7(¢) > (p}. (8)
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This new set of the signature only with the elbow points has 4 or 5 times less number of
elements(signatures, points) than D*. As a result, computational burden for matching two
trajectories can be dramatically reduced by using D' rather than D*. An illustration for the
elbow points (block dots) and the 3 distances are shown in the Fig. 5.

5 Signature alignments

As mentioned in previous section, each trajectory is represented by a set of signature. Note that in
our proposed method, we only compute the signatures at the elbow points. For each elbow point,
as mentioned above, five signature elements are obtained: x(2), 7(?), A(?), e(?) and c(%). In order to
match two trajectories, two corresponding signatures should be correctly paired. Since there are
many noisy factors such as different number of signatures in two trajectories, a matching
approach should consider methods to handle the noisy factors. There are many approaches to
match two set of sequence data such as longest common sub-sequences (LCSS) and dynamic
time warping (DTW) [12]. The LCSS is more adaptive and appropriate distance measurement
for trajectory data than DTW [5]. We therefore choose LCSS for matching process in our study.
Given an integer § and a real number 0<e<1, we define the LCSS;.(4,B) as follows:

0 if A4 or B is empty
1 + LCSSs. (Head (A), Head(B)),

if

and ‘ay‘n*byym ‘ <e

Ax D m ‘ <e€

<e
<0

and|a: ,—by

and|n—m

max (LCSS,;‘S (Head(A),B), LCSS;.(4, Head(B))) , otherwise

Elbow point

‘O Center

Start point

Fig. 5 Illustration of elbow points (block dots) and 3 Euclidian distances
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The constant ¢ controls how far in time we can go in order to match a given point from one
trajectory to a point in the other trajectory. The constant € is the matching threshold. The
similarity function S between two trajectories 4 and B, given § and ¢, is defined as follows:

LCSS5.(A4,B
S(5,¢,4,B) _ LCSSsc(4.B) (10)
min(n, m)

This LCSS model allows stretching and displacement in time, so we can detect similarities

in movements that happen at different speeds, or at different times.

6 Evaluation of motion matching accuracy

The motion analysis system we developed was originally targeted for rehabilitation practice
system. This practice system displays a pre-defined reference motion in a 3D motion database
system on the screen, and the rehabilitation patient tries to follow the reference motion being
played on the screen. During this practice, the patient’s motion is traced by the MSK sensor
system and compared with the reference motion by our matching algorithm to evaluate how
well practice has been performed. In this situation, 3D motion matching algorithm, which is
generally trajectory-based object motion analysis, is a key feature for accurate evaluation for
how well followed the reference motion.

In order to evaluate the accuracy of our proposed method for matching the 3D motion
trajectories, we used the 3D trajectory information of the Australian Sign Language (ASL) data
set obtained from University of California at Irvine’s Knowledge Discovery in Databases archive
[2]. The ASL trajectory dataset consists of 95 sign classes (words), and 27 samples were captured
for each sign word. The coordinates X, y and z are extracted from the sign’s feature sets to
calculate the trajectory signature. The length of the samples is not fixed. The details for the
experimental setup are exactly the same as that described in [4], where the data set consists of sign
words ‘Norway’, ‘alive’, and ‘crazy’. Each sign-word category has 69 trajectories.

Haft trajectories from each category were used for training, and the remains were used for
testing. A test sample is classified by the nearest neighbor rule (k=5). The experiment was
repeated 40 times (each time with a randomly selected training and test datasets). The average
result of recognition was 84.76 %. We also performed the experiment with pose normalization
method [5]. Our proposed method was compared with other methods of PCA-based Gaussian
mixture models (GMM) and global Gaussian mixture models [4], and the comparison result is
reported in the Table 1.

Note that our proposed method used only a subset of trajectory data while other methods
used the full length trajectory data. Even though the recognition result of our proposed method
does not outperform the PCA-based GMM method, the number of data points for recognition
process is much smaller, which implies less computational complexity. Therefore, our pro-
posed method is more advantageous than PCA-based GMM in term of recognition speed.

Table 1 Dimension of covariance

matrix Method Correction rate (%)
Signature of elbow points 84.76
PCA-based GMM 85.29
Global GMM 69.61
Pose Normalization 52.38
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7 Conclusion

In this paper, we introduced a rehabilitation motion practice system which detects 3D motion
trajectory with the Microsoft Kinect (MSK) sensor and proposed a 3D motion matching
algorithm. The rehabilitation motion practice system displays a reference 3D motion in the
database system that the player (patient) tries to follow. The player’s motion is traced by the
MSK sensor system and then compared with the reference motion to evaluate how well the
player follows the reference motion. In this system, 3D motion matching algorithm is a key
feature for accurate evaluation for player’s performance.

For accurate evaluation of rehabilitation motion practice, we proposed new 3D matching
algorithm which only uses the features, named in ‘signature’, obtained from ‘elbow points’
which are the points that have the curvature value larger than a specific threshold. We
performed experiments to show its effectiveness for 3D motion matching applications using
sign language recognition [2] along with comparison with two existing methods PCA-based
Gaussian mixture models (GMM) and global Gaussian mixture models [4].

In the first step of our matching algorithm, all trajectories are smoothed and then normal-
ized by continuous PCA [4]. By using continuous PCA, all trajectories are invariant to
translation, rotation and scale. Once all the trajectories are normalized, a set of signature
which contains both local features and global features of trajectory is computed from only the
elbow points. The longest common sub-sequence (LCSS) matching algorithm yy was then
used to match the signatures from the elbow points in two trajectories. Comparison of one
trajectory and another trajectory in a database, actually one set of signatures and another set of
signatures in a database, is quite complicated if the database size is big and the length of the
trajectory is long. Therefore, using only subset of full trajectory points is simple and fast in
trajectory matching process.

Even though our method uses less information of the trajectory for matching, sign word
recognition results showed that our proposed method can still maintains high recognition rate
compared to the existing methods. This implies that the features from the elbow points are
good information enough for matching two trajectories. However, further works should
include investment for the sensitivity of the threshold value to recognition results, which
affects the selection for the number of elbow points. Also, practical application study should be
performed with large number of sigh words.

Also, experimental results show the possibility that our 3D motion analysis system can be
exploited for a base framework for various 3D motion-based applications such as physical
rehabilitation support, sport motion analysis and biomechanical applications. We are currently
performing research for various applications of our developed system.
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